Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain bo...
Saved in:
Published in | ACS energy letters Vol. 2; no. 5; pp. 1214 - 1222 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH3NH3PbI3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage (J–V) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J–V hysteresis. |
---|---|
AbstractList | Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH3NH3PbI3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage (J–V) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J–V hysteresis. Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH 3 NH 3 PbI 3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage ( J – V ) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J – V hysteresis. Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH NH PbI solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current-voltage ( - ) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the - hysteresis. |
Author | Gil-Escrig, Lidón Sherkar, Tejas S Sessolo, Michele Momblona, Cristina Ávila, Jorge Bolink, Henk J Koster, L. Jan Anton |
AuthorAffiliation | Universidad de Valencia University of Groningen Zernike Institute for Advanced Materials Instituto de Ciencia Molecular |
AuthorAffiliation_xml | – name: Zernike Institute for Advanced Materials – name: Instituto de Ciencia Molecular – name: University of Groningen – name: Universidad de Valencia |
Author_xml | – sequence: 1 givenname: Tejas S surname: Sherkar fullname: Sherkar, Tejas S organization: University of Groningen – sequence: 2 givenname: Cristina surname: Momblona fullname: Momblona, Cristina organization: Universidad de Valencia – sequence: 3 givenname: Lidón surname: Gil-Escrig fullname: Gil-Escrig, Lidón organization: Universidad de Valencia – sequence: 4 givenname: Jorge surname: Ávila fullname: Ávila, Jorge organization: Universidad de Valencia – sequence: 5 givenname: Michele surname: Sessolo fullname: Sessolo, Michele organization: Universidad de Valencia – sequence: 6 givenname: Henk J orcidid: 0000-0001-9784-6253 surname: Bolink fullname: Bolink, Henk J organization: Universidad de Valencia – sequence: 7 givenname: L. Jan Anton orcidid: 0000-0002-6558-5295 surname: Koster fullname: Koster, L. Jan Anton email: l.j.a.koster@rug.nl organization: University of Groningen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28540366$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFPHCEUhYmxUbv1J2h49MG1wDC7TB9MdFt1E5M21T6TC3Nni87CCoyJ_76YXY371PAA4X7nQM75THZ98EjIEWdnnAn-FWxCj3Hx0mPOZ1PDmKgmO-RAVIqNFW_q3Q_nfXKY0gNjjE9UXdYe2ReqlqyaTA7I42-0YWmch-yCp87TXxjDc3p0Geld6CHSGfZ9-kbv3MK7zlnwFmno6HWEQl-GwbcQHaZTOvcZYwdlfB9hVS7At_Q7dmgznQefvpBPHfQJDzf7iPy5-nE_uxnf_ryezy5ux1DzJo-nxkjLrWorxEbx2rTMSAAhqkbUnTKtVDCdKmmksBwE56bQheiUaFnbsGpEzte-q8EssbXoc4Rer6JbQnzRAZzennj3Vy_Cs65lVQKTxeBkYxDD04Ap66VLtsQAHsOQNG-YkKokWhW0XqM2hpQidu_PcKZfu9JbXelNV0V3_PGP76q3ZgrA10DR64cwRF8i-4_pP3lIqNU |
CitedBy_id | crossref_primary_10_1002_adma_202302146 crossref_primary_10_1002_smll_202307498 crossref_primary_10_1021_acs_jpcc_1c07037 crossref_primary_10_1002_adma_201905362 crossref_primary_10_1002_admt_202100565 crossref_primary_10_1038_s41578_019_0176_2 crossref_primary_10_1016_j_matt_2021_05_002 crossref_primary_10_1039_D1YA00084E crossref_primary_10_1002_solr_202000270 crossref_primary_10_1039_D3QM00236E crossref_primary_10_1021_acs_jpcc_1c10210 crossref_primary_10_1021_acsami_8b01033 crossref_primary_10_1016_j_orgel_2020_105671 crossref_primary_10_1021_acsaem_3c03140 crossref_primary_10_1021_acsenergylett_3c02794 crossref_primary_10_1002_adfm_202100396 crossref_primary_10_1021_acsami_1c08675 crossref_primary_10_1007_s12596_023_01647_3 crossref_primary_10_1063_5_0179194 crossref_primary_10_1021_jacs_8b08448 crossref_primary_10_1002_adfm_202305283 crossref_primary_10_1016_j_jallcom_2022_167445 crossref_primary_10_1021_acs_jpclett_2c02060 crossref_primary_10_1021_acs_jpclett_7b03343 crossref_primary_10_1016_j_nanoen_2020_105038 crossref_primary_10_1021_acs_jpclett_9b02553 crossref_primary_10_1002_adom_201900272 crossref_primary_10_1002_aenm_201702754 crossref_primary_10_1002_solr_202200964 crossref_primary_10_1021_acs_jpclett_1c00004 crossref_primary_10_1039_C9TC02181G crossref_primary_10_1002_ente_202100176 crossref_primary_10_1063_5_0013741 crossref_primary_10_1002_anie_201804852 crossref_primary_10_1039_C8TC05837G crossref_primary_10_1021_acsnano_8b08390 crossref_primary_10_1039_C9TA05556H crossref_primary_10_1088_1361_6463_ab9134 crossref_primary_10_1088_2040_8986_ac95a8 crossref_primary_10_1021_jacs_0c08592 crossref_primary_10_1021_acsami_1c22748 crossref_primary_10_1002_aenm_201904134 crossref_primary_10_1557_jmr_2020_202 crossref_primary_10_1021_acsenergylett_8b00560 crossref_primary_10_1016_j_nantod_2020_100874 crossref_primary_10_1002_solr_202300554 crossref_primary_10_1016_j_solener_2023_111846 crossref_primary_10_1039_D0TC02944K crossref_primary_10_1016_j_nanoen_2024_109503 crossref_primary_10_1002_adma_201907757 crossref_primary_10_1002_solr_201900294 crossref_primary_10_1109_JEDS_2018_2820319 crossref_primary_10_1016_j_isci_2021_102276 crossref_primary_10_1016_j_ijleo_2021_168060 crossref_primary_10_1109_JPHOTOV_2021_3127987 crossref_primary_10_1016_j_matt_2021_04_006 crossref_primary_10_1021_acs_jpcc_0c07423 crossref_primary_10_1016_j_cej_2023_141300 crossref_primary_10_1038_s41598_020_69914_y crossref_primary_10_1021_acsami_2c05605 crossref_primary_10_1021_acsenergylett_0c01796 crossref_primary_10_1002_adfm_201808625 crossref_primary_10_1002_solr_202200998 crossref_primary_10_2139_ssrn_3335783 crossref_primary_10_1016_j_apsusc_2022_156229 crossref_primary_10_1039_C9SE00448C crossref_primary_10_1021_acsami_2c12785 crossref_primary_10_1016_j_matt_2024_05_046 crossref_primary_10_1039_C7EE02415K