Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers

Star-shaped poly­(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular wei...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 50; no. 21; pp. 8698 - 8706
Main Authors Lopez-Perez, Paula M, da Silva, Ricardo M. P, Strehin, Iossif, Kouwer, Paul H. J, Leeuwenburgh, Sander C. G, Messersmith, Phillip B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Star-shaped poly­(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium.
AbstractList Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium.
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium.Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium.
Star-shaped poly­(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium.
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 min of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquidlike behavior at lower frequencies and solidlike at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time–concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium–bisphosphonate complexation equilibrium.
Author Strehin, Iossif
Kouwer, Paul H. J
Leeuwenburgh, Sander C. G
da Silva, Ricardo M. P
Messersmith, Phillip B
Lopez-Perez, Paula M
AuthorAffiliation Departments of Bioengineering and Materials Science and Engineering
University of California, Berkeley
Centre for Craniofacial and Regenerative Biology
Northwestern University
Institute for Molecules and Materials
King’s College London
Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center
Radboud University
Department of Biomaterials
AuthorAffiliation_xml – name: Departments of Bioengineering and Materials Science and Engineering
– name: Radboud University
– name: Department of Biomaterials
– name: Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center
– name: Northwestern University
– name: Centre for Craniofacial and Regenerative Biology
– name: Institute for Molecules and Materials
– name: University of California, Berkeley
– name: King’s College London
– name: b Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
– name: c Centre for Craniofacial and Regenerative Biology, King’s College London, London, SE1 9RT, UK
– name: e Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
– name: a Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA
– name: d Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
Author_xml – sequence: 1
  givenname: Paula M
  surname: Lopez-Perez
  fullname: Lopez-Perez, Paula M
  organization: Department of Biomaterials
– sequence: 2
  givenname: Ricardo M. P
  orcidid: 0000-0003-1456-8724
  surname: da Silva
  fullname: da Silva, Ricardo M. P
  email: ricardo.silva@kcl.ac.uk
  organization: King’s College London
– sequence: 3
  givenname: Iossif
  surname: Strehin
  fullname: Strehin, Iossif
  organization: Northwestern University
– sequence: 4
  givenname: Paul H. J
  orcidid: 0000-0002-2760-191X
  surname: Kouwer
  fullname: Kouwer, Paul H. J
  organization: Radboud University
– sequence: 5
  givenname: Sander C. G
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C. G
  organization: Department of Biomaterials
– sequence: 6
  givenname: Phillip B
  orcidid: 0000-0002-1197-333X
  surname: Messersmith
  fullname: Messersmith, Phillip B
  email: philm@berkeley.edu
  organization: University of California, Berkeley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29403089$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAQtVAR3Rb-AKEcuWSxYzuOOSDBiu1WqgTSwtlyksmuK8de7AQIX1-H3VbAgR6ssTTvPc3MexfozHkHCL0keElwQd7oJi573QTfe7sUNSaMiCdoQXiBc15RfoYWGBcsl4UU5-gixluMCeGMPkPnhWSY4kou0LQF2-Ub0Na4XbaZ2uB3YGO29qGHNqunbOX7g4WfejDeZTUMPwBcttK2MWOfXXsXM-3a7IOJh72fn9MD5OvRNTMhyf5KMttBh3y714f0_-zt1EOIz9HTTtsIL071En1df_yy2uQ3n66uV-9vcs2JHPK2oaJmFXStpkLWUna6aJhmQooWiIASM-iaFoPgHaOswC20HXBWVh2lLe3oJXp31D2MdVqpATcEbdUhmF6HSXlt1N8dZ_Zq578rLiQvCU0Cr08CwX8bIQ6qN7EBa7UDP0ZV4Cpds5AVfxRKpOSkpKWYoa_-HOthnntrEoAdAcniGAN0DxCC1ZwAlRKg7hOgTglItLf_0Boz_DYvLWfsY2R8JM_dWz-GZGD8P-UOxIjP0Q
CitedBy_id crossref_primary_10_1002_admi_201800118
crossref_primary_10_3390_polym14142882
crossref_primary_10_1016_j_triboint_2023_108468
crossref_primary_10_1016_j_actbio_2020_12_030
crossref_primary_10_1016_j_porgcoat_2020_106053
crossref_primary_10_1016_j_bioactmat_2020_06_002
crossref_primary_10_1016_j_jcis_2021_12_055
crossref_primary_10_3390_jfb13020045
crossref_primary_10_1007_s42452_024_06058_y
crossref_primary_10_1021_acs_chemrev_0c01088
crossref_primary_10_1039_D2NJ02843C
