Finite dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory

We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lasiecka, Irena, Priyasad, Buddhika, Triggiani, Roberto
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.02.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2202.03262

Cover

Loading…
Abstract We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion \(\widetilde{\Gamma}\) of the boundary \(\Gamma = \partial \Omega\). Instead, \(\boldsymbol{u}\) is a \(d\)-dimensional internal control for the fluid equation acting on an arbitrary small collar \(\omega\) supported by \(\widetilde{\Gamma}\) (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair \(\{ v, \boldsymbol{u} \}\) localized on \(\{ \widetilde{\Gamma}, \omega \}\). In addition, they will be minimal in number, and of reduced dimension: more precisely, \(\boldsymbol{u}\) will be of dimension \((d-1)\), to include necessarily its \(d\)\textsuperscript{th} component, and \(v\) will be of dimension \(1\). The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to \(\boldsymbol{L}^3(\Omega\)) for \( d = 3 \)) and a corresponding Besov space for the thermal component, \( q > d \). Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}.
AbstractList We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion \(\widetilde{\Gamma}\) of the boundary \(\Gamma = \partial \Omega\). Instead, \(\boldsymbol{u}\) is a \(d\)-dimensional internal control for the fluid equation acting on an arbitrary small collar \(\omega\) supported by \(\widetilde{\Gamma}\) (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair \(\{ v, \boldsymbol{u} \}\) localized on \(\{ \widetilde{\Gamma}, \omega \}\). In addition, they will be minimal in number, and of reduced dimension: more precisely, \(\boldsymbol{u}\) will be of dimension \((d-1)\), to include necessarily its \(d\)\textsuperscript{th} component, and \(v\) will be of dimension \(1\). The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to \(\boldsymbol{L}^3(\Omega\)) for \( d = 3 \)) and a corresponding Besov space for the thermal component, \( q > d \). Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}.
Journal of Inverse and Ill-posed Problems, vol. 30, no. 1, 2022, pp. 35-79 We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair $\{ v, \boldsymbol{u} \}$ of controls localized on $\{ \widetilde{\Gamma}, \omega \}$. Here, $v$ is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion $\widetilde{\Gamma}$ of the boundary $\Gamma = \partial \Omega$. Instead, $\boldsymbol{u}$ is a $d$-dimensional internal control for the fluid equation acting on an arbitrary small collar $\omega$ supported by $\widetilde{\Gamma}$ (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair $\{ v, \boldsymbol{u} \}$ localized on $\{ \widetilde{\Gamma}, \omega \}$. In addition, they will be minimal in number, and of reduced dimension: more precisely, $\boldsymbol{u}$ will be of dimension $(d-1)$, to include necessarily its $d$\textsuperscript{th} component, and $v$ will be of dimension $1$. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to $\boldsymbol{L}^3(\Omega$) for $ d = 3 $) and a corresponding Besov space for the thermal component, $ q > d $. Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}.
Author Triggiani, Roberto
Lasiecka, Irena
Priyasad, Buddhika
Author_xml – sequence: 1
  givenname: Irena
  surname: Lasiecka
  fullname: Lasiecka, Irena
– sequence: 2
  givenname: Buddhika
  surname: Priyasad
  fullname: Priyasad, Buddhika
– sequence: 3
  givenname: Roberto
  surname: Triggiani
  fullname: Triggiani, Roberto
BackLink https://doi.org/10.1515/jiip-2020-0132$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2202.03262$$DView paper in arXiv
BookMark eNotkEFOwzAQRS0EEqX0AKywxDrFceIkXdKKAlIlNt1H42QiXCV260kqwjk4MG7Lahbz_tfXu2PX1llk7CEW87RQSjyD_zbHuZRCzkUiM3nFJjJJ4qhIpbxlM6KdEEJmuVQqmbDftbGmR16bDi0ZZ6Hl2g22Bj_ywZrG-Y5TD9q05gf6AHDX8P4L-dINRMYiHTiN1GPHjeVLJHfktIcKieuRV970pgqdA-EpuALfYgeWI_Wmgx4jDYR1iB7RByQUOz_es5sGWsLZ_52y7fp1u3qPNp9vH6uXTQRKiggbVak8zjAXTS1iLFBIWOg0RWygydI4AwBdL-pKZ4WqkkaCEhoXooaFErlOpuzxUntWVu59WOTH8qSuPKsLxNOF2Ht3GMLmcucGHxxRGd6ZkkUci-QPa_N30w