crossref_primary_10_1021_cbmi_3c00069 crossref_primary_10_1063_5_0080794 crossref_primary_10_1002_smll_202310455 crossref_primary_10_1021_acsaem_0c02120 crossref_primary_10_1021_acsaelm_3c00086 crossref_primary_10_1002_smtd_202301793 crossref_primary_10_1007_s40843_020_1324_8 crossref_primary_10_1680_jsuin_21_00058 crossref_primary_10_1002_aesr_202100199 crossref_primary_10_1021_acsomega_0c02800 crossref_primary_10_1039_C9QM00112C crossref_primary_10_1002_admi_202202365 crossref_primary_10_1016_j_matlet_2021_130294 crossref_primary_10_1002_solr_202300502 crossref_primary_10_1016_j_mssp_2021_105666 crossref_primary_10_1007_s10854_023_10004_w crossref_primary_10_1021_acs_iecr_1c00789 crossref_primary_10_1063_5_0012202 crossref_primary_10_4236_ampc_2023_138011 crossref_primary_10_1039_D0TA10492B crossref_primary_10_1016_j_nanoen_2024_109543 crossref_primary_10_1007_s13391_023_00428_1 crossref_primary_10_1038_s41598_022_14452_y crossref_primary_10_1021_acsenergylett_2c01640 crossref_primary_10_1021_acsami_2c06903 crossref_primary_10_1109_JPHOTOV_2018_2868010 crossref_primary_10_1016_j_cej_2022_138962 crossref_primary_10_1021_acsanm_2c01410 crossref_primary_10_3390_nano12183121 crossref_primary_10_1088_1361_6463_ab1626 crossref_primary_10_1002_admi_202001425 crossref_primary_10_1016_j_jpowsour_2022_231518 crossref_primary_10_1039_D0TA11916D crossref_primary_10_1002_aenm_201903090 crossref_primary_10_1021_acsenergylett_0c01350 crossref_primary_10_1016_j_joule_2022_01_006 crossref_primary_10_1021_acsami_3c03679 crossref_primary_10_1016_j_apsusc_2023_157003 crossref_primary_10_1002_aenm_201901726 crossref_primary_10_1002_aenm_202200632 crossref_primary_10_1021_acsaem_0c02963 crossref_primary_10_1002_aelm_201900935 crossref_primary_10_1016_j_electacta_2020_136387 crossref_primary_10_1016_j_solener_2022_01_060 crossref_primary_10_1016_j_jallcom_2023_173320 crossref_primary_10_1021_jacs_2c08487 crossref_primary_10_1002_adma_201900067 crossref_primary_10_1002_aenm_202201733 crossref_primary_10_1039_D2TA06336K crossref_primary_10_1021_jacs_8b13423 crossref_primary_10_1002_ange_202003813 crossref_primary_10_1002_smll_202000733 crossref_primary_10_1007_s11082_022_04522_w crossref_primary_10_1002_admi_201901469 crossref_primary_10_2139_ssrn_3932608 crossref_primary_10_1088_1674_4926_41_5_052202 crossref_primary_10_1016_j_mtsust_2023_100381 crossref_primary_10_1002_adfm_201902582 crossref_primary_10_1016_j_optmat_2021_111891 crossref_primary_10_2139_ssrn_4171695 crossref_primary_10_1088_1361_6463_abb487 crossref_primary_10_1021_acsaem_0c00767 crossref_primary_10_1039_D3TA01276J crossref_primary_10_1002_adma_201704208 crossref_primary_10_1021_acsaem_9b00060 crossref_primary_10_1039_D0TA00798F crossref_primary_10_1002_solr_202300156 crossref_primary_10_1021_acs_jpcc_2c08845 crossref_primary_10_1039_D0MA00528B crossref_primary_10_1103_PhysRevApplied_15_014006 crossref_primary_10_1038_s41563_019_0399_z crossref_primary_10_1007_s10853_023_08910_9 crossref_primary_10_1039_D0NR03499A crossref_primary_10_1002_chem_202000005 crossref_primary_10_1002_adfm_201808059 crossref_primary_10_1021_acsaem_7b00018 crossref_primary_10_1016_j_xcrp_2021_100346 crossref_primary_10_1038_s41377_021_00662_y crossref_primary_10_1109_ACCESS_2021_3114383 crossref_primary_10_1021_acsaem_3c00723 crossref_primary_10_1002_solr_202301013 crossref_primary_10_1039_C7TC03482B crossref_primary_10_1039_C8TA05291C crossref_primary_10_1002_smll_202207445 crossref_primary_10_1016_j_nanoen_2019_104099 crossref_primary_10_3390_cryst12010068 crossref_primary_10_3390_en14061751 crossref_primary_10_1039_D0NR08428J crossref_primary_10_1039_D1TC02407H crossref_primary_10_1021_acs_jpcc_8b11898 crossref_primary_10_3390_nano10040763 crossref_primary_10_1016_j_optmat_2022_113060 crossref_primary_10_1016_j_omx_2022_100218 crossref_primary_10_1002_aenm_201701235 crossref_primary_10_1002_aenm_202400965 crossref_primary_10_1039_C9RA03188J crossref_primary_10_1038_s41467_019_08507_4 crossref_primary_10_1021_acsami_2c03492 crossref_primary_10_1039_D3VA00401E crossref_primary_10_1016_j_matlet_2021_130448 crossref_primary_10_1016_j_solmat_2020_110435 crossref_primary_10_1002_aenm_201900444 crossref_primary_10_1016_j_nanoen_2018_08_031 crossref_primary_10_3390_nano13091492 crossref_primary_10_1021_acsaelm_0c00116 crossref_primary_10_1021_acs_jpclett_9b02757 crossref_primary_10_1063_5_0187208 crossref_primary_10_1364_PRJ_393647 crossref_primary_10_1016_j_apsusc_2023_157209 crossref_primary_10_1016_j_cplett_2020_137276 crossref_primary_10_1021_jacs_9b12391 crossref_primary_10_1021_acsenergylett_8b00923 crossref_primary_10_1002_solr_202000647 crossref_primary_10_1016_j_physb_2023_415190 crossref_primary_10_1016_j_jechem_2024_02_062 crossref_primary_10_1021_acsnano_8b05514 crossref_primary_10_1039_C9SE00200F crossref_primary_10_35848_1347_4065_acd38c crossref_primary_10_1002_adom_202001317 crossref_primary_10_1002_adom_201900407 crossref_primary_10_1016_j_jallcom_2024_174990 crossref_primary_10_1016_j_scib_2021_03_018 crossref_primary_10_1016_j_optmat_2020_110213 crossref_primary_10_1016_j_optmat_2020_110453 crossref_primary_10_1021_acsami_8b20899 crossref_primary_10_1039_D0SE00782J crossref_primary_10_1002_aenm_202003628 crossref_primary_10_1021_acsmaterialslett_3c00496 crossref_primary_10_1039_D0CE01676D crossref_primary_10_1007_s10008_019_04438_8 crossref_primary_10_1039_C9TC01770D crossref_primary_10_1021_acs_energyfuels_3c04050 crossref_primary_10_1002_solr_202200941 crossref_primary_10_1002_aenm_201702772 crossref_primary_10_1021_acs_jpclett_2c00735 crossref_primary_10_1021_acsmaterialslett_2c00275 crossref_primary_10_1038_s41598_021_02796_w crossref_primary_10_1007_s12648_022_02401_4 crossref_primary_10_3389_fchem_2020_00200 crossref_primary_10_1088_1361_6463_aaa727 