crossref_primary_10_1007_s00706_023_03057_4
crossref_primary_10_1039_D0QM01099E
crossref_primary_10_1016_j_eurpolymj_2022_111807
crossref_primary_10_1016_j_supmat_2024_100081
crossref_primary_10_1002_mabi_202100257
crossref_primary_10_1002_smll_201900242
crossref_primary_10_1002_adfm_202413678
crossref_primary_10_1021_acs_langmuir_3c03696
crossref_primary_10_1021_acsapm_2c00043
crossref_primary_10_1016_j_electacta_2021_139730
crossref_primary_10_1016_j_mtbio_2022_100225
crossref_primary_10_1021_acsami_8b09534
crossref_primary_10_1016_j_addr_2021_02_002
crossref_primary_10_1039_C8RA03550D
crossref_primary_10_1016_j_porgcoat_2019_105354
crossref_primary_10_1039_C8TB02854K
crossref_primary_10_1021_acs_biomac_9b00104
crossref_primary_10_1016_j_ijpharm_2023_122634
crossref_primary_10_1016_j_mattod_2024_06_018
crossref_primary_10_1021_acs_chemrev_1c00071
crossref_primary_10_1021_acs_chemrev_0c00015
crossref_primary_10_1038_s41467_020_17597_4
crossref_primary_10_1002_marc_201800837
crossref_primary_10_1002_adhm_202400472
crossref_primary_10_1039_D0TB01042A
crossref_primary_10_1002_adma_202008111
crossref_primary_10_1016_j_cej_2019_123962
crossref_primary_10_1038_s41578_020_0202_4
crossref_primary_10_1016_j_progpolymsci_2022_101622
crossref_primary_10_1039_C8NJ00118A
crossref_primary_10_1039_D0TC03810E
Cites_doi 10.1038/nbt1055
10.4065/83.9.1032
10.1126/science.1171643
10.1021/ma5013144
10.1039/C3TB21374A
10.1021/ma800446n
10.1021/la00030a005
10.3109/03639049509026665
10.1021/ma00212a028
10.1021/j100653a014
10.1038/nmat4401
10.1038/pj.2015.124
10.1021/ja054298a
10.1021/ma970617+
10.1021/la8023748
10.1016/j.biomaterials.2013.06.023
10.1021/ma301791n
10.1038/natrevmats.2015.12
10.1021/ma00175a038
10.1210/edrv.19.1.0325
10.1039/c3cp50165e
10.1021/ma961559f
10.1002/anie.200500026
10.1038/nmat4489
10.1021/ma0013049
10.1002/adma.201303680
10.1021/ja500205v
10.1039/c1cc11928a
10.1039/c3bm00201b
10.1073/pnas.1015862108
10.1007/BF00396677
10.1021/ja403745w
10.1016/j.bone.2010.11.008
10.1021/ma981201e
10.1038/ncomms7365
10.1093/oso/9780198520597.001.0001
10.1021/bm500942p
10.1021/acsnano.5b06692
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.macromol.7b01417
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5835
EndPage 8706
ExternalDocumentID PMC5795613
29403089
10_1021_acs_macromol_7b01417
a881952238
Genre Journal Article
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
WH7
X
YZZ
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
.GJ
1WB
6TJ
ABHMW
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
MVM
NPM
RNS
YYP
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a519t-dc37b48efda379b99fa2c4a4797de17e604efcd0e75f43420dedfe5468f33d3f3
IEDL.DBID ACS
ISSN 0024-9297
1520-5835
IngestDate Thu Aug 21 14:34:40 EDT 2025
Fri Jul 11 06:11:54 EDT 2025
Fri Jul 11 14:51:07 EDT 2025
Mon Jul 21 05:49:44 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 03:46:44 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords PEG
calcium
hydrogel
star-shaped polymer
bisphosphonate
ionomer
Self-healing
alendronate
bone
dynamic biomaterials
stress relaxation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a519t-dc37b48efda379b99fa2c4a4797de17e604efcd0e75f43420dedfe5468f33d3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
PMLP and RMPdS contributed equally.
ORCID 0000-0003-1456-8724
0000-0002-1197-333X
0000-0002-2760-191X
OpenAccessLink https://kclpure.kcl.ac.uk/ws/files/80496069/PM_Lopez_Perez_Macromol_Accepted_Manuscript.pdf
PMID 29403089
PQID 1995163675
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5795613
proquest_miscellaneous_2084032985
proquest_miscellaneous_1995163675
pubmed_primary_29403089
crossref_primary_10_1021_acs_macromol_7b01417
crossref_citationtrail_10_1021_acs_macromol_7b01417
acs_journals_10_1021_acs_macromol_7b01417
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-14
PublicationDateYYYYMMDD 2017-11-14
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Macromolecules
PublicationTitleAlternate Macromolecules
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Szpak M. (ref21/cit21) 2014; 68
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
Ferry J. D. (ref27/cit27) 1980
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref12/cit12
ref15/cit15
Rubinstein M. (ref17/cit17) 2003
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1038/nbt1055
– ident: ref18/cit18
  doi: 10.4065/83.9.1032
– volume: 68
  start-page: 321
  issue: 4
  year: 2014
  ident: ref21/cit21
  publication-title: Chem. Int.