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.2202.03262
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2202_03262
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a520-ef5c5716e70fd01e8e02a9b44eefaf6416aaabd9dcb685c3f2a50be90da9507b3
IEDL.DBID 8FG
IngestDate Tue Jul 22 23:14:28 EDT 2025
Mon Jun 30 09:17:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-ef5c5716e70fd01e8e02a9b44eefaf6416aaabd9dcb685c3f2a50be90da9507b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2626528110?pq-origsite=%requestingapplication%
PQID 2626528110
PQPubID 2050157
ParticipantIDs arxiv_primary_2202_03262
proquest_journals_2626528110
PublicationCentury 2000
PublicationDate 20220207
2022-02-07
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 02
  year: 2022
  text: 20220207
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7872207
SecondaryResourceType preprint
Snippet We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls...
Journal of Inverse and Ill-posed Problems, vol. 30, no. 1, 2022, pp. 35-79 We consider the d-dimensional Boussinesq system defined on a sufficiently smooth...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Boundary control
Boussinesq equations
Dirichlet problem
Feedback control
Function space
Initial conditions
Mathematics - Analysis of PDEs
Mathematics - Optimization and Control
Regularity
Stabilization
Thermodynamics
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV2xTsMwELVKJxYEAtRCQTewRqSOncQjrSgVErAUqVtkx2epQ1No2or-Bx_M2UnFgFgtezknd-_J994xdueksUIJHcnUykiUuYl0wpMo11wNhXVWZl7g_PKaTt_F81zOOwwOWhi9_lrsGn9gU99z7v00CWFQkj3i3LdsPb3Nm8fJYMXV7v_dRxgzLP1JraFeTE7ZSQv04KG5mTPWweqcfU8WHuOB9Z76jR8GmDDYaL2HbeVVUksgvOY7Vht9JKwcEEaDETH00KL-CY35MiwqGGG92gHlBPrZweyhbOcWwLZGf3Dsn9KXugJvpUHQFCNftCwd9c0YCEHFuL9gs8njbDyN2rkIkZZE9tDJUhLNwSx2Nh5ijjHXygiB6LRLCWFprY1VtjRpLsvEcS1jgyq2WhH6M8kl61arCnsMiHu50qhMWonCEBORxB6cRGUxdcTF-qwXoll8NNYXhQ90EQLdZ4NDgIv2s68LWk8lzwlSXP1_8podc68h8K3P2YB1N-st3lBl35jbcL0_EFWoYQ
  priority: 102
  providerName: Cornell University
Title Finite dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory
URI https://www.proquest.com/docview/2626528110
https://arxiv.org/abs/2202.03262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmE9_MwWs03WTzOAktrSL4QBR6C7vZWejBtDZW7MVf4Q92ZhP1IHgJJGEvs8nM983OfCPEqVPGxnmsA5VYFcRlZgIdySjItMx7sXVWpdzgfHObXD3F12M1bhNudVtW-e0TvaO205Jz5OeSkLeSGUWri9lLwFOj-HS1HaGxKro9ijT8hWejy58ci0xSQsxRc5jppbvO9fx98nYmJet0EnKRhEn9oz-u2MeX0Ybo3usZzjfFClZbYs2XZZb1tvgcTRgTgmUN_kY_A4wfhDRfwqLirqpnIHzHFa5NPyVMHRCmgz4xel_S_gKNWDNMKuhjPX0D8iHkHMAsoWznHMCiRl444KP3Z10BS28QlMWAg5ylpVy8geC7Hpc74nE0fBxcBe0chUArIofoVKmIFmEaOhv2MMNQ6tzEMaLTLiFEprU2NrelSTJVRk5qFRrMQ6tzQosm2hWdalrhngDiaq40eaqswtgQc1HENpzC3GLiiLvtiz1vzWLWSGUUbOjCG3pfHH0buGh_k7r43dSD_18finXJfQdcLp0eic7rfIHHhAZezYnf8hPR7Q9v7x_o7vJuTNebj-EXGh-84Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VRAhufKotBeYAR1N37fXHASGlNEppG1UoSL1Zu95ZKYfaadwU8j_4G_xHZtYJHJC49WprfRjPzry3O_MG4J3X1qVlaiKdOR2ldWEjk6gkKowqj1Lnnc6lwflimk2-pV-u9NUO_Nr2wkhZ5TYmhkDt2lrOyA8VI2-tCs5WnxY3kUyNktvV7QiN3i3OaP2dKVv38fQz_9_3So1PZseTaDNVIDKaqRJ5XWsmCZTH3sVHVFCsTGnTlMgbnzE-McZYV7raZoWuE6-Mji2VsTMlYyeb8GcfwDBNGCkMYDg6mV5-_XOoo7KcIXrS354GrbBDs_wxv_uglAiDMlRSDILDo39if0ho4ycwvDQLWj6FHWqewcNQB1p3z-HneC4gFJ2I_veCHWjD5KXlGleNtHFdIwNKKantGzix9cggEkftqgs19DfYq0PjvMERde0dctDiaIR2jfVmsAKuOpKFx3LXf20aFK0Pxs4USVZ1vFSqRQhDm-X6Bczuw8QvYdC0De0CMjn0tS1z7TSllqmSZnrjNZWOMs9kcQ92gzWrRa_NUYmhq2DoPTjYGrja7Muu-utF-_9__RYeTWYX59X56fTsFTxW0vQgtdr5AQxulyt6zVDk1r7ZOABCdc8u9xvhhPik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+dimensional+boundary+uniform+stabilization+of+the+Boussinesq+system+in+Besov+spaces+by+critical+use+of+Carleman+estimate-based+inverse+theory&rft.jtitle=arXiv.org&rft.au=Lasiecka%2C+Irena&rft.au=Priyasad%2C+Buddhika&rft.au=Triggiani%2C+Roberto&rft.date=2022-02-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2202.03262