crossref_primary_10_1038_s41598_022_19541_6 crossref_primary_10_1002_adfm_201802320 crossref_primary_10_1016_j_electacta_2022_141586 crossref_primary_10_1021_acsaem_1c02412 crossref_primary_10_1021_acsami_9b04991 crossref_primary_10_1002_ange_202216634 crossref_primary_10_1039_D3TA04502A crossref_primary_10_1021_acs_chemmater_1c03238 crossref_primary_10_1021_acsenergylett_9b00885 crossref_primary_10_1002_anie_201910471 crossref_primary_10_1016_j_mtcomm_2023_107000 crossref_primary_10_1016_j_mtener_2024_101549 crossref_primary_10_1021_acsami_9b11039 crossref_primary_10_1016_j_optcom_2022_129104 crossref_primary_10_1002_adma_201902762 crossref_primary_10_1016_j_pmatsci_2020_100737 crossref_primary_10_1002_ange_202401604 crossref_primary_10_1016_j_matchemphys_2020_124032 crossref_primary_10_1063_5_0176240 crossref_primary_10_1016_j_orgel_2023_106937 crossref_primary_10_1002_smll_201907531 crossref_primary_10_1002_solr_202000811 crossref_primary_10_1021_acsami_0c18009 crossref_primary_10_1038_s41598_023_40837_8 crossref_primary_10_1088_1674_4926_42_11_112201 crossref_primary_10_1016_j_nanoen_2020_104866 crossref_primary_10_1021_acsami_3c10126 crossref_primary_10_1063_5_0083073 crossref_primary_10_1002_aenm_202002761 crossref_primary_10_1016_j_orgel_2024_107049 crossref_primary_10_1002_solr_202100794 crossref_primary_10_1007_s10854_022_09199_1 crossref_primary_10_1002_ange_202402904 crossref_primary_10_1007_s11082_020_2262_5 crossref_primary_10_1016_j_chemphys_2022_111593 crossref_primary_10_1063_5_0087879 crossref_primary_10_1016_j_micrna_2023_207739 crossref_primary_10_1098_rsos_221127 crossref_primary_10_1021_acsenergylett_2c01271 crossref_primary_10_1088_1361_6463_aafea9 crossref_primary_10_1016_j_cclet_2023_109425 crossref_primary_10_1016_j_solmat_2023_112500 crossref_primary_10_1103_PhysRevApplied_13_034018 crossref_primary_10_1109_JPHOTOV_2019_2922388 crossref_primary_10_1016_j_orgel_2021_106349 crossref_primary_10_1021_acs_jpclett_1c01909 crossref_primary_10_1039_D2TA08827D crossref_primary_10_1002_smll_202005671 crossref_primary_10_1007_s12633_023_02761_4 crossref_primary_10_1039_D3RA02170J crossref_primary_10_3390_nano9111627 crossref_primary_10_1039_C8TA03782E crossref_primary_10_1039_D1SE00687H crossref_primary_10_1016_j_apsusc_2020_148536 crossref_primary_10_1002_admi_202002041 crossref_primary_10_1002_aenm_201903851 crossref_primary_10_1021_acsomega_2c03775 crossref_primary_10_1002_smll_202207092 crossref_primary_10_1002_smll_202302337 crossref_primary_10_1021_acsaem_1c00226 crossref_primary_10_1002_aenm_202103128 crossref_primary_10_1002_ange_202112555 crossref_primary_10_1039_D1TC05035D crossref_primary_10_1021_acsami_0c02923 crossref_primary_10_1002_solr_202100772 crossref_primary_10_1016_j_solmat_2019_110251 crossref_primary_10_1002_aenm_202302743 crossref_primary_10_1002_smtd_202100046 crossref_primary_10_1016_j_egyr_2022_10_019 crossref_primary_10_1039_D4TA01773K crossref_primary_10_1016_j_jallcom_2019_152887 crossref_primary_10_1021_acs_jpclett_3c03059 crossref_primary_10_1021_acsenergylett_1c01526 crossref_primary_10_1039_D0EE01967D crossref_primary_10_1002_aenm_201902579 crossref_primary_10_1002_aenm_201901489 crossref_primary_10_1021_acsami_8b12760 crossref_primary_10_1002_anie_202401604 crossref_primary_10_1021_acsenergylett_9b00847 crossref_primary_10_1002_smll_202005495 crossref_primary_10_1002_advs_202103729 crossref_primary_10_1021_acsami_9b13259 crossref_primary_10_1002_solr_202100121 crossref_primary_10_3390_electronics12153319 crossref_primary_10_1002_anie_202100218 crossref_primary_10_1021_acsaem_8b00913 crossref_primary_10_1021_acs_jpclett_9b00618 crossref_primary_10_1016_j_mseb_2022_116227 crossref_primary_10_1038_s41467_020_18015_5 crossref_primary_10_1016_j_colsurfa_2023_132075 crossref_primary_10_1021_acsapm_1c00891 crossref_primary_10_1063_5_0156215 crossref_primary_10_1039_D0TC00922A crossref_primary_10_1002_smll_201905557 crossref_primary_10_1002_solr_202301077 crossref_primary_10_1021_acs_jpcc_7b12813 crossref_primary_10_1039_D1SC04221A crossref_primary_10_1039_C9EE02020A crossref_primary_10_1021_acsami_7b15031 crossref_primary_10_1016_j_jpcs_2023_111777 crossref_primary_10_3390_nano12122100 crossref_primary_10_1021_acsami_0c08674 crossref_primary_10_1016_j_micrna_2024_207816 crossref_primary_10_1098_rsos_172158 crossref_primary_10_1016_j_solmat_2018_12_010 crossref_primary_10_1016_j_ijleo_2024_171638 crossref_primary_10_1039_D0TC02354J crossref_primary_10_1016_j_solmat_2021_111095 crossref_primary_10_1002_adfm_202303729 crossref_primary_10_1002_anie_202007353 crossref_primary_10_35848_1347_4065_acd42b crossref_primary_10_1007_s10800_024_02148_2 crossref_primary_10_1039_C9TC02003A crossref_primary_10_1016_j_solener_2022_10_024 crossref_primary_10_1109_LED_2022_3183194 crossref_primary_10_1021_acs_jpclett_0c01687 crossref_primary_10_1038_s43246_020_0028_z crossref_primary_10_1016_j_solener_2019_09_055 crossref_primary_10_1021_acsaem_1c00028 crossref_primary_10_1021_acs_nanolett_9b00936 crossref_primary_10_1002_adma_202102588 crossref_primary_10_1016_j_orgel_2022_106697 crossref_primary_10_1134_S1063778823110200 crossref_primary_10_1088_2053_1591_ac9270 crossref_primary_10_1016_j_joule_2018_07_011 crossref_primary_10_1039_C7TC02652H crossref_primary_10_1063_1_5043172 crossref_primary_10_1002_aenm_202000502 crossref_primary_10_1051_epjpv_2021004 crossref_primary_10_1016_j_joule_2023_11_018 crossref_primary_10_35848_1347_4065_ac6a33 crossref_primary_10_1016_j_solener_2021_07_076 crossref_primary_10_1021_acsami_2c20124 crossref_primary_10_1002_solr_201900207 crossref_primary_10_1039_D2TC02110B crossref_primary_10_1063_1_5021138 crossref_primary_10_1039_C9TC04335G crossref_primary_10_1002_smll_202302194 crossref_primary_10_1039_D4MH00290C crossref_primary_10_1002_eem2_12696 