– ident: ref1/cit1
  doi: 10.1126/science.1171643
– ident: ref9/cit9
  doi: 10.1021/ma5013144
– ident: ref12/cit12
  doi: 10.1039/C3TB21374A
– ident: ref26/cit26
  doi: 10.1021/ma800446n
– ident: ref36/cit36
  doi: 10.1021/la00030a005
– ident: ref40/cit40
  doi: 10.3109/03639049509026665
– ident: ref25/cit25
  doi: 10.1021/ma00212a028
– ident: ref22/cit22
  doi: 10.1021/j100653a014
– ident: ref32/cit32
  doi: 10.1038/nmat4401
– ident: ref28/cit28
  doi: 10.1038/pj.2015.124
– ident: ref34/cit34
  doi: 10.1021/ja054298a
– ident: ref37/cit37
  doi: 10.1021/ma970617+
– ident: ref33/cit33
  doi: 10.1021/la8023748
– ident: ref3/cit3
  doi: 10.1016/j.biomaterials.2013.06.023
– ident: ref11/cit11
  doi: 10.1021/ma301791n
– volume-title: Viscoelastic Properties of Polymers
  year: 1980
  ident: ref27/cit27
– ident: ref5/cit5
  doi: 10.1038/natrevmats.2015.12
– ident: ref35/cit35
  doi: 10.1021/ma00175a038
– ident: ref20/cit20
  doi: 10.1210/edrv.19.1.0325
– ident: ref15/cit15
  doi: 10.1039/c3cp50165e
– ident: ref16/cit16
  doi: 10.1021/ma961559f
– ident: ref39/cit39
  doi: 10.1002/anie.200500026
– ident: ref14/cit14
  doi: 10.1038/nmat4489
– ident: ref38/cit38
  doi: 10.1021/ma0013049
– ident: ref4/cit4
  doi: 10.1002/adma.201303680
– ident: ref7/cit7
  doi: 10.1021/ja500205v
– ident: ref10/cit10
  doi: 10.1039/c1cc11928a
– ident: ref23/cit23
  doi: 10.1039/c3bm00201b
– ident: ref30/cit30
  doi: 10.1073/pnas.1015862108
– ident: ref31/cit31
  doi: 10.1007/BF00396677
– ident: ref6/cit6
  doi: 10.1021/ja403745w
– ident: ref19/cit19
  doi: 10.1016/j.bone.2010.11.008
– ident: ref24/cit24
  doi: 10.1021/ma981201e
– ident: ref13/cit13
  doi: 10.1038/ncomms7365
– volume-title: Polymer Physics
  year: 2003
  ident: ref17/cit17
  doi: 10.1093/oso/9780198520597.001.0001
– ident: ref8/cit8
  doi: 10.1021/bm500942p
– ident: ref29/cit29
  doi: 10.1021/acsnano.5b06692
SSID ssj0011543
Score 2.4523683
Snippet Star-shaped poly­(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon...
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon...
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible cross-links upon...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8698
SubjectTerms calcium
crosslinking
gelation
hydrogels
ions
loss modulus
mixing
molecular weight
polyethylene glycol
rheology
Title Self-Healing Hydrogels Formed by Complexation between Calcium Ions and Bisphosphonate-Functionalized Star-Shaped Polymers
URI http://dx.doi.org/10.1021/acs.macromol.7b01417
https://www.ncbi.nlm.nih.gov/pubmed/29403089
https://www.proquest.com/docview/1995163675
https://www.proquest.com/docview/2084032985
https://pubmed.ncbi.nlm.nih.gov/PMC5795613
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagHOACZR-gyEhcOHhIvMTxsYw6miKxSEOl3iKvzIg0Gc1ymP56nrMMTKuqcIgUJc9O8vyc9z2_xQi9d0waUFOGyNSBgWJVBnMOprtRzFkRgglNbtWXr9nkjH8-F-d_DMWrHnyaftR2NbzQTXBaOZQmBibKu-gezXIZja3j0XTnNQA40HqUKSeg9mWfKndDL1Eh2dW-QrqGMq8GS_6lfcaP0Lc-h6cNOvk13KzN0F5eL-n4jx92iB52QBQft5LzGN3x1RN0f9Tv__YUbae-DCSmKYF2w5OtW9Y_QZHiMaBc77DZ4vgvifkxcWxxF_CFR7q0880FPgVxxrpy-NN8tZjV8agA15IxKNJ2_XF-Cd0A2F2S6Uwv4Px7XW7jMvozdDY--TGakG6jBqIBAK6JszDiPPfBaSaVUSpoarnmUknnU-mzhPtgXeKlCJxxmjjvghc8ywNjjgX2HB1UdeVfIpyK3LCIWixl3FuphBEmAZAlNNNCugH6AHwruom2KhofOk2LeLFnZtExc4BYP7KF7Sqex403yltakV2rRVvx4xb6d73QFDBC0d-iK19v4N0UwNeMgUl2Mw1NwMJmVOVA86IVtN1TqeKxmpAaILkngjuCWBp8_041nzUlwoWMCcvs1X9w6zV6QCNkiSGO_A06WC83_ggA19q8bWbZb4BOLLo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9JBemu51urFALz3IlbiY5jE1ajhtEhRwUuQmcI2NKpJh2Qfn6zvU1jpFEOQgQKCGFEUONW84CxH6ZKnQIKZ0JBILCoqRA1hzsNy1pNZw77WvYqtOTgeTc_b9gl_sIN7GwkAnSmiprIz4f7MLJF9C2ZWqfNSyvtDBP1E8QA8Bj5Cgcx2Opp3xAFBBbVgmLALpL9qIuVtaCXLJlNty6T-wedNn8h8hNN5Hv7ruV74nv_vrle6b6xuZHe_9fU_Q4waW4sOaj56iHZc_Q3uj9jS452gzdZmPQtASyDo82dhlcQliFY8B8zqL9QaHP0uIlgkzjRv3LzxSmZmvr_ARMDdWucVf5-ViVoQrB5QbjUGs1ruR82toBqDvMprO1ALufxbZJmyqv0Dn429no0nUHNsQKYCDq8gamH82dN4qKqSW0itimGJCCusS4QYxc97Y2AnuGWUkts56x9lg6Cm11NOXaDcvcvca4YQPNQ0YxhDKnBGSa65jgFxcUcWF7aHPMG5ps-zKtLKokyQNhe1gps1g9hBtJzg1Tf7zcAxHdketqKu1qPN_3EH_seWdFGYoWF9U7oo19E0CmB1QUNBupyEx6NuUyCHQvKr5rXsrkSzkFpI9JLY4sSMIicK3n-TzWZUwnIsQvkwP7jFaH9De5OzkOD0-Ov3xBj0iAcwE50f2Fu2ulmv3DqDYSr-vFt4f-rs1Gw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BkYAL-xLWQeLCwantGWcyxxKwUpaqUqhUcbFmJRGuHcXJIf31vOdNTVFVwcGSZc-MZ3nP73vzliHkvWVCg5jSgYgsKChGjoDngN21ZNYk3mtfx1Z9PxpNT_iX0-T0wlFf0IkKWqpqIz5y9dL6NsNAtI_Pz1Ttp5YPhUYfRXGT3ELLHepdB5NZb0AAZNAYl2MeAAIQXdTcFa2gbDLVrmz6C3Be9pu8IIjS--RnP4Ta_-T3cLPWQ3N-Kbvjf43xAbnXwlN60NDTQ3LDFY_InUl3Ktxjsp253AcYvAQyj063dlX-AvFKU8C-zlK9pfiHwagZXHHauoHRicrNYnNGD4HIqSos_biolvMSrwLQbpCCeG12JRfn0AxA4FUwm6sl3B-X-RY315-Qk_Tzj8k0aI9vCBTAwnVgDdABHztvFRNSS-lVbLjiQgrrIuFGIXfe2NCJxHPG49A6613CR2PPmGWePSV7RVm454RGyVgzxDImZtwZIROd6BCgV6KYSoQdkA8wb1nLflVWW9bjKMOH3WRm7WQOCOsWOTNtHnQ8jiO_plbQ11o2eUCuKf-uo58MVgitMKpw5Qb6JgHUjhgoaleXiUPQu1ksx1DmWUNz_VdjyTHHkBwQsUONfQFMGL77pljM68ThicAwZvbiH2brLbl9_CnNvh0efX1J7saIadAHkr8ie-vVxr0GRLbWb2re-wOhdDee
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Healing+Hydrogels+Formed+by+Complexation+between+Calcium+Ions+and+Bisphosphonate-Functionalized+Star-Shaped+Polymers&rft.jtitle=Macromolecules&rft.au=Lopez-Perez%2C+Paula+M&rft.au=da+Silva%2C+Ricardo+M.+P&rft.au=Strehin%2C+Iossif&rft.au=Kouwer%2C+Paul+H.+J&rft.date=2017-11-14&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=50&rft.issue=21&rft.spage=8698&rft.epage=8706&rft_id=info:doi/10.1021%2Facs.macromol.7b01417&rft.externalDocID=a881952238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon