Computing Graph Edit Distance with Algorithms on Quantum Devices

Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Different notions of distance can be used depending on the types of the data the algorithm is working on. For graph-shaped data, an important notion is the Graph Edit Distance (GED) that...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Incudini, Massimiliano, Tarocco, Fabio, Mengoni, Riccardo, Alessandra Di Pierro, Mandarino, Antonio
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.02.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2111.10183

Cover

Loading…
Abstract Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Different notions of distance can be used depending on the types of the data the algorithm is working on. For graph-shaped data, an important notion is the Graph Edit Distance (GED) that measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical. As the complexity of computing GED is the same as NP-hard problems, it is reasonable to consider approximate solutions. In this paper we present a QUBO formulation of the GED problem. This allows us to implement two different approaches, namely quantum annealing and variational quantum algorithms that run on the two types of quantum hardware currently available: quantum annealer and gate-based quantum computer, respectively. Considering the current state of noisy intermediate-scale quantum computers, we base our study on proof-of-principle tests of their performance.
AbstractList Quantum Machine Intelligence. 4, 24 (2022) Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Different notions of distance can be used depending on the types of the data the algorithm is working on. For graph-shaped data, an important notion is the Graph Edit Distance (GED) that measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical. As the complexity of computing GED is the same as NP-hard problems, it is reasonable to consider approximate solutions. In this paper we present a QUBO formulation of the GED problem. This allows us to implement two different approaches, namely quantum annealing and variational quantum algorithms that run on the two types of quantum hardware currently available: quantum annealer and gate-based quantum computer, respectively. Considering the current state of noisy intermediate-scale quantum computers, we base our study on proof-of-principle tests of their performance.
Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Different notions of distance can be used depending on the types of the data the algorithm is working on. For graph-shaped data, an important notion is the Graph Edit Distance (GED) that measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical. As the complexity of computing GED is the same as NP-hard problems, it is reasonable to consider approximate solutions. In this paper we present a QUBO formulation of the GED problem. This allows us to implement two different approaches, namely quantum annealing and variational quantum algorithms that run on the two types of quantum hardware currently available: quantum annealer and gate-based quantum computer, respectively. Considering the current state of noisy intermediate-scale quantum computers, we base our study on proof-of-principle tests of their performance.
Author Tarocco, Fabio
Alessandra Di Pierro
Mengoni, Riccardo
Incudini, Massimiliano
Mandarino, Antonio
Author_xml – sequence: 1
  givenname: Massimiliano
  surname: Incudini
  fullname: Incudini, Massimiliano
– sequence: 2
  givenname: Fabio
  surname: Tarocco
  fullname: Tarocco, Fabio
– sequence: 3
  givenname: Riccardo
  surname: Mengoni
  fullname: Mengoni, Riccardo
– sequence: 4
  fullname: Alessandra Di Pierro
– sequence: 5
  givenname: Antonio
  surname: Mandarino
  fullname: Mandarino, Antonio
BackLink https://doi.org/10.48550/arXiv.2111.10183$$DView paper in arXiv