crossref_primary_10_1002_solr_202200210 crossref_primary_10_1021_acsami_9b18082 crossref_primary_10_1039_C9SC05694G crossref_primary_10_1016_j_solmat_2020_110912 crossref_primary_10_1155_2023_3367579 crossref_primary_10_1016_j_mtcomm_2023_107879 crossref_primary_10_1002_ente_202201395 crossref_primary_10_1039_C9CP00564A crossref_primary_10_1039_D2QM01369J crossref_primary_10_1002_smtd_202000937 crossref_primary_10_1016_j_optmat_2020_109933 crossref_primary_10_1039_C9TA11894B crossref_primary_10_1109_ACCESS_2021_3070112 crossref_primary_10_1039_C9TC01152H crossref_primary_10_1021_acsenergylett_9b01356 crossref_primary_10_1016_j_ijleo_2023_171550 crossref_primary_10_1103_PhysRevMaterials_4_085405 crossref_primary_10_1116_1_5049434 crossref_primary_10_1021_acsomega_7b00973 crossref_primary_10_1021_acsaem_3c00292 crossref_primary_10_1016_j_matlet_2020_127979 crossref_primary_10_7498_aps_68_20190468 crossref_primary_10_1007_s11664_021_09333_5 crossref_primary_10_1063_5_0064398 crossref_primary_10_1002_solr_202200226 crossref_primary_10_1002_cphc_201801038 crossref_primary_10_1038_s41560_019_0382_6 crossref_primary_10_1002_aesr_202100050 crossref_primary_10_1002_solr_201900217 crossref_primary_10_3389_fenrg_2018_00128 crossref_primary_10_1002_anie_202402904 crossref_primary_10_1021_acsomega_3c07754 crossref_primary_10_1021_acsenergylett_3c00614 crossref_primary_10_1002_pssa_202300782 crossref_primary_10_1002_ente_201901196 crossref_primary_10_1021_acsami_2c01640 crossref_primary_10_3390_ma11112106 crossref_primary_10_1016_j_apsusc_2020_148728 crossref_primary_10_1002_aenm_202400055 crossref_primary_10_1016_j_surfin_2021_101703 crossref_primary_10_1039_C9TA06688H crossref_primary_10_1088_1361_6528_ab97d4 crossref_primary_10_1039_C7RA13744C crossref_primary_10_35848_1347_4065_abdad3 crossref_primary_10_1039_D0MA00902D crossref_primary_10_1002_solr_202100983 crossref_primary_10_1021_acsami_8b02549 crossref_primary_10_1021_acsenergylett_4c00839 crossref_primary_10_1002_solr_202400364 crossref_primary_10_1016_j_solener_2020_10_045 crossref_primary_10_1063_1_5127866 crossref_primary_10_1021_acsami_3c11409 crossref_primary_10_1021_acsami_1c02929 crossref_primary_10_1002_pssa_202100472 crossref_primary_10_1002_adma_202104346 crossref_primary_10_1016_j_rio_2023_100444 crossref_primary_10_1007_s11082_023_05119_7 crossref_primary_10_1002_smll_202101839 crossref_primary_10_1002_solr_202400113 crossref_primary_10_1007_s10854_022_08151_7 crossref_primary_10_1515_nanoph_2021_0033 crossref_primary_10_1016_j_jechem_2023_10_053 crossref_primary_10_1002_solr_202200267 crossref_primary_10_1016_j_nanoen_2020_105505 crossref_primary_10_1021_acsami_9b23255 crossref_primary_10_1021_acsami_9b21074 crossref_primary_10_1002_adma_201805214 crossref_primary_10_1016_j_nanoen_2022_107044 crossref_primary_10_1021_acsphotonics_3c00777 crossref_primary_10_1002_admi_201801118 crossref_primary_10_1016_j_mtphys_2021_100513 crossref_primary_10_1039_D1MA00345C crossref_primary_10_1016_j_synthmet_2024_117679 crossref_primary_10_1002_smll_202402997 crossref_primary_10_1002_anie_202003813 crossref_primary_10_1002_adom_202300757 crossref_primary_10_1021_acsami_0c02960 crossref_primary_10_1088_1757_899X_1120_1_012017 crossref_primary_10_3390_photonics11010087 crossref_primary_10_1016_j_matchemphys_2023_128281 crossref_primary_10_1016_j_joule_2020_03_017 crossref_primary_10_1039_D3CP01496G crossref_primary_10_1002_smtd_202300377 crossref_primary_10_1063_1_5029278 crossref_primary_10_1002_solr_201900167 crossref_primary_10_1016_j_jpowsour_2021_230212 crossref_primary_10_1039_C7TC05658C crossref_primary_10_1002_advs_201801350 crossref_primary_10_1016_j_joule_2023_01_008 crossref_primary_10_1016_j_mtsust_2021_100090 crossref_primary_10_1007_s10853_020_05059_7 crossref_primary_10_1039_D0CS00573H crossref_primary_10_1039_D0NR05739H crossref_primary_10_1016_j_solener_2020_02_025 crossref_primary_10_1021_acsaem_8b00382 crossref_primary_10_1016_j_mattod_2022_04_009 crossref_primary_10_1016_j_jssc_2022_123149 crossref_primary_10_1016_j_solmat_2021_111548 crossref_primary_10_1109_JPHOT_2022_3146365 crossref_primary_10_1007_s42452_021_04877_x crossref_primary_10_1002_advs_202002296 crossref_primary_10_1002_admi_202201191 crossref_primary_10_1021_acsaem_2c01881 crossref_primary_10_1021_acsaem_1c00920 crossref_primary_10_1007_s10825_023_02038_4 crossref_primary_10_1016_j_isci_2024_109200 crossref_primary_10_1021_acsami_8b06619 crossref_primary_10_1063_5_0062818 crossref_primary_10_1016_j_ijleo_2020_165430 crossref_primary_10_1088_1361_6528_ab19dd crossref_primary_10_3390_en14133868 crossref_primary_10_1002_aenm_202203607 crossref_primary_10_1088_1674_4926_43_5_051202 crossref_primary_10_3390_en13071643 crossref_primary_10_1002_aenm_202101854 crossref_primary_10_1016_j_optmat_2020_110524 crossref_primary_10_1016_j_jpowsour_2021_229451 crossref_primary_10_1039_D2CP04599K crossref_primary_10_1039_D0EE03312J crossref_primary_10_1002_adma_202002176 crossref_primary_10_1021_acsaem_0c01329 crossref_primary_10_1016_j_cej_2024_151778 crossref_primary_10_1109_TED_2020_3014272 crossref_primary_10_3390_ma14112698 crossref_primary_10_1021_acsami_0c05878 crossref_primary_10_1021_acsami_2c13585 crossref_primary_10_1002_solr_202200862 crossref_primary_10_1002_solr_202200623 crossref_primary_10_1021_acs_nanolett_3c03655 crossref_primary_10_1021_acs_jpcc_1c09313 crossref_primary_10_1002_asia_202100803 crossref_primary_10_1016_j_solener_2020_12_069 crossref_primary_10_1002_smtd_202100725 crossref_primary_10_1364_OE_442345 crossref_primary_10_1016_j_solmat_2021_111512 crossref_primary_10_1016_j_joule_2020_02_003 crossref_primary_10_1002_aenm_201701757 crossref_primary_10_1016_j_jallcom_2022_168680 crossref_primary_10_1016_j_synthmet_2020_116497 crossref_primary_10_1002_aenm_202003382 