200 mm Sensor Development Using Bonded Wafers

Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of these devices have increased from a few square cm to \(\> 200\ m^2\) for the existing CMS tracker. High Luminosity Large Hadron Collider...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Alyari, M, Bradford, R, Campanella, M, Camporeale, P, Demina, R, Everts, J, Gecse, Z, Halenza, R, Heintz, U, Holland, S, Hong, S, Korjenevski, S, Lampis, A, Lipton, R, Patti, R, Segal, J, Shin, K W
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of these devices have increased from a few square cm to \(\> 200\ m^2\) for the existing CMS tracker. High Luminosity Large Hadron Collider (HL-LHC), CMS and ATLAS tracker upgrades will each require more than \(200\ m^2\) of silicon and the CMS High Granularity Calorimeter (HGCAL) will require more than \(600\ m^2\). The cost and complexity of assembly of these devices is related to the area of each module, which in turn is set by the size of the silicon sensors. In addition to large area, the devices must be radiation hard, which requires the use of sensors thinned to 200 microns or less. The combination of wafer thinning and large wafer diameter is a significant technical challenge, and is the subject of this work. We describe work on development of thin sensors on \(200 mm\) wafers using wafer bonding technology. Results of development runs with float zone, Silicon-on-Insulator and Silicon-Silicon bonded wafer technologies are reported.
AbstractList Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of these devices have increased from a few square cm to $\> 200\ m^2$ for the existing CMS tracker. High Luminosity Large Hadron Collider (HL-LHC), CMS and ATLAS tracker upgrades will each require more than $200\ m^2$ of silicon and the CMS High Granularity Calorimeter (HGCAL) will require more than $600\ m^2$. The cost and complexity of assembly of these devices is related to the area of each module, which in turn is set by the size of the silicon sensors. In addition to large area, the devices must be radiation hard, which requires the use of sensors thinned to 200 microns or less. The combination of wafer thinning and large wafer diameter is a significant technical challenge, and is the subject of this work. We describe work on development of thin sensors on $200 mm$ wafers using wafer bonding technology. Results of development runs with float zone, Silicon-on-Insulator and Silicon-Silicon bonded wafer technologies are reported.
Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of these devices have increased from a few square cm to \(\> 200\ m^2\) for the existing CMS tracker. High Luminosity Large Hadron Collider (HL-LHC), CMS and ATLAS tracker upgrades will each require more than \(200\ m^2\) of silicon and the CMS High Granularity Calorimeter (HGCAL) will require more than \(600\ m^2\). The cost and complexity of assembly of these devices is related to the area of each module, which in turn is set by the size of the silicon sensors. In addition to large area, the devices must be radiation hard, which requires the use of sensors thinned to 200 microns or less. The combination of wafer thinning and large wafer diameter is a significant technical challenge, and is the subject of this work. We describe work on development of thin sensors on \(200 mm\) wafers using wafer bonding technology. Results of development runs with float zone, Silicon-on-Insulator and Silicon-Silicon bonded wafer technologies are reported.
Author Alyari, M
Korjenevski, S
Campanella, M
Camporeale, P
Everts, J
Heintz, U
Lampis, A
Gecse, Z
Segal, J
Hong, S
Bradford, R
Halenza, R
Holland, S
Lipton, R
Patti, R
Demina, R
Shin, K W
Author_xml – sequence: 1
  givenname: M
  surname: Alyari
  fullname: Alyari, M
– sequence: 2
  givenname: R
  surname: Bradford
  fullname: Bradford, R
– sequence: 3
  givenname: M
  surname: Campanella
  fullname: Campanella, M
– sequence: 4
  givenname: P
  surname: Camporeale
  fullname: Camporeale, P
– sequence: 5
  givenname: R
  surname: Demina
  fullname: Demina, R
– sequence: 6
  givenname: J
  surname: Everts
  fullname: Everts, J
– sequence: 7
  givenname: Z
  surname: Gecse
  fullname: Gecse, Z
– sequence: 8
  givenname: R
  surname: Halenza
  fullname: Halenza, R
– sequence: 9
  givenname: U
  surname: Heintz
  fullname: Heintz, U
– sequence: 10
  givenname: S
  surname: Holland
  fullname: Holland, S
– sequence: 11
  givenname: S
  surname: Hong
  fullname: Hong, S
– sequence: 12
  givenname: S
  surname: Korjenevski
  fullname: Korjenevski, S
– sequence: 13
  givenname: A
  surname: Lampis
  fullname: Lampis, A
– sequence: 14
  givenname: R
  surname: Lipton
  fullname: Lipton, R
– sequence: 15
  givenname: R
  surname: Patti
  fullname: Patti, R
– sequence: 16
  givenname: J
  surname: Segal
  fullname: Segal, J
– sequence: 17
  givenname: K
  surname: Shin
  middlename: W
  fullname: Shin, K W
BackLink https://doi.org/10.48550/arXiv.2006.04888$$DView paper in arXiv
https://doi.org/10.1088/1748-0221/16/02/T02002$$DView published paper (Access to full text may be restricted)
BookMark eNotkMtOwzAURC0EEqX0A1hhiXXC9dtZQikPqRILilhGdnKDUjVOsNsK_p7QsprN0WjOXJDT0Ack5IpBLq1ScOvid7vPOYDOQVprT8iEC8EyKzk_J7OU1gDAteFKiQnJRpB2HX3DkPpIH3CPm37oMGzpe2rDJ73vQ401_XANxnRJzhq3STj7zylZPS5W8-ds-fr0Mr9bZk5xyCQHVYOxFSjnG2xAMq2kZh4q4EY4X3OLUHhvQBuQhimrQKKrfFU0unZiSq6PtQeXcoht5-JP-edUHpxG4uZIDLH_2mHalut-F8O4qeSSsWI8woL4BX57TeY
ContentType Paper
Journal Article
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.2006.04888
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2006_04888
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a520-4205d078c05abfef04165461b0c0273abd28e09bb7067047158504eacbc9f6da3
IEDL.DBID BENPR
IngestDate Wed Jul 23 00:23:35 EDT 2025
Mon Jun 30 09:18:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-4205d078c05abfef04165461b0c0273abd28e09bb7067047158504eacbc9f6da3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
FERMILAB-PUB-20-223-CMS-E
OpenAccessLink https://www.proquest.com/docview/2411955080?pq-origsite=%requestingapplication%
PQID 2411955080
PQPubID 2050157
ParticipantIDs arxiv_primary_2006_04888
proquest_journals_2411955080
PublicationCentury 2000
PublicationDate 20200902
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 09
  year: 2020
  text: 20200902
  day: 02
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7354681
SecondaryResourceType preprint
Snippet Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of...
Sensors fabricated from high resistivity, float zone, silicon material have been the basis of vertex detectors and trackers for the last 30 years. The areas of...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Float zones
Large Hadron Collider
Luminosity
Physics - High Energy Physics - Experiment
Physics - Instrumentation and Detectors
Sensors
Silicon
Solenoids
Wafers
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB7anryIotJqlRy8BrNxk909iliLoB6suLclkwd4qMq2Sn--k-wWBfEaJodMJvnmY14A55kRqLTV3Gjvee6N54je8CCJEVlXCFnF2uH7Bz1_zu9qVQ-AbWthTLt5_er6A-PqoosVkI2VQxhKGVO2bh_rLjiZWnH18j9y5GOmpT9fa8KL2R7s9o4eu-puZh8G_u0AorWw5ZI9EXl8b9mvjB2WYvcsTvn1jr2YQG7ZISxmN4vrOe8HFnCjiIXlUihHkGuFMhh8EHkqFcpQ2Ng1xqCTpRcVYhGLYwgVyFUXpB6LtgramcsjGBHn92NgRFgDPbZcKUMUJmikL7UspMxsWbnMqQmM0zGbj64nRZwmqZukgQlMtydventcNYTTWUX6KsXx_ztPYEdGNhnDJXIKo3X76U8Jctd4lvT-DfbTfrs
  priority: 102
  providerName: Cornell University
Title 200 mm Sensor Development Using Bonded Wafers
URI https://www.proquest.com/docview/2411955080
https://arxiv.org/abs/2006.04888
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5si-DNJ63WsgevoZttdpOcBKUPhNaiFXsL-wp4aBvTKp787c5uUxUEL4Ekp51MZr5vngBXoaSKCy0CKawNIittoJSVQc6QEWkTU5a63uHxRIyeors5n1cBt3VVVrmzid5Qm5V2MfIuepowRTid0OviNXBbo1x2tVqhUYMGmuAEyVfjpj-ZPnxHWZiIETP3tulMP7yrK8uPl_cqC4HamyAq9Y_-GGPvYQaH0JjKwpZHsGeXx7DvCzP1-gScfpHFgjwi3VyV5FeND_HZfuL2AltDnmWOQO4UZoP-7HYUVCsOAsmRt0WMcoNOWlMuVW5zGvnmolBR7ebMSGVYYmmqVOzaadCPILinKFCtdJoLI3tnUF-ulrYJBClujr9nxLlE0pMLhUY4iRkLdZKa0PAWNP0xs2I7xcLtnxSZl0AL2ruTZ5UGr7MfeZ____oCDpjjoC7JwtpQ35Rv9hId9UZ1oJYMhp3qm-Dd8H6O1_Fn_wtxpZPQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgNBEC1igujNlUSj9kGPQ3p69oN4UGNiFgQj5jb0NuAhi5O4fZT_aHUno4LgLdcZGKiprlf1ujaAU5dTEYQydHioteNrrh0hNHcyhoxIqoiyxPQO9_ph68G_HQbDEnwWvTCmrLLARAvUaiLNHXkDPY2bYDgd04vps2O2RpnsarFCY3EsOvrjDSnb7Lx9hfo9Y6x5PbhsOcutAg4PkCr5jAYK_aKkAReZzqhv-3lcQaUZ7cKFYrGmiRCR6WBB6MZ4mqIMUsgkCxX38LNrUPE9LzEGFTdvvq90WBhhgO4tcqd2UliD5-9Pr8uUB5pKjCGwffQH-a07a25B5Y5Pdb4NJT3egXVbBSpnu2AOMxmNyD1y20lOfhUUEVtaQMwSYq3II88watyDwSok34fyeDLWVSDIpzPEAj8IODKsLBSI-HHEmCvjRLkqqEHViplOFyMzzLLLMLV_oAb1QvJ0aS6z9Ee5B_-_PoGN1qDXTbvtfucQNpkhvya7w-pQnucv-ggjhLk4tnohkK74HHwBThHKXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=200+mm+Sensor+Development+Using+Bonded+Wafers&rft.jtitle=arXiv.org&rft.au=Alyari%2C+M&rft.au=Bradford%2C+R&rft.au=Campanella%2C+M&rft.au=Camporeale%2C+P&rft.date=2020-09-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2006.04888