https://doi.org/10.1007/s42484-022-00077-x$$DView published paper (Access to full text may be restricted)
BookMark eNotj1FLwzAUhYMoOOd-gE8GfG69SZo2fXN0cwoDEfZebtt0y1jTmrTT_Xvr5tM9XD4O57sj17a1mpAHBmGkpIRndD_mGHLGWMiAKXFFJlwIFqiI81sy834PADxOuJRiQl6ytumG3tgtXTnsdnRZmZ4ujO_Rlpp-m35H54dt68bQeNpa-jmg7YeGLvTRlNrfk5saD17P_u-UbF6Xm-wtWH-s3rP5OkDJIagRMeIsjaOkKFmd6jiSSghAXqWp5sjiSpWFLqAY30qgVCODuioSQFEkiZiSx0vtWS_vnGnQnfI_zfysORJPF6Jz7degfZ_v28HZcVPOYwApIE1B_ALcbVaL
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2111.10183
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2111_10183
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a520-faaa4219647bc1f9e6458330a2d99e2a16d8cbeb0b58383a58f9eaedb70a3b773
IEDL.DBID GOX
IngestDate Wed Jul 23 00:24:43 EDT 2025
Mon Jun 30 09:14:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-faaa4219647bc1f9e6458330a2d99e2a16d8cbeb0b58383a58f9eaedb70a3b773
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2111.10183
PQID 2600530990
PQPubID 2050157
ParticipantIDs arxiv_primary_2111_10183
proquest_journals_2600530990
PublicationCentury 2000
PublicationDate 20220217
PublicationDateYYYYMMDD 2022-02-17
PublicationDate_xml – month: 02
  year: 2022
  text: 20220217
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7885171
SecondaryResourceType preprint
Snippet Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition. Different notions of distance can be used...
Quantum Machine Intelligence. 4, 24 (2022) Distance measures provide the foundation for many popular algorithms in Machine Learning and Pattern Recognition....
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Comparative studies
Computation
Computer Science - Learning
Machine learning
Pattern recognition
Physics - Quantum Physics
Quantum computers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgERI3VrVQkA9cQ1MvcXxia0uFRFVQkXqLbMeBSnShSRGfj8dN4YDENc4hnonebPZ7CF1IRomRnIXccBmCHlIoqYpCGwmScKNdTgEXhR8Hcf-FPYz5uGq4FdWxyg0meqDO5gZ65C0gUucUxjhXi48QVKNgulpJaGyjwEFw4oqv4LY7GD7_dFlILFzOTNfjTE_e1VLLr8nnpat72lC5Al1g4B_9AWMfYXp7KBiqhV3uoy07O0A7_mCmKQ7R9Vp2wQUYfA_c0ribTUrcgazPuQtDGxXfvL-6Ly3fpgWez_DTyhlrNcUd60HgCI163dFdP6xUD0LFXSmXK6UYAZosoU07lzaGySaNFMmktES14ywx2upIw8CTKp64d5TNtIgU1ULQY1SbzWe2jrBguWaa5DS2CVNG6pwoLqWOmJI0yVQD1f3O08Wa2CIFo6TeKA3U3BgjrX7qIv11wcn_y6dol8AtAdBNEU1UK5cre-Zid6nPKwd9A5dAmH8
  priority: 102
  providerName: ProQuest
Title Computing Graph Edit Distance with Algorithms on Quantum Devices
URI https://www.proquest.com/docview/2600530990
https://arxiv.org/abs/2111.10183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLa2ceGCQIA2GFMOXCu6PNrmxmDdJqSNh4a0W-W0KSCxDe2BOPHbidtOHBCXHCLnYOdhO7Y_A1xqKXiqlfRUqrRH_ZA8LdD3rB_ySKXG2RRUKDyeBKNneTdTsxqwXS0Mrr7ePkt8YLO-ct5Jl_zLSNShzjmlbA3vZ2VwsoDiquh_6ZyNWUz9eVoLfTE4hIPK0GO9cmeOoGYXx3BdNlFw6oINCSmaxdnbhvXJhnPCZ_QpynrvL0vnsb_O12y5YI9bx_p2zvq2uNInMB3E09uRV_Uw8FA5xyxHRMkJ9Co0aTfXNqA4pfCRZ1pbjt0gi1JjjW8ofClQRY4GbWZCH4UJQ3EKjcVyYZvAQpkbaXguAhtJTLXJOSqtjS9RiyjDFjQLzpOPEqYiIaEkhVBa0N4JI6mO6DohZHolKC529v_Kc9jnlO9PHVDCNjQ2q629cFp4YzpQjwbDDuzdxJOHp06xMW4cf8c_4I6KHw
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gxOjNZ0RR96DHStlH2z0YNSKCoNEEE27NbrtVEwWE4uNH-R_dWUQPJt68ts0mnZmdncfO9wHsSc5oIgX3RCKkh3xInmTK94wf0kgk2sYUOCh8eRU0b_lFT_QK8DGbhcFrlTOf6Bx1OkiwRl5FIHXBsI1zNHz2kDUKu6szCo2pWbTN-6tN2caHrbrV7z6ljbPuadP7YhXwlLCpUqaU4hRhqEKd1DJpAuwcMl_RVEpDVS1Io0Qb7WtsKDIlIvuNMqkOfcV0GDK77ByUOGMSN1TUOP8u6dAgtAE6m_ZOHVJYVY3eHl4ObJJVwzQZsQlL7tEvz--Os8YSlK7V0IyWoWD6KzDvboEm41U4nnI82NOMnCOQNTlLH3JSxxDT2gbBmi05ebyzYsnvn8Zk0Cc3E6uZyROpG-dx1qD7H8JYh2J_0DcbQEKeaa5pxgITcZVInVElpNQ-V5JFqSrDhvvzeDhF0YhRKLETShkqM2HEXztoHP_oe_Pv17uw0OxeduJO66q9BYsUxxOQsCWsQDEfTcy2DRpyveNURSD-Z9P4BLMG0_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+Graph+Edit+Distance+with+Algorithms+on+Quantum+Devices&rft.jtitle=arXiv.org&rft.au=Incudini%2C+Massimiliano&rft.au=Tarocco%2C+Fabio&rft.au=Mengoni%2C+Riccardo&rft.au=Alessandra+Di+Pierro&rft.date=2022-02-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.10183