crossref_primary_10_3934_dcdsb_2024081 crossref_primary_10_1016_j_nanoen_2021_105882 crossref_primary_10_1021_acsami_0c04975 crossref_primary_10_1016_j_orgel_2018_12_012 crossref_primary_10_1021_acsami_0c11253 crossref_primary_10_1109_JPHOTOV_2019_2914919 crossref_primary_10_1111_jace_17763 crossref_primary_10_1021_acsnano_7b07559 crossref_primary_10_1002_adom_202100192 crossref_primary_10_3390_app12188987 crossref_primary_10_1088_2515_7655_ac975a crossref_primary_10_1002_solr_202200645 crossref_primary_10_1016_j_nanoen_2018_02_049 crossref_primary_10_1021_acsami_9b22556 crossref_primary_10_1080_15567036_2023_2192182 crossref_primary_10_1021_acsami_8b20924 crossref_primary_10_1016_j_optmat_2020_109738 crossref_primary_10_1039_D1TC04208D crossref_primary_10_1016_j_enconman_2022_115955 crossref_primary_10_1039_D2SE00828A crossref_primary_10_1002_ange_201804852 crossref_primary_10_1002_cplu_202100204 crossref_primary_10_1038_s41467_018_04634_6 crossref_primary_10_1021_acs_jpclett_8b02824 crossref_primary_10_1016_j_jpowsour_2021_230481 crossref_primary_10_1021_acsami_8b05560 crossref_primary_10_1038_s41377_021_00515_8 crossref_primary_10_3390_polym12040737 crossref_primary_10_1039_D1TA10388A crossref_primary_10_1039_D3CC01195J crossref_primary_10_1002_solr_202000308 crossref_primary_10_1002_solr_202100159 crossref_primary_10_1016_j_solener_2019_05_056 crossref_primary_10_1021_acsami_1c07610 crossref_primary_10_1038_s41467_020_19199_6 crossref_primary_10_1039_D2EE00663D crossref_primary_10_1007_s40243_020_00185_3 crossref_primary_10_1016_j_jmat_2021_04_002 crossref_primary_10_1039_D0SE01774D crossref_primary_10_1063_5_0012141 crossref_primary_10_1038_s41427_020_00265_w crossref_primary_10_7567_1882_0786_ab0eec crossref_primary_10_1002_ente_201900627 crossref_primary_10_1021_acs_jpclett_9b00641 crossref_primary_10_1021_acs_chemrev_2c00843 crossref_primary_10_1002_adfm_202200024 crossref_primary_10_1039_D3DT04192A crossref_primary_10_1063_5_0012384 crossref_primary_10_1002_sstr_202300546 crossref_primary_10_1002_advs_202105307 crossref_primary_10_1063_5_0164413 crossref_primary_10_1021_acsmaterialslett_1c00474 crossref_primary_10_1016_j_mssp_2022_107118 crossref_primary_10_1038_s41467_023_43852_5 crossref_primary_10_1021_acsaem_8b01076 crossref_primary_10_3390_polym15183674 crossref_primary_10_1039_C8TC05998E crossref_primary_10_1002_anie_202315143 crossref_primary_10_1002_er_6133 crossref_primary_10_1016_j_solmat_2020_110594 crossref_primary_10_1021_acs_jpcc_9b01581 crossref_primary_10_1016_j_matpr_2021_02_682 crossref_primary_10_1016_j_cej_2023_144561 crossref_primary_10_1039_D1RA02260A crossref_primary_10_3389_fchem_2020_00825 crossref_primary_10_1002_ange_201910471 crossref_primary_10_1021_acsami_9b15148 crossref_primary_10_1021_acsenergylett_0c00120 crossref_primary_10_1088_1674_4926_44_12_120501 crossref_primary_10_1002_aenm_202200975 crossref_primary_10_1002_smll_202310368 crossref_primary_10_1007_s10854_022_08368_6 crossref_primary_10_1002_aesr_202000068 crossref_primary_10_1016_j_rinp_2019_102839 crossref_primary_10_1002_aenm_202303664 crossref_primary_10_1021_acsami_3c15520 crossref_primary_10_1016_j_cej_2023_145632 crossref_primary_10_1002_ejic_202100360 crossref_primary_10_1039_D0CC04043F crossref_primary_10_1039_D1TC05714F crossref_primary_10_1002_solr_202000315 crossref_primary_10_1016_j_nanoen_2021_106127 crossref_primary_10_1007_s10825_021_01827_z crossref_primary_10_3390_ma17051064 crossref_primary_10_1016_j_cej_2022_140284 crossref_primary_10_3390_nano13081313 crossref_primary_10_1039_C8CS00853A crossref_primary_10_1002_adma_201907864 crossref_primary_10_1021_acsenergylett_2c00485 crossref_primary_10_1016_j_nanoen_2019_01_060 crossref_primary_10_1007_s10854_023_11385_8 crossref_primary_10_1109_TED_2017_2763091 crossref_primary_10_1002_adom_202302257 crossref_primary_10_1016_j_apsusc_2022_152826 crossref_primary_10_1021_acs_jpclett_1c00954 crossref_primary_10_1021_acs_chemrev_0c00107 crossref_primary_10_1093_nsr_nwae042 crossref_primary_10_1016_j_apmt_2021_100946 crossref_primary_10_1002_eom2_12081 crossref_primary_10_1016_j_electacta_2019_06_134 crossref_primary_10_1016_j_solener_2019_05_006 crossref_primary_10_1021_acsmaterialslett_2c00123 crossref_primary_10_1039_D2TC00982J crossref_primary_10_1021_acsenergylett_0c02136 crossref_primary_10_1002_aesr_202000065 crossref_primary_10_1021_acsami_0c17877 crossref_primary_10_1021_acs_jpcc_0c01826 crossref_primary_10_1016_j_orgel_2020_105987 crossref_primary_10_1002_solr_202100191 crossref_primary_10_1007_s42247_024_00732_y crossref_primary_10_1016_j_cej_2022_135715 crossref_primary_10_1021_acsaem_1c01415 crossref_primary_10_15541_jim20210199 crossref_primary_10_1063_5_0082425 crossref_primary_10_1002_admi_202001144 crossref_primary_10_1021_acsami_9b18452 crossref_primary_10_1088_1361_648X_abff92 crossref_primary_10_1016_j_progsolidstchem_2024_100463 crossref_primary_10_1002_aenm_201902706 crossref_primary_10_3389_fchem_2019_00936 crossref_primary_10_1007_s10825_022_01953_2 crossref_primary_10_1016_j_mtener_2023_101400 crossref_primary_10_1021_acsenergylett_3c01368 crossref_primary_10_1002_anie_201915422 crossref_primary_10_1021_acs_chemmater_9b00702 crossref_primary_10_1021_acsenergylett_0c00172 crossref_primary_10_1021_acsenergylett_0c01022 crossref_primary_10_1002_cjoc_202200505 crossref_primary_10_1021_acsenergylett_0c02599 crossref_primary_10_1021_acsami_0c17652 crossref_primary_10_1002_chem_201805656 crossref_primary_10_1002_aenm_201703506 crossref_primary_10_1016_j_jpowsour_2018_03_014 crossref_primary_10_1039_D2SE00516F crossref_primary_10_1002_inf2_12322 crossref_primary_10_1002_ente_201900877 crossref_primary_10_1002_anie_202216634 crossref_primary_10_1002_aenm_201902650 crossref_primary_10_1002_smtd_202400302 