Finite dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory
We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
07.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2202.03262 |
Cover
Loading…
Abstract | We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion \(\widetilde{\Gamma}\) of the boundary \(\Gamma = \partial \Omega\). Instead, \(\boldsymbol{u}\) is a \(d\)-dimensional internal control for the fluid equation acting on an arbitrary small collar \(\omega\) supported by \(\widetilde{\Gamma}\) (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair \(\{ v, \boldsymbol{u} \}\) localized on \(\{ \widetilde{\Gamma}, \omega \}\). In addition, they will be minimal in number, and of reduced dimension: more precisely, \(\boldsymbol{u}\) will be of dimension \((d-1)\), to include necessarily its \(d\)\textsuperscript{th} component, and \(v\) will be of dimension \(1\). The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to \(\boldsymbol{L}^3(\Omega\)) for \( d = 3 \)) and a corresponding Besov space for the thermal component, \( q > d \). Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}. |
---|---|
AbstractList | We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls localized on \(\{ \widetilde{\Gamma}, \omega \}\). Here, \(v\) is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion \(\widetilde{\Gamma}\) of the boundary \(\Gamma = \partial \Omega\). Instead, \(\boldsymbol{u}\) is a \(d\)-dimensional internal control for the fluid equation acting on an arbitrary small collar \(\omega\) supported by \(\widetilde{\Gamma}\) (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair \(\{ v, \boldsymbol{u} \}\) localized on \(\{ \widetilde{\Gamma}, \omega \}\). In addition, they will be minimal in number, and of reduced dimension: more precisely, \(\boldsymbol{u}\) will be of dimension \((d-1)\), to include necessarily its \(d\)\textsuperscript{th} component, and \(v\) will be of dimension \(1\). The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to \(\boldsymbol{L}^3(\Omega\)) for \( d = 3 \)) and a corresponding Besov space for the thermal component, \( q > d \). Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}. Journal of Inverse and Ill-posed Problems, vol. 30, no. 1, 2022, pp. 35-79 We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair $\{ v, \boldsymbol{u} \}$ of controls localized on $\{ \widetilde{\Gamma}, \omega \}$. Here, $v$ is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrary small connected portion $\widetilde{\Gamma}$ of the boundary $\Gamma = \partial \Omega$. Instead, $\boldsymbol{u}$ is a $d$-dimensional internal control for the fluid equation acting on an arbitrary small collar $\omega$ supported by $\widetilde{\Gamma}$ (Fig 1). The initial conditions for both fluid and heat equations are taken of low regularity. We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite dimensional feedback control pair $\{ v, \boldsymbol{u} \}$ localized on $\{ \widetilde{\Gamma}, \omega \}$. In addition, they will be minimal in number, and of reduced dimension: more precisely, $\boldsymbol{u}$ will be of dimension $(d-1)$, to include necessarily its $d$\textsuperscript{th} component, and $v$ will be of dimension $1$. The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to $\boldsymbol{L}^3(\Omega$) for $ d = 3 $) and a corresponding Besov space for the thermal component, $ q > d $. Unique continuation inverse theorems for suitably over determined adjoint static problems play a critical role in the constructive solution. Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80's, after the 1939- breakthrough publication \cite{Car}. |
Author | Triggiani, Roberto Lasiecka, Irena Priyasad, Buddhika |
Author_xml | – sequence: 1 givenname: Irena surname: Lasiecka fullname: Lasiecka, Irena – sequence: 2 givenname: Buddhika surname: Priyasad fullname: Priyasad, Buddhika – sequence: 3 givenname: Roberto surname: Triggiani fullname: Triggiani, Roberto |
BackLink | https://doi.org/10.1515/jiip-2020-0132$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2202.03262$$DView paper in arXiv |
BookMark | eNotkEFOwzAQRS0EEqX0AKywxDrFceIkXdKKAlIlNt1H42QiXCV260kqwjk4MG7Lahbz_tfXu2PX1llk7CEW87RQSjyD_zbHuZRCzkUiM3nFJjJJ4qhIpbxlM6KdEEJmuVQqmbDftbGmR16bDi0ZZ6Hl2g22Bj_ywZrG-Y5TD9q05gf6AHDX8P4L-dINRMYiHTiN1GPHjeVLJHfktIcKieuRV970pgqdA-EpuALfYgeWI_Wmgx4jDYR1iB7RByQUOz_es5sGWsLZ_52y7fp1u3qPNp9vH6uXTQRKiggbVak8zjAXTS1iLFBIWOg0RWygydI4AwBdL-pKZ4WqkkaCEhoXooaFErlOpuzxUntWVu59WOTH8qSuPKsLxNOF2Ht3GMLmcucGHxxRGd6ZkkUci-QPa_N30w |
ContentType | Paper Journal Article |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.2202.03262 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2202_03262 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a520-ef5c5716e70fd01e8e02a9b44eefaf6416aaabd9dcb685c3f2a50be90da9507b3 |
IEDL.DBID | 8FG |
IngestDate | Tue Jul 22 23:14:28 EDT 2025 Mon Jun 30 09:17:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a520-ef5c5716e70fd01e8e02a9b44eefaf6416aaabd9dcb685c3f2a50be90da9507b3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.proquest.com/docview/2626528110?pq-origsite=%requestingapplication% |
PQID | 2626528110 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2202_03262 proquest_journals_2626528110 |
PublicationCentury | 2000 |
PublicationDate | 20220207 2022-02-07 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: 20220207 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.7872207 |
SecondaryResourceType | preprint |
Snippet | We consider the d-dimensional Boussinesq system defined on a sufficiently smooth bounded domain, and subject to a pair \(\{ v, \boldsymbol{u} \}\) of controls... Journal of Inverse and Ill-posed Problems, vol. 30, no. 1, 2022, pp. 35-79 We consider the d-dimensional Boussinesq system defined on a sufficiently smooth... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Boundary control Boussinesq equations Dirichlet problem Feedback control Function space Initial conditions Mathematics - Analysis of PDEs Mathematics - Optimization and Control Regularity Stabilization Thermodynamics |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV2xTsMwELVKJxYEAtRCQTewRqSOncQjrSgVErAUqVtkx2epQ1No2or-Bx_M2UnFgFgtezknd-_J994xdueksUIJHcnUykiUuYl0wpMo11wNhXVWZl7g_PKaTt_F81zOOwwOWhi9_lrsGn9gU99z7v00CWFQkj3i3LdsPb3Nm8fJYMXV7v_dRxgzLP1JraFeTE7ZSQv04KG5mTPWweqcfU8WHuOB9Z76jR8GmDDYaL2HbeVVUksgvOY7Vht9JKwcEEaDETH00KL-CY35MiwqGGG92gHlBPrZweyhbOcWwLZGf3Dsn9KXugJvpUHQFCNftCwd9c0YCEHFuL9gs8njbDyN2rkIkZZE9tDJUhLNwSx2Nh5ijjHXygiB6LRLCWFprY1VtjRpLsvEcS1jgyq2WhH6M8kl61arCnsMiHu50qhMWonCEBORxB6cRGUxdcTF-qwXoll8NNYXhQ90EQLdZ4NDgIv2s68LWk8lzwlSXP1_8podc68h8K3P2YB1N-st3lBl35jbcL0_EFWoYQ priority: 102 providerName: Cornell University |
Title | Finite dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory |
URI | https://www.proquest.com/docview/2626528110 https://arxiv.org/abs/2202.03262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmE9_MwWs03WTzOAktrSL4QBR6C7vZWejBtDZW7MVf4Q92ZhP1IHgJJGEvs8nM983OfCPEqVPGxnmsA5VYFcRlZgIdySjItMx7sXVWpdzgfHObXD3F12M1bhNudVtW-e0TvaO205Jz5OeSkLeSGUWri9lLwFOj-HS1HaGxKro9ijT8hWejy58ci0xSQsxRc5jppbvO9fx98nYmJet0EnKRhEn9oz-u2MeX0Ybo3usZzjfFClZbYs2XZZb1tvgcTRgTgmUN_kY_A4wfhDRfwqLirqpnIHzHFa5NPyVMHRCmgz4xel_S_gKNWDNMKuhjPX0D8iHkHMAsoWznHMCiRl444KP3Z10BS28QlMWAg5ylpVy8geC7Hpc74nE0fBxcBe0chUArIofoVKmIFmEaOhv2MMNQ6tzEMaLTLiFEprU2NrelSTJVRk5qFRrMQ6tzQosm2hWdalrhngDiaq40eaqswtgQc1HENpzC3GLiiLvtiz1vzWLWSGUUbOjCG3pfHH0buGh_k7r43dSD_18finXJfQdcLp0eic7rfIHHhAZezYnf8hPR7Q9v7x_o7vJuTNebj-EXGh-84Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VRAhufKotBeYAR1N37fXHASGlNEppG1UoSL1Zu95ZKYfaadwU8j_4G_xHZtYJHJC49WprfRjPzry3O_MG4J3X1qVlaiKdOR2ldWEjk6gkKowqj1Lnnc6lwflimk2-pV-u9NUO_Nr2wkhZ5TYmhkDt2lrOyA8VI2-tCs5WnxY3kUyNktvV7QiN3i3OaP2dKVv38fQz_9_3So1PZseTaDNVIDKaqRJ5XWsmCZTH3sVHVFCsTGnTlMgbnzE-McZYV7raZoWuE6-Mji2VsTMlYyeb8GcfwDBNGCkMYDg6mV5-_XOoo7KcIXrS354GrbBDs_wxv_uglAiDMlRSDILDo39if0ho4ycwvDQLWj6FHWqewcNQB1p3z-HneC4gFJ2I_veCHWjD5KXlGleNtHFdIwNKKantGzix9cggEkftqgs19DfYq0PjvMERde0dctDiaIR2jfVmsAKuOpKFx3LXf20aFK0Pxs4USVZ1vFSqRQhDm-X6Bczuw8QvYdC0De0CMjn0tS1z7TSllqmSZnrjNZWOMs9kcQ92gzWrRa_NUYmhq2DoPTjYGrja7Muu-utF-_9__RYeTWYX59X56fTsFTxW0vQgtdr5AQxulyt6zVDk1r7ZOABCdc8u9xvhhPik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+dimensional+boundary+uniform+stabilization+of+the+Boussinesq+system+in+Besov+spaces+by+critical+use+of+Carleman+estimate-based+inverse+theory&rft.jtitle=arXiv.org&rft.au=Lasiecka%2C+Irena&rft.au=Priyasad%2C+Buddhika&rft.au=Triggiani%2C+Roberto&rft.date=2022-02-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2202.03262 |