Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular wei...
Saved in:
Published in | Macromolecules Vol. 50; no. 21; pp. 8698 - 8706 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium. |
---|---|
AbstractList | Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium. Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium.Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium. Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium. Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium. |
Author | Strehin, Iossif Kouwer, Paul H. J Leeuwenburgh, Sander C. G da Silva, Ricardo M. P Messersmith, Phillip B Lopez-Perez, Paula M |
AuthorAffiliation | Departments of Bioengineering and Materials Science and Engineering University of California, Berkeley Centre for Craniofacial and Regenerative Biology Northwestern University Institute for Molecules and Materials King’s College London Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center Radboud University Department of Biomaterials |
AuthorAffiliation_xml | – name: Departments of Bioengineering and Materials Science and Engineering – name: Radboud University – name: Department of Biomaterials – name: Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center – name: Northwestern University – name: Centre for Craniofacial and Regenerative Biology – name: Institute for Molecules and Materials – name: University of California, Berkeley – name: King’s College London – name: b Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands – name: c Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, UK – name: e Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA – name: a Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA – name: d Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands |
Author_xml | – sequence: 1 givenname: Paula M surname: Lopez-Perez fullname: Lopez-Perez, Paula M organization: Department of Biomaterials – sequence: 2 givenname: Ricardo M. P orcidid: 0000-0003-1456-8724 surname: da Silva fullname: da Silva, Ricardo M. P email: ricardo.silva@kcl.ac.uk organization: King’s College London – sequence: 3 givenname: Iossif surname: Strehin fullname: Strehin, Iossif organization: Northwestern University – sequence: 4 givenname: Paul H. J orcidid: 0000-0002-2760-191X surname: Kouwer fullname: Kouwer, Paul H. J organization: Radboud University – sequence: 5 givenname: Sander C. G surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C. G organization: Department of Biomaterials – sequence: 6 givenname: Phillip B orcidid: 0000-0002-1197-333X surname: Messersmith fullname: Messersmith, Phillip B email: philm@berkeley.edu organization: University of California, Berkeley |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29403089$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsFu1DAQtVAR3Rb-AKEcuWSxYzuOOSDBiu1WqgTSwtlyksmuK8de7AQIX1-H3VbAgR6ssTTvPc3MexfozHkHCL0keElwQd7oJi573QTfe7sUNSaMiCdoQXiBc15RfoYWGBcsl4UU5-gixluMCeGMPkPnhWSY4kou0LQF2-Ub0Na4XbaZ2uB3YGO29qGHNqunbOX7g4WfejDeZTUMPwBcttK2MWOfXXsXM-3a7IOJh72fn9MD5OvRNTMhyf5KMttBh3y714f0_-zt1EOIz9HTTtsIL071En1df_yy2uQ3n66uV-9vcs2JHPK2oaJmFXStpkLWUna6aJhmQooWiIASM-iaFoPgHaOswC20HXBWVh2lLe3oJXp31D2MdVqpATcEbdUhmF6HSXlt1N8dZ_Zq578rLiQvCU0Cr08CwX8bIQ6qN7EBa7UDP0ZV4Cpds5AVfxRKpOSkpKWYoa_-HOthnntrEoAdAcniGAN0DxCC1ZwAlRKg7hOgTglItLf_0Boz_DYvLWfsY2R8JM_dWz-GZGD8P-UOxIjP0Q |
CitedBy_id | crossref_primary_10_1002_admi_201800118 crossref_primary_10_3390_polym14142882 crossref_primary_10_1016_j_triboint_2023_108468 crossref_primary_10_1016_j_actbio_2020_12_030 crossref_primary_10_1016_j_porgcoat_2020_106053 crossref_primary_10_1016_j_bioactmat_2020_06_002 crossref_primary_10_1016_j_jcis_2021_12_055 crossref_primary_10_3390_jfb13020045 crossref_primary_10_1007_s42452_024_06058_y crossref_primary_10_1021_acs_chemrev_0c01088 crossref_primary_10_1039_D2NJ02843C crossref_primary_10_1007_s00706_023_03057_4 crossref_primary_10_1039_D0QM01099E crossref_primary_10_1016_j_eurpolymj_2022_111807 crossref_primary_10_1016_j_supmat_2024_100081 crossref_primary_10_1002_mabi_202100257 crossref_primary_10_1002_smll_201900242 crossref_primary_10_1002_adfm_202413678 crossref_primary_10_1021_acs_langmuir_3c03696 crossref_primary_10_1021_acsapm_2c00043 crossref_primary_10_1016_j_electacta_2021_139730 crossref_primary_10_1016_j_mtbio_2022_100225 crossref_primary_10_1021_acsami_8b09534 crossref_primary_10_1016_j_addr_2021_02_002 crossref_primary_10_1039_C8RA03550D crossref_primary_10_1016_j_porgcoat_2019_105354 crossref_primary_10_1039_C8TB02854K crossref_primary_10_1021_acs_biomac_9b00104 crossref_primary_10_1016_j_ijpharm_2023_122634 crossref_primary_10_1016_j_mattod_2024_06_018 crossref_primary_10_1021_acs_chemrev_1c00071 crossref_primary_10_1021_acs_chemrev_0c00015 crossref_primary_10_1038_s41467_020_17597_4 crossref_primary_10_1002_marc_201800837 crossref_primary_10_1002_adhm_202400472 crossref_primary_10_1039_D0TB01042A crossref_primary_10_1002_adma_202008111 crossref_primary_10_1016_j_cej_2019_123962 crossref_primary_10_1038_s41578_020_0202_4 crossref_primary_10_1016_j_progpolymsci_2022_101622 crossref_primary_10_1039_C8NJ00118A crossref_primary_10_1039_D0TC03810E |
Cites_doi | 10.1038/nbt1055 10.4065/83.9.1032 10.1126/science.1171643 10.1021/ma5013144 10.1039/C3TB21374A 10.1021/ma800446n 10.1021/la00030a005 10.3109/03639049509026665 10.1021/ma00212a028 10.1021/j100653a014 10.1038/nmat4401 10.1038/pj.2015.124 10.1021/ja054298a 10.1021/ma970617+ 10.1021/la8023748 10.1016/j.biomaterials.2013.06.023 10.1021/ma301791n 10.1038/natrevmats.2015.12 10.1021/ma00175a038 10.1210/edrv.19.1.0325 10.1039/c3cp50165e 10.1021/ma961559f 10.1002/anie.200500026 10.1038/nmat4489 10.1021/ma0013049 10.1002/adma.201303680 10.1021/ja500205v 10.1039/c1cc11928a 10.1039/c3bm00201b 10.1073/pnas.1015862108 10.1007/BF00396677 10.1021/ja403745w 10.1016/j.bone.2010.11.008 10.1021/ma981201e 10.1038/ncomms7365 10.1093/oso/9780198520597.001.0001 10.1021/bm500942p 10.1021/acsnano.5b06692 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.macromol.7b01417 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5835 |
EndPage | 8706 |
ExternalDocumentID | PMC5795613 29403089 10_1021_acs_macromol_7b01417 a881952238 |
Genre | Journal Article |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 P2P ROL TN5 TWZ UI2 VF5 VG9 W1F WH7 X YZZ -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK .GJ 1WB 6TJ ABHMW ACRPL ADNMO AETEA AEYZD AFFNX AGQPQ ANPPW ANTXH MVM NPM RNS YYP 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a519t-dc37b48efda379b99fa2c4a4797de17e604efcd0e75f43420dedfe5468f33d3f3 |
IEDL.DBID | ACS |
ISSN | 0024-9297 1520-5835 |