crossref_primary_10_1063_5_0051342 crossref_primary_10_1002_aenm_202102131 crossref_primary_10_1021_acsami_2c21731 crossref_primary_10_1016_j_solener_2019_04_098 crossref_primary_10_1039_D0TC00383B crossref_primary_10_1039_D2CP00341D crossref_primary_10_1016_j_jallcom_2020_156785 crossref_primary_10_1021_acsaem_9b00486 crossref_primary_10_1007_s11356_020_12087_y crossref_primary_10_1016_j_nanoen_2019_104186 crossref_primary_10_1002_ange_202315143 crossref_primary_10_1016_j_matt_2021_02_020 crossref_primary_10_1021_acsami_7b14019 crossref_primary_10_1088_1361_6528_ac9f4f crossref_primary_10_1021_acs_jpclett_0c00018 crossref_primary_10_1002_solr_202201016 crossref_primary_10_1021_acsaem_1c00367 crossref_primary_10_1016_j_surfin_2021_101213 crossref_primary_10_1002_ente_202300083 crossref_primary_10_1016_j_cej_2021_129581 crossref_primary_10_1088_1361_6463_aaddde crossref_primary_10_3390_app12189382 crossref_primary_10_1002_admi_201801667 crossref_primary_10_1016_j_jechem_2020_06_030 crossref_primary_10_1039_D3TC04511K crossref_primary_10_1016_j_solmat_2022_112148 crossref_primary_10_1039_D0TC02455D crossref_primary_10_1038_s41467_021_25311_1 crossref_primary_10_1557_s43578_022_00540_2 crossref_primary_10_1021_acsenergylett_9b02720 crossref_primary_10_1016_j_optmat_2024_115538 crossref_primary_10_1021_acs_jpcc_2c05055 crossref_primary_10_1016_j_solener_2020_07_059 crossref_primary_10_1002_pssr_202200216 crossref_primary_10_1002_solr_202000714 crossref_primary_10_1016_j_solener_2020_08_095 crossref_primary_10_1016_j_optmat_2021_111362 crossref_primary_10_1063_1_5053845 crossref_primary_10_1002_adfm_201906763 crossref_primary_10_1021_acsaem_1c00588 crossref_primary_10_1002_adma_202204380 crossref_primary_10_1007_s10570_019_02724_2 crossref_primary_10_1088_1742_6596_2310_1_012013 crossref_primary_10_1364_OME_442770 crossref_primary_10_1002_ange_202100218 crossref_primary_10_1016_j_solener_2022_09_015 crossref_primary_10_1016_j_mssp_2021_106296 crossref_primary_10_1039_D0TA10535J crossref_primary_10_1039_D3TC00022B crossref_primary_10_1038_s41467_021_21805_0 crossref_primary_10_1039_D3NA00529A crossref_primary_10_1002_adma_202208320 crossref_primary_10_1021_acs_energyfuels_4c00763 crossref_primary_10_1002_cssc_202201590 crossref_primary_10_1039_D2SE00995A crossref_primary_10_1002_aenm_202401414 crossref_primary_10_1146_annurev_conmatphys_042020_025347 crossref_primary_10_1039_D1MA00819F crossref_primary_10_1021_acs_jpcc_8b00998 crossref_primary_10_1016_j_solmat_2020_110837 crossref_primary_10_1002_admi_201800326 crossref_primary_10_1002_aenm_202400563 crossref_primary_10_1002_anie_202112555 crossref_primary_10_1021_acsaem_0c00854 crossref_primary_10_1002_aenm_202200961 crossref_primary_10_1016_j_hybadv_2022_100006 crossref_primary_10_1002_solr_201700213 crossref_primary_10_1002_admi_202300043 crossref_primary_10_1021_acsaem_1c01013 crossref_primary_10_1002_adfm_202008908 crossref_primary_10_1016_j_solmat_2019_110197 crossref_primary_10_1039_C9TC05439A crossref_primary_10_1039_D2TC03039J crossref_primary_10_1039_D1SE00369K crossref_primary_10_1002_solr_202100219 crossref_primary_10_1103_PhysRevMaterials_4_024602 crossref_primary_10_1016_j_apsusc_2023_157140 crossref_primary_10_1002_adma_202309154 crossref_primary_10_1080_14686996_2018_1442091 crossref_primary_10_1016_j_jpowsour_2020_228443 crossref_primary_10_1002_solr_201900303 crossref_primary_10_1016_j_jechem_2020_06_061 crossref_primary_10_1021_acsami_9b17535 crossref_primary_10_1016_j_orgel_2023_106879 crossref_primary_10_1021_acs_jpclett_1c04038 crossref_primary_10_1063_1_5021293 crossref_primary_10_1002_adfm_202100931 crossref_primary_10_1021_acsenergylett_1c01898 crossref_primary_10_1021_acsami_0c17258 crossref_primary_10_1016_j_cej_2024_152370 crossref_primary_10_1039_C9TC05679C crossref_primary_10_1039_D2EE01256A crossref_primary_10_1016_j_heliyon_2022_e11455 crossref_primary_10_1002_ange_202007353 crossref_primary_10_1021_acs_chemrev_8b00318 crossref_primary_10_1039_C7TA08761F crossref_primary_10_26599_EMD_2024_9370018 crossref_primary_10_1002_solr_202100830 crossref_primary_10_1007_s00339_022_06027_5 crossref_primary_10_3390_electronics10020121 crossref_primary_10_1002_aenm_202001958 crossref_primary_10_1039_D4CP00034J crossref_primary_10_1002_solr_202200560 crossref_primary_10_1002_ente_202100229 crossref_primary_10_1021_acsnano_7b08561 crossref_primary_10_3390_cryst13111566 crossref_primary_10_1021_acsaem_2c03434 crossref_primary_10_1002_solr_202400201 crossref_primary_10_1007_s10854_020_03771_3 crossref_primary_10_1016_j_heliyon_2023_e20603 crossref_primary_10_1038_s41467_021_27560_6 crossref_primary_10_1016_j_cej_2022_135477 crossref_primary_10_1039_D0TC03012K crossref_primary_10_1039_D3NR01032E crossref_primary_10_1002_solr_201900554 crossref_primary_10_1016_j_solener_2022_07_001 crossref_primary_10_3934_matersci_2017_4_956 crossref_primary_10_1039_C7SC04837H crossref_primary_10_1039_D0TA10242C crossref_primary_10_1002_aesr_202100156 crossref_primary_10_1039_D0TA07567A crossref_primary_10_1039_D0TA05583B crossref_primary_10_1021_acsaem_1c02113 crossref_primary_10_1021_acs_cgd_1c00548 crossref_primary_10_1002_smtd_202200260 crossref_primary_10_1002_adfm_201905021 crossref_primary_10_1016_j_jmat_2022_09_006 crossref_primary_10_1016_j_jmat_2022_09_005 crossref_primary_10_3390_ma12172727 crossref_primary_10_31590_ejosat_640344 crossref_primary_10_1016_j_nanoen_2018_06_054 crossref_primary_10_3390_nano13182570 crossref_primary_10_1016_j_nanoen_2018_06_057 crossref_primary_10_1002_solr_202300952 crossref_primary_10_1021_acsphotonics_2c00861 crossref_primary_10_1088_1402_4896_acfacf crossref_primary_10_1021_acs_jpcc_9b10709 crossref_primary_10_1002_admi_202102137 crossref_primary_10_1021_acsaem_0c02144 crossref_primary_10_1098_rsos_230331 crossref_primary_10_1002_chem_201901112 crossref_primary_10_7567_1347_4065_ab2535 crossref_primary_10_1039_C8TA12254G crossref_primary_10_1021_acs_jpclett_3c01156 crossref_primary_10_1021_acsnano_9b03098 crossref_primary_10_1016_j_nanoen_2020_104556 crossref_primary_10_1016_j_joule_2022_10_001 crossref_primary_10_1021_acsami_8b04861 crossref_primary_10_1016_j_matt_2019_05_026 crossref_primary_10_1016_j_solener_2022_07_035 crossref_primary_10_1021_acs_cgd_3c01432 crossref_primary_10_1039_D0TA00978D crossref_primary_10_1016_j_joule_2022_10_007 crossref_primary_10_1039_D1SE00188D crossref_primary_10_1002_solr_202100864 crossref_primary_10_1021_acsaem_9b00856 crossref_primary_10_1021_acs_jpclett_2c00089 crossref_primary_10_1039_D1TC05445G crossref_primary_10_1002_aenm_201904001 crossref_primary_10_1002_solr_202300930 crossref_primary_10_1021_acsaem_1c03040 crossref_primary_10_1007_s43630_021_00023_z crossref_primary_10_1051_epjap_2023230023 crossref_primary_10_1016_j_jallcom_2023_172841 crossref_primary_10_1002_solr_202000060 crossref_primary_10_1002_adma_202107739 crossref_primary_10_1016_j_solener_2020_05_095 crossref_primary_10_1002_aenm_202102730 crossref_primary_10_1016_j_solener_2022_07_049 crossref_primary_10_1002_adma_201900428 crossref_primary_10_1002_adom_202100355 crossref_primary_10_1002_aenm_201801637 crossref_primary_10_1016_j_solener_2021_11_029 crossref_primary_10_1007_s10854_019_02438_y crossref_primary_10_1002_aenm_202101420 crossref_primary_10_1016_j_solener_2020_03_038 crossref_primary_10_1038_s41928_021_00644_3 crossref_primary_10_1002_solr_202000098 crossref_primary_10_1002_adma_202108616 crossref_primary_10_1063_5_0147435 crossref_primary_10_1088_1742_6596_2751_1_012027 crossref_primary_10_1088_2053_1591_ad495b crossref_primary_10_1002_admi_202200912 crossref_primary_10_1016_j_device_2023_100221 crossref_primary_10_1039_C9CP05381F crossref_primary_10_1016_j_nanoen_2019_104321 crossref_primary_10_3390_coatings13111885 crossref_primary_10_3390_polym15224387 crossref_primary_10_1002_adfm_202212606 crossref_primary_10_1063_5_0011735 crossref_primary_10_1039_C9EE03736E crossref_primary_10_1088_1361_6463_ac2d63 crossref_primary_10_1016_j_joule_2021_02_012 crossref_primary_10_1002_ange_201915422 |
Cites_doi | 10.1109/T-ED.1977.18747 10.1039/C4EE02465F 10.1039/C6EE01729K 10.1063/1.333038 10.1021/nl501838y 10.1063/1.4922150 10.1002/ange.201409740 10.1126/sciadv.1602164 10.1126/science.1243982 10.1021/acs.jpclett.5b00199 10.1039/C6EE01889K 10.1021/acs.jpclett.5b00182 10.1039/C5RA16669A 10.1038/ncomms4461 10.1002/pip.2855 10.1126/science.1243167 10.1021/ja512833n 10.1021/jacs.6b06320 10.1142/p276 10.1002/adfm.201602519 10.1021/acs.nanolett.5b01917 10.1126/science.aaa0472 10.1021/acs.accounts.5b00411 10.1063/1.1889240 10.1063/1.2821368 10.1021/acs.jpclett.6b01951 10.1038/ncomms11683 10.1039/C4TA05033A 10.1021/jz500113x 10.1039/C5EE01265A 10.1103/PhysRevB.4.502 10.1002/aenm.201602432 10.1021/nn502115k 10.1002/adfm.200500396 10.1021/nn406020d 10.1063/1.2133906 10.1039/C4EE03664F 10.1063/1.4864778 10.1038/ncomms13831 10.1038/ncomms8497 10.1002/adma.201405372 10.1007/978-3-7091-8752-4 10.1002/adma.201305172 10.1039/C6EE02100J 10.1126/science.aaa5333 10.1038/nphoton.2013.341 10.1039/C5CP07117H 10.1063/1.89396 10.1021/acsenergylett.6b00719 10.1002/adma.201000883 10.1038/nature12509 10.1103/PhysRevB.89.155204 10.1016/j.orgel.2015.09.023 10.1002/aenm.201400812 10.1103/PhysRevB.72.085205 10.1021/acs.jpclett.7b00055 10.1021/ja809598r 10.1063/1.321593 10.1039/C6EE00413J 10.1021/acs.accounts.5b00420 10.1039/C5EE02740C 10.1038/ncomms10334 10.1103/PhysRevLett.112.156103 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society Copyright © 2017 American Chemical Society 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society – notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsenergylett.7b00236 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 1222 |
ExternalDocumentID | 10_1021_acsenergylett_7b00236 28540366 b83135716 |
Genre | Journal Article |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 ABQRX AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a519t-7bb4c1c8d3ee9815bd0b4aa223925f8bd48a7784b42c1a211bc1cb4af82d0d903 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Tue Sep 17 21:18:02 EDT 2024 Fri Aug 16 22:24:27 EDT 2024 Fri Aug 23 00:52:08 EDT 2024 Sat Sep 28 08:29:20 EDT 2024 Thu Aug 27 13:42:31 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a519t-7bb4c1c8d3ee9815bd0b4aa223925f8bd48a7784b42c1a211bc1cb4af82d0d903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9784-6253 0000-0002-6558-5295 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5438194 |
PMID | 28540366 |
PQID | 1902480003 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438194 proquest_miscellaneous_1902480003 crossref_primary_10_1021_acsenergylett_7b00236 pubmed_primary_28540366 acs_journals_10_1021_acsenergylett_7b00236 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-12 |
PublicationDateYYYYMMDD | 2017-05-12 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 Nelson J. (ref26/cit26) 2003 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 Selberherr S. (ref37/cit37) 1984 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1109/T-ED.1977.18747 – ident: ref61/cit61 doi: 10.1039/C4EE02465F – ident: ref44/cit44 doi: 10.1039/C6EE01729K – ident: ref32/cit32 doi: 10.1063/1.333038 – ident: ref19/cit19 doi: 10.1021/nl501838y – ident: ref10/cit10 doi: 10.1063/1.4922150 – ident: ref35/cit35 doi: 10.1002/ange.201409740 – ident: ref50/cit50 doi: 10.1126/sciadv.1602164 – ident: ref3/cit3 doi: 10.1126/science.1243982 – ident: ref46/cit46 doi: 10.1021/acs.jpclett.5b00199 – ident: ref20/cit20 doi: 10.1039/C6EE01889K – ident: ref21/cit21 doi: 10.1021/acs.jpclett.5b00182 – ident: ref17/cit17 doi: 10.1039/C5RA16669A – ident: ref4/cit4 doi: 10.1038/ncomms4461 – ident: ref1/cit1 doi: 10.1002/pip.2855 – ident: ref51/cit51 doi: 10.1126/science.1243167 – ident: ref18/cit18 doi: 10.1021/ja512833n – ident: ref22/cit22 doi: 10.1021/jacs.6b06320 – volume-title: The Physics of Solar Cells year: 2003 ident: ref26/cit26 doi: 10.1142/p276 contributor: fullname: Nelson J. – ident: ref47/cit47 doi: 10.1002/adfm.201602519 – ident: ref24/cit24 doi: 10.1021/acs.nanolett.5b01917 – ident: ref8/cit8 doi: 10.1126/science.aaa0472 – ident: ref13/cit13 doi: 10.1021/acs.accounts.5b00411 – ident: ref56/cit56 doi: 10.1063/1.1889240 – ident: ref57/cit57 doi: 10.1063/1.2821368 – ident: ref25/cit25 doi: 10.1021/acs.jpclett.6b01951 – ident: ref53/cit53 – ident: ref45/cit45 doi: 10.1038/ncomms11683 – ident: ref34/cit34 doi: 10.1039/C4TA05033A – ident: ref59/cit59 doi: 10.1021/jz500113x – ident: ref39/cit39 doi: 10.1039/C5EE01265A – ident: ref41/cit41 doi: 10.1103/PhysRevB.4.502 – ident: ref15/cit15 doi: 10.1002/aenm.201602432 – ident: ref43/cit43 doi: 10.1021/nn502115k – ident: ref27/cit27 doi: 10.1002/adfm.200500396 – ident: ref7/cit7 doi: 10.1021/nn406020d – ident: ref30/cit30 doi: 10.1063/1.2133906 – ident: ref60/cit60 doi: 10.1039/C4EE03664F – ident: ref36/cit36 doi: 10.1063/1.4864778 – ident: ref64/cit64 doi: 10.1038/ncomms13831 – ident: ref38/cit38 doi: 10.1038/ncomms8497 – ident: ref12/cit12 doi: 10.1002/adma.201405372 – volume-title: Analysis and Simulation of Semiconductor Devices year: 1984 ident: ref37/cit37 doi: 10.1007/978-3-7091-8752-4 contributor: fullname: Selberherr S. – ident: ref11/cit11 doi: 10.1002/adma.201305172 – ident: ref9/cit9 doi: 10.1039/C6EE02100J – ident: ref23/cit23 doi: 10.1126/science.aaa5333 – ident: ref6/cit6 doi: 10.1038/nphoton.2013.341 – ident: ref49/cit49 doi: 10.1039/C5CP07117H – ident: ref29/cit29 doi: 10.1063/1.89396 – ident: ref58/cit58 doi: 10.1021/acsenergylett.6b00719 – ident: ref52/cit52 doi: 10.1002/adma.201000883 – ident: ref5/cit5 doi: 10.1038/nature12509 – ident: ref54/cit54 doi: 10.1103/PhysRevB.89.155204 – ident: ref55/cit55 doi: 10.1016/j.orgel.2015.09.023 – ident: ref14/cit14 doi: 10.1002/aenm.201400812 – ident: ref42/cit42 doi: 10.1103/PhysRevB.72.085205 – ident: ref48/cit48 doi: 10.1021/acs.jpclett.7b00055 – ident: ref2/cit2 doi: 10.1021/ja809598r – ident: ref31/cit31 doi: 10.1063/1.321593 – ident: ref16/cit16 doi: 10.1039/C6EE00413J – ident: ref40/cit40 doi: 10.1021/acs.accounts.5b00420 – ident: ref62/cit62 doi: 10.1039/C5EE02740C – ident: ref63/cit63 doi: 10.1038/ncomms10334 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.112.156103 |
SSID | ssj0001685858 |
Score | 2.6149697 |
Snippet | Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in... Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1214 |
SubjectTerms | Letter |
Title | Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions |
URI | http://dx.doi.org/10.1021/acsenergylett.7b00236 https://www.ncbi.nlm.nih.gov/pubmed/28540366 https://search.proquest.com/docview/1902480003 https://pubmed.ncbi.nlm.nih.gov/PMC5438194 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuNADFGhhoUWu1BMii5M4a4dbu0ApUhHSgsQt8iuwArKIZDn013fGu0tZEIJe40dke6z5xjPzDcA3iUrCdtI4QmXqIhQKHmmbu4hrbmzOuc1C1vvv487hmTg6z85nYOcFD34S72hb-5AGh-to2jJomc47mEskXhDCQt3ev0eVwKYeqtClikfkI5pk7bw0E2klW09rpWdQ82nE5CMVdLAIJ5NEnlHkyVV72Ji2_fOc1_Gtq_sAC2M4yr6P5GcJZny1DO8fkRSuwBVZqDdoQIczZP2Knfi7wX1Nz76sR5Yx6_rr63qX9foXFUUekSCxQcl-UvkJ9iMUbiKLfJuF98dSYzPqyFv8oCvH9jyFlLBfKP8f4exg_7R7GI1LNEQaoV8TSWOEja1yqfe5ijPjuBFaI-bIk6xUxgmlpVTCiMTGGo1Ng72xR6kSx13O008wWw0qvwbMGaulQsSnhRAmTU1u4kx7ZUqJNqNMW7CFm1WMr1hdBO95EhdTO1iMd7AF7cl5Frcj2o7XBnydnHqBF4y8JrrygyH-JyfaN7IdW7A6koKHKSn9FCEAjpZT8vHQgci7p1uq_mUg8c6IWy0X6_-zqg2YTwhVEHls8hlmm7uh_4KYqDGb4R78BfsWC8I |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ98OqDLaUYqaeqWZzEWTu9tUvp0gKqtKByi_xKWQFZRLI99Nd3xvuApaoqrn4ltmc039gznwHeSjQStpPGERpTF6FQ8Ejb3EVcc2Nzzm0Wst6Pjju9U_H1LDtbgM40FwZ_osaR6nCJf8suEO9imQ_ZcDidpi2Dsek8gqVMotEkSNTt356tBFL18BhdqnhEV0XT5J1_jUTGydbzxukvxHk_cPKOJdpfgR-zOYQAlIv2qDFt-_sevePDJ7kKyxNwyj6OpWkNFny1Dk_vUBY-gwvyV6_QnQ47ygYV--5vhr9qOgRmffKTWddfXtYfWH_ws6I4JBIrNizZF3qMgn0KzziRf_6ehdPIUmM1WsxrLNCVY3ueAkzYAWrDczjd_3zS7UWTBxsijUCwiaQxwsZWudT7XMWZcdwIrRGB5ElWKuOE0lIqYURiY42up8HW2KJUieMu5-kLWKyGld8A5ozVUiH-00IIk6YmN3GmvTKlRA9Spi14h4tVTBSuLsJdehIXcytYTFawBe3pthbXYxKP_3XYmW5-gepGdyi68sMRficnEjjyJFvwciwMsyEpGRUBAfaWc2Iya0BU3vM11eA8UHpnxLSWi1cPmdU2PO6dHB0WhwfH3zbhSUJ4g2hlk9ew2NyM_Baipca8CarxB_GrFCc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkRAcyhvSFlgkTgiHtb3Orrm1KaHlUVUKlSr1YO3LbdTiRLXTQ399ZzZOaIoQguu-7Nmd0czszHwL8FaikrC9NI5QmboImYJH2uYu4pobm3Nus1D1_n2vt3Mgvhxmh21WJdXC4E_UuFIdgvgk1RNXtggD8Qds96EiDklqujIonN5tuJPJOIRoN_vDX_crAVg9PEiXKh5RuGhewPOnlUhB2XpZQf1mdd5MnrymjQYP4GhBR0hCOe1OG9O1lzcgHv-P0Iew2hqpbHPGVY_glq8ew_1r0IVP4JT81p_oVoeTZaOK7fvz8UVNl8FsSP4y6_uzs_ojG46OK8pHIvZi45J9pkcp2FZ4zon89Pcs3EqWGrtRc06wQVeObXtKNGG7KBVP4WDw6Ud_J2ofbog0GoRNJI0RNrbKpd7nKs6M40ZojZZInmSlMk4oLaUSRiQ21uiCGhyNI0qVOO5ynj6DlWpc-RfAnLFaKrQDtRDCpKnJTZxpr0wp0ZOUaQfe4WYVreDVRYipJ3GxtINFu4Md6M6PtpjMwDz-NuHNnAEKFDuKpejKj6f4nZzA4Mij7MDzGUMslqSiVDQMcLZcYpXFAIL0Xu6pRicB2jsjxLVcrP0LVa_h7v72oPi2u_d1He4lZHYQumyyASvN-dS_RKOpMa-CdFwBjewWoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recombination+in+Perovskite+Solar+Cells%3A+Significance+of+Grain+Boundaries%2C+Interface+Traps%2C+and+Defect+Ions&rft.jtitle=ACS+energy+letters&rft.au=Sherkar%2C+Tejas+S.&rft.au=Momblona%2C+Cristina&rft.au=Gil-Escrig%2C+Lid%C3%B3n&rft.au=%C3%81vila%2C+Jorge&rft.date=2017-05-12&rft.pub=American+Chemical+Society&rft.eissn=2380-8195&rft.volume=2&rft.issue=5&rft.spage=1214&rft.epage=1222&rft_id=info:doi/10.1021%2Facsenergylett.7b00236&rft_id=info%3Apmid%2F28540366&rft.externalDBID=PMC5438194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |