Resistivity near a nematic quantum critical point: Impact of acoustic phonons

We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the non-trivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the la...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors de Carvalho, V S, Fernandes, R M
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 04.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the non-trivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the lattice strain fields, long-range nematic interactions mediated by the phonons emerge in the problem. By solving the semi-classical Boltzmann equation in the presence of scattering by impurities and nematic fluctuations, we determine the temperature-dependence of the resistivity as the nematic QCP is approached. One of the main effects of the nemato-elastic coupling is to smooth the electronic non-equilibrium distribution function, making it approach the simple cosine angular dependence even when the impurity scattering is not too strong. We find that at temperatures lower than a temperature scale set by the nemato-elastic coupling, the resistivity shows the \(T^2\) behavior characteristic of a Fermi liquid. This is in contrast to the \(T^{4/3}\) low-temperature behavior expected for a lattice-free nematic quantum critical point. More importantly, we show that the effective resistivity exponent \(\alpha_\text{eff}(T)\) in \(\rho(T)-\rho_0\sim T^{\alpha_\text{eff}(T)}\) displays a pronounced temperature dependence, implying that a nematic QCP cannot generally be characterized by a simple resistivity exponent. We discuss the implications of our results to the interpretation of experimental data, particularly in the nematic superconductor FeSe\(_{1-x}\)S\(_x\).
AbstractList We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the non-trivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the lattice strain fields, long-range nematic interactions mediated by the phonons emerge in the problem. By solving the semi-classical Boltzmann equation in the presence of scattering by impurities and nematic fluctuations, we determine the temperature-dependence of the resistivity as the nematic QCP is approached. One of the main effects of the nemato-elastic coupling is to smooth the electronic non-equilibrium distribution function, making it approach the simple cosine angular dependence even when the impurity scattering is not too strong. We find that at temperatures lower than a temperature scale set by the nemato-elastic coupling, the resistivity shows the \(T^2\) behavior characteristic of a Fermi liquid. This is in contrast to the \(T^{4/3}\) low-temperature behavior expected for a lattice-free nematic quantum critical point. More importantly, we show that the effective resistivity exponent \(\alpha_\text{eff}(T)\) in \(\rho(T)-\rho_0\sim T^{\alpha_\text{eff}(T)}\) displays a pronounced temperature dependence, implying that a nematic QCP cannot generally be characterized by a simple resistivity exponent. We discuss the implications of our results to the interpretation of experimental data, particularly in the nematic superconductor FeSe\(_{1-x}\)S\(_x\).
Phys. Rev. B 100, 115103 (2019) We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the non-trivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the lattice strain fields, long-range nematic interactions mediated by the phonons emerge in the problem. By solving the semi-classical Boltzmann equation in the presence of scattering by impurities and nematic fluctuations, we determine the temperature-dependence of the resistivity as the nematic QCP is approached. One of the main effects of the nemato-elastic coupling is to smooth the electronic non-equilibrium distribution function, making it approach the simple cosine angular dependence even when the impurity scattering is not too strong. We find that at temperatures lower than a temperature scale set by the nemato-elastic coupling, the resistivity shows the $T^2$ behavior characteristic of a Fermi liquid. This is in contrast to the $T^{4/3}$ low-temperature behavior expected for a lattice-free nematic quantum critical point. More importantly, we show that the effective resistivity exponent $\alpha_\text{eff}(T)$ in $\rho(T)-\rho_0\sim T^{\alpha_\text{eff}(T)}$ displays a pronounced temperature dependence, implying that a nematic QCP cannot generally be characterized by a simple resistivity exponent. We discuss the implications of our results to the interpretation of experimental data, particularly in the nematic superconductor FeSe$_{1-x}$S$_x$.
Author de Carvalho, V S
Fernandes, R M
Author_xml – sequence: 1
  givenname: V
  surname: de Carvalho
  middlename: S
  fullname: de Carvalho, V S
– sequence: 2
  givenname: R
  surname: Fernandes
  middlename: M
  fullname: Fernandes, R M
BackLink https://doi.org/10.1103/PhysRevB.100.115103$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1906.03205$$DView paper in arXiv
BookMark eNotj11LwzAYhYMoOOd-gFcGvG598916J8PpYCLI7kvSZpixNl2SDvfv7TavDgceDue5Q9ed7yxCDwRyXggBzzr8ukNOSpA5MAriCk0oYyQrOKW3aBbjFgCoVFQINkGf3za6mNzBpSPurA5Yj9Hq5Gq8H3SXhhbXwY1V73DvXZde8LLtdZ2w32Bd-yGe0P7Hjz_iPbrZ6F20s_-covXibT3_yFZf78v56yrTgkJmLTWy4VZJ2ghmSg4FkZKXwIhgAgyowmjBuDKsIYoQ2TQ1KWpTGiatIJRN0eNl9uxa9cG1Ohyrk3N1dh6JpwvRB78fbEzV1g-hGz9VlDKliCQc2B8rYlqC
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.1906.03205
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1906_03205
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a520-ee2b6d4e762d53b9408166490315350b078ba5347b3d17116ddc18cb9b36e5123
IEDL.DBID 8FG
IngestDate Mon Jan 08 05:48:52 EST 2024
Thu Oct 10 16:00:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-ee2b6d4e762d53b9408166490315350b078ba5347b3d17116ddc18cb9b36e5123
OpenAccessLink https://www.proquest.com/docview/2237716140?pq-origsite=%requestingapplication%
PQID 2237716140
PQPubID 2050157
ParticipantIDs arxiv_primary_1906_03205
proquest_journals_2237716140
PublicationCentury 2000
PublicationDate 20190904
PublicationDateYYYYMMDD 2019-09-04
PublicationDate_xml – month: 09
  year: 2019
  text: 20190904
  day: 04
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7475938
SecondaryResourceType preprint
Snippet We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the non-trivial...
Phys. Rev. B 100, 115103 (2019) We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP),...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Acoustic coupling
Boltzmann transport equation
Coupling
Critical point
Distribution functions
Electrical resistivity
Fermi liquids
Impurities
Lattice strain
Order parameters
Phonons
Physics - Strongly Correlated Electrons
Scattering
Temperature
Temperature dependence
Trigonometric functions
Variations
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryIotJqlT14jSbZjyTeRKxVqIJU6C3sxwR6sK1tWvz5zm5SPIinQNgEMjOZ9yaZnQdwzbVxFUoT5blzkVAWI23JIVUaGyIcsbHafxqYvKrxh3iZyVkH2H4vjF5_z3fNfGCzuSW0Ujde4lt2oZumvmXr6W3W_JwMo7ja9b_riGOGU39Sa8CL0REctkSP3TeeOYYOLk5g8o4b_1J5wQa2oCBjmg5hair72tJDbj-ZbcUH2Go5X9R37DnsY2TLilHyCtpbzPeTU7ScwnT0OH0YR62gQaQlVWmIqVFOIOUfJ7kphBe9UKLwQgtcxobQ2mjJRWa4S7IkUc7ZJLemMFwhATM_gx7dHfvAKldliiotghYhCoG54hoFgbO0MUetB9APZihXzcyK0luoDBYawHBvmbKN101JJCGjyomqrfP_r7yAA6ILTYeVGEKvXm_xkiC5NlfBLz8xjYuL
  priority: 102
  providerName: Cornell University
Title Resistivity near a nematic quantum critical point: Impact of acoustic phonons
URI https://www.proquest.com/docview/2237716140
https://arxiv.org/abs/1906.03205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QfDmk6q17MFr2iS72aReBKUPhdZSKvQW9hXowTZtWvHkb3d2m-pB8JKQLOQwMzvfzOxkPoA7KqTOTSz9NNXaZ1wZXyhUSB4FEgOOQCphSwPDER-8sZdZPKsKbmXVVrn3ic5R66WyNfI2wliCsT3mAw_FyresUfZ0taLQOAQvjJLEWnXa6__UWCKeYMRMd4eZbnRXW6w_5x8tREHestThCCmee_XHFTt86Z2ANxaFWZ_CgVmcwZFry1TlOQwnprSb0BI8kAUaJRF4c1NWyWqLQtm-E1WRFZBiOV9s7smz---RLHOCzs5xdRHbf47WdQHTXnf6NPArAgRfxJjVGRNJrplBf6VjKjvMkmRw1rHEDDQOJKK7FDFliaQ6TMKQa63CVMmOpNwgkNNLqOHXTR1IrvOEY2aGUMRYh5mUU2EYgnmsAmqEuIK6E0NW7GZcZFZCmZPQFTT2kskq-y6zX21c_798A8cYYuy6slgDapv11twijG9k0-mqCd5jdzSe4FP_dYbX4Vf3G23hoAI
link.rule.ids 228,230,783,787,888,12779,21402,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0ojdGbnwFF3YPXQmG329aLiQYCCoQQTLg1-9WEg1AoGH--s0vRg4mnJm3Sw8z0vZnZ6TyAByqkzkwo_TjW2mdcGV8odEjWDiQmHIFUwrYGhiPee2evs3BWNtyKcqxyj4kOqPVS2R55E2kswtwe64GnfOVb1Sh7ulpKaByCZ1dVYVR7z53RePLTZWnzCHNmujvOdMu7mmL9Nf9sIA_yhhUPR1Lx3K0_YOwYpnsK3ljkZn0GB2ZxDkduMFMVFzCcmMJ-hlbigSwwLInAi9uzSlZbNMv2g6hSroDky_li80j67s9HsswIwp1T6yJ2Ah3j6xKm3c70peeXEgi-CLGuM6YtuWYGEUuHVCbMymRwllhpBhoGEvldipCySFLdilotrrVqxUomknKDVE6voIJvN1Ugmc4ijrUZkhFjCTMxp8IwpPNQBdQIUYOqM0Oa77ZcpNZCqbNQDep7y6RlhBfprz-u_398D8e96XCQDvqjtxs4wYRjN6PF6lDZrLfmFkl9I-9Kz30DSrqgeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistivity+near+a+nematic+quantum+critical+point%3A+Impact+of+acoustic+phonons&rft.jtitle=arXiv.org&rft.au=de+Carvalho%2C+V+S&rft.au=Fernandes%2C+R+M&rft.date=2019-09-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1906.03205