IngestDate | Thu Aug 21 14:34:40 EDT 2025 Fri Jul 11 06:11:54 EDT 2025 Fri Jul 11 14:51:07 EDT 2025 Mon Jul 21 05:49:44 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jul 01 03:46:44 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | PEG calcium hydrogel star-shaped polymer bisphosphonate ionomer Self-healing alendronate bone dynamic biomaterials stress relaxation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a519t-dc37b48efda379b99fa2c4a4797de17e604efcd0e75f43420dedfe5468f33d3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author Contributions PMLP and RMPdS contributed equally. |
ORCID | 0000-0003-1456-8724 0000-0002-1197-333X 0000-0002-2760-191X |
OpenAccessLink | https://kclpure.kcl.ac.uk/ws/files/80496069/PM_Lopez_Perez_Macromol_Accepted_Manuscript.pdf |
PMID | 29403089 |
PQID | 1995163675 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5795613 proquest_miscellaneous_2084032985 proquest_miscellaneous_1995163675 pubmed_primary_29403089 crossref_primary_10_1021_acs_macromol_7b01417 crossref_citationtrail_10_1021_acs_macromol_7b01417 acs_journals_10_1021_acs_macromol_7b01417 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-14 |
PublicationDateYYYYMMDD | 2017-11-14 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Macromolecules |
PublicationTitleAlternate | Macromolecules |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Szpak M. (ref21/cit21) 2014; 68 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 Ferry J. D. (ref27/cit27) 1980 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref12/cit12 ref15/cit15 Rubinstein M. (ref17/cit17) 2003 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1038/nbt1055 – ident: ref18/cit18 doi: 10.4065/83.9.1032 – volume: 68 start-page: 321 issue: 4 year: 2014 ident: ref21/cit21 publication-title: Chem. Int. – ident: ref1/cit1 doi: 10.1126/science.1171643 – ident: ref9/cit9 doi: 10.1021/ma5013144 – ident: ref12/cit12 doi: 10.1039/C3TB21374A – ident: ref26/cit26 doi: 10.1021/ma800446n – ident: ref36/cit36 doi: 10.1021/la00030a005 – ident: ref40/cit40 doi: 10.3109/03639049509026665 – ident: ref25/cit25 doi: 10.1021/ma00212a028 – ident: ref22/cit22 doi: 10.1021/j100653a014 – ident: ref32/cit32 doi: 10.1038/nmat4401 – ident: ref28/cit28 doi: 10.1038/pj.2015.124 – ident: ref34/cit34 doi: 10.1021/ja054298a – ident: ref37/cit37 doi: 10.1021/ma970617+ – ident: ref33/cit33 doi: 10.1021/la8023748 – ident: ref3/cit3 doi: 10.1016/j.biomaterials.2013.06.023 – ident: ref11/cit11 doi: 10.1021/ma301791n – volume-title: Viscoelastic Properties of Polymers year: 1980 ident: ref27/cit27 – ident: ref5/cit5 doi: 10.1038/natrevmats.2015.12 – ident: ref35/cit35 doi: 10.1021/ma00175a038 – ident: ref20/cit20 doi: 10.1210/edrv.19.1.0325 – ident: ref15/cit15 doi: 10.1039/c3cp50165e – ident: ref16/cit16 doi: 10.1021/ma961559f – ident: ref39/cit39 doi: 10.1002/anie.200500026 – ident: ref14/cit14 doi: 10.1038/nmat4489 – ident: ref38/cit38 doi: 10.1021/ma0013049 – ident: ref4/cit4 doi: 10.1002/adma.201303680 – ident: ref7/cit7 doi: 10.1021/ja500205v – ident: ref10/cit10 doi: 10.1039/c1cc11928a – ident: ref23/cit23 doi: 10.1039/c3bm00201b – ident: ref30/cit30 doi: 10.1073/pnas.1015862108 – ident: ref31/cit31 doi: 10.1007/BF00396677 – ident: ref6/cit6 doi: 10.1021/ja403745w – ident: ref19/cit19 doi: 10.1016/j.bone.2010.11.008 – ident: ref24/cit24 doi: 10.1021/ma981201e – ident: ref13/cit13 doi: 10.1038/ncomms7365 – volume-title: Polymer Physics year: 2003 ident: ref17/cit17 doi: 10.1093/oso/9780198520597.001.0001 – ident: ref8/cit8 doi: 10.1021/bm500942p – ident: ref29/cit29 doi: 10.1021/acsnano.5b06692 |
SSID | ssj0011543 |
Score | 2.4523683 |
Snippet | Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon... Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon... Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8698 |
SubjectTerms | calcium crosslinking gelation hydrogels ions loss modulus mixing molecular weight polyethylene glycol rheology |
Title | Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers |
URI | http://dx.doi.org/10.1021/acs.macromol.7b01417 https://www.ncbi.nlm.nih.gov/pubmed/29403089 https://www.proquest.com/docview/1995163675 https://www.proquest.com/docview/2084032985 https://pubmed.ncbi.nlm.nih.gov/PMC5795613 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagHOACZR-gyEhcOHhIvMTxsYw6miKxSEOl3iKvzIg0Gc1ymP56nrMMTKuqcIgUJc9O8vyc9z2_xQi9d0waUFOGyNSBgWJVBnMOprtRzFkRgglNbtWXr9nkjH8-F-d_DMWrHnyaftR2NbzQTXBaOZQmBibKu-gezXIZja3j0XTnNQA40HqUKSeg9mWfKndDL1Eh2dW-QrqGMq8GS_6lfcaP0Lc-h6cNOvk13KzN0F5eL-n4jx92iB52QBQft5LzGN3x1RN0f9Tv__YUbae-DCSmKYF2w5OtW9Y_QZHiMaBc77DZ4vgvifkxcWxxF_CFR7q0880FPgVxxrpy-NN8tZjV8agA15IxKNJ2_XF-Cd0A2F2S6Uwv4Px7XW7jMvozdDY--TGakG6jBqIBAK6JszDiPPfBaSaVUSpoarnmUknnU-mzhPtgXeKlCJxxmjjvghc8ywNjjgX2HB1UdeVfIpyK3LCIWixl3FuphBEmAZAlNNNCugH6AHwruom2KhofOk2LeLFnZtExc4BYP7KF7Sqex403yltakV2rRVvx4xb6d73QFDBC0d-iK19v4N0UwNeMgUl2Mw1NwMJmVOVA86IVtN1TqeKxmpAaILkngjuCWBp8_041nzUlwoWMCcvs1X9w6zV6QCNkiSGO_A06WC83_ggA19q8bWbZb4BOLLo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9JBemu51urFALz3IlbiY5jE1ajhtEhRwUuQmcI2NKpJh2Qfn6zvU1jpFEOQgQKCGFEUONW84CxH6ZKnQIKZ0JBILCoqRA1hzsNy1pNZw77WvYqtOTgeTc_b9gl_sIN7GwkAnSmiprIz4f7MLJF9C2ZWqfNSyvtDBP1E8QA8Bj5Cgcx2Opp3xAFBBbVgmLALpL9qIuVtaCXLJlNty6T-wedNn8h8hNN5Hv7ruV74nv_vrle6b6xuZHe_9fU_Q4waW4sOaj56iHZc_Q3uj9jS452gzdZmPQtASyDo82dhlcQliFY8B8zqL9QaHP0uIlgkzjRv3LzxSmZmvr_ARMDdWucVf5-ViVoQrB5QbjUGs1ruR82toBqDvMprO1ALufxbZJmyqv0Dn429no0nUHNsQKYCDq8gamH82dN4qKqSW0itimGJCCusS4QYxc97Y2AnuGWUkts56x9lg6Cm11NOXaDcvcvca4YQPNQ0YxhDKnBGSa65jgFxcUcWF7aHPMG5ps-zKtLKokyQNhe1gps1g9hBtJzg1Tf7zcAxHdketqKu1qPN_3EH_seWdFGYoWF9U7oo19E0CmB1QUNBupyEx6NuUyCHQvKr5rXsrkSzkFpI9JLY4sSMIicK3n-TzWZUwnIsQvkwP7jFaH9De5OzkOD0-Ov3xBj0iAcwE50f2Fu2ulmv3DqDYSr-vFt4f-rs1Gw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BkYAL-xLWQeLCwantGWcyxxKwUpaqUqhUcbFmJRGuHcXJIf31vOdNTVFVwcGSZc-MZ3nP73vzliHkvWVCg5jSgYgsKChGjoDngN21ZNYk3mtfx1Z9PxpNT_iX0-T0wlFf0IkKWqpqIz5y9dL6NsNAtI_Pz1Ttp5YPhUYfRXGT3ELLHepdB5NZb0AAZNAYl2MeAAIQXdTcFa2gbDLVrmz6C3Be9pu8IIjS--RnP4Ta_-T3cLPWQ3N-Kbvjf43xAbnXwlN60NDTQ3LDFY_InUl3Ktxjsp253AcYvAQyj063dlX-AvFKU8C-zlK9pfiHwagZXHHauoHRicrNYnNGD4HIqSos_biolvMSrwLQbpCCeG12JRfn0AxA4FUwm6sl3B-X-RY315-Qk_Tzj8k0aI9vCBTAwnVgDdABHztvFRNSS-lVbLjiQgrrIuFGIXfe2NCJxHPG49A6613CR2PPmGWePSV7RVm454RGyVgzxDImZtwZIROd6BCgV6KYSoQdkA8wb1nLflVWW9bjKMOH3WRm7WQOCOsWOTNtHnQ8jiO_plbQ11o2eUCuKf-uo58MVgitMKpw5Qb6JgHUjhgoaleXiUPQu1ksx1DmWUNz_VdjyTHHkBwQsUONfQFMGL77pljM68ThicAwZvbiH2brLbl9_CnNvh0efX1J7saIadAHkr8ie-vVxr0GRLbWb2re-wOhdDee |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Healing+Hydrogels+Formed+by+Complexation+between+Calcium+Ions+and+Bisphosphonate-Functionalized+Star-Shaped+Polymers&rft.jtitle=Macromolecules&rft.au=Lopez-Perez%2C+Paula+M&rft.au=da+Silva%2C+Ricardo+M.+P&rft.au=Strehin%2C+Iossif&rft.au=Kouwer%2C+Paul+H.+J&rft.date=2017-11-14&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=50&rft.issue=21&rft.spage=8698&rft.epage=8706&rft_id=info:doi/10.1021%2Facs.macromol.7b01417&rft.externalDocID=a881952238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon |