Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions

Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain bo...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 2; no. 5; pp. 1214 - 1222
Main Authors Sherkar, Tejas S, Momblona, Cristina, Gil-Escrig, Lidón, Ávila, Jorge, Sessolo, Michele, Bolink, Henk J, Koster, L. Jan Anton
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH3NH3PbI3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage (J–V) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J–V hysteresis.
AbstractList Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH3NH3PbI3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage (J–V) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J–V hysteresis.
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p–i–n and n–i–p CH 3 NH 3 PbI 3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current–voltage ( J – V ) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J – V hysteresis.
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH NH PbI solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current-voltage ( - ) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the - hysteresis.
Author Gil-Escrig, Lidón
Sherkar, Tejas S
Sessolo, Michele
Momblona, Cristina
Ávila, Jorge
Bolink, Henk J
Koster, L. Jan Anton
AuthorAffiliation Universidad de Valencia
University of Groningen
Zernike Institute for Advanced Materials
Instituto de Ciencia Molecular
AuthorAffiliation_xml – name: Zernike Institute for Advanced Materials
– name: Instituto de Ciencia Molecular
– name: University of Groningen
– name: Universidad de Valencia
Author_xml – sequence: 1
  givenname: Tejas S
  surname: Sherkar
  fullname: Sherkar, Tejas S
  organization: University of Groningen
– sequence: 2
  givenname: Cristina
  surname: Momblona
  fullname: Momblona, Cristina
  organization: Universidad de Valencia
– sequence: 3
  givenname: Lidón
  surname: Gil-Escrig
  fullname: Gil-Escrig, Lidón
  organization: Universidad de Valencia
– sequence: 4
  givenname: Jorge
  surname: Ávila
  fullname: Ávila, Jorge
  organization: Universidad de Valencia
– sequence: 5
  givenname: Michele
  surname: Sessolo
  fullname: Sessolo, Michele
  organization: Universidad de Valencia
– sequence: 6
  givenname: Henk J
  orcidid: 0000-0001-9784-6253
  surname: Bolink
  fullname: Bolink, Henk J
  organization: Universidad de Valencia
– sequence: 7
  givenname: L. Jan Anton
  orcidid: 0000-0002-6558-5295
  surname: Koster
  fullname: Koster, L. Jan Anton
  email: l.j.a.koster@rug.nl
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28540366$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFPHCEUhYmxUbv1J2h49MG1wDC7TB9MdFt1E5M21T6TC3Nni87CCoyJ_76YXY371PAA4X7nQM75THZ98EjIEWdnnAn-FWxCj3Hx0mPOZ1PDmKgmO-RAVIqNFW_q3Q_nfXKY0gNjjE9UXdYe2ReqlqyaTA7I42-0YWmch-yCp87TXxjDc3p0Geld6CHSGfZ9-kbv3MK7zlnwFmno6HWEQl-GwbcQHaZTOvcZYwdlfB9hVS7At_Q7dmgznQefvpBPHfQJDzf7iPy5-nE_uxnf_ryezy5ux1DzJo-nxkjLrWorxEbx2rTMSAAhqkbUnTKtVDCdKmmksBwE56bQheiUaFnbsGpEzte-q8EssbXoc4Rer6JbQnzRAZzennj3Vy_Cs65lVQKTxeBkYxDD04Ap66VLtsQAHsOQNG-YkKokWhW0XqM2hpQidu_PcKZfu9JbXelNV0V3_PGP76q3ZgrA10DR64cwRF8i-4_pP3lIqNU
CitedBy_id crossref_primary_10_1002_adma_202302146
crossref_primary_10_1002_smll_202307498
crossref_primary_10_1021_acs_jpcc_1c07037
crossref_primary_10_1002_adma_201905362
crossref_primary_10_1002_admt_202100565
crossref_primary_10_1038_s41578_019_0176_2
crossref_primary_10_1016_j_matt_2021_05_002
crossref_primary_10_1039_D1YA00084E
crossref_primary_10_1002_solr_202000270
crossref_primary_10_1039_D3QM00236E
crossref_primary_10_1021_acs_jpcc_1c10210
crossref_primary_10_1021_acsami_8b01033
crossref_primary_10_1016_j_orgel_2020_105671
crossref_primary_10_1021_acsaem_3c03140
crossref_primary_10_1021_acsenergylett_3c02794
crossref_primary_10_1002_adfm_202100396
crossref_primary_10_1021_acsami_1c08675
crossref_primary_10_1007_s12596_023_01647_3
crossref_primary_10_1063_5_0179194
crossref_primary_10_1021_jacs_8b08448
crossref_primary_10_1002_adfm_202305283
crossref_primary_10_1016_j_jallcom_2022_167445
crossref_primary_10_1021_acs_jpclett_2c02060
crossref_primary_10_1021_acs_jpclett_7b03343
crossref_primary_10_1016_j_nanoen_2020_105038
crossref_primary_10_1021_acs_jpclett_9b02553
crossref_primary_10_1002_adom_201900272
crossref_primary_10_1002_aenm_201702754
crossref_primary_10_1002_solr_202200964
crossref_primary_10_1021_acs_jpclett_1c00004
crossref_primary_10_1039_C9TC02181G
crossref_primary_10_1002_ente_202100176
crossref_primary_10_1063_5_0013741
crossref_primary_10_1002_anie_201804852
crossref_primary_10_1039_C8TC05837G
crossref_primary_10_1021_acsnano_8b08390
crossref_primary_10_1039_C9TA05556H
crossref_primary_10_1088_1361_6463_ab9134
crossref_primary_10_1088_2040_8986_ac95a8
crossref_primary_10_1021_jacs_0c08592
crossref_primary_10_1021_acsami_1c22748
crossref_primary_10_1002_aenm_201904134
crossref_primary_10_1557_jmr_2020_202
crossref_primary_10_1021_acsenergylett_8b00560
crossref_primary_10_1016_j_nantod_2020_100874
crossref_primary_10_1002_solr_202300554
crossref_primary_10_1016_j_solener_2023_111846
crossref_primary_10_1039_D0TC02944K
crossref_primary_10_1016_j_nanoen_2024_109503
crossref_primary_10_1002_adma_201907757
crossref_primary_10_1002_solr_201900294
crossref_primary_10_1109_JEDS_2018_2820319
crossref_primary_10_1016_j_isci_2021_102276
crossref_primary_10_1016_j_ijleo_2021_168060
crossref_primary_10_1109_JPHOTOV_2021_3127987
crossref_primary_10_1016_j_matt_2021_04_006
crossref_primary_10_1021_acs_jpcc_0c07423
crossref_primary_10_1016_j_cej_2023_141300
crossref_primary_10_1038_s41598_020_69914_y
crossref_primary_10_1021_acsami_2c05605
crossref_primary_10_1021_acsenergylett_0c01796
crossref_primary_10_1002_adfm_201808625
crossref_primary_10_1002_solr_202200998
crossref_primary_10_2139_ssrn_3335783
crossref_primary_10_1016_j_apsusc_2022_156229
crossref_primary_10_1039_C9SE00448C
crossref_primary_10_1021_acsami_2c12785
crossref_primary_10_1016_j_matt_2024_05_046
crossref_primary_10_1039_C7EE02415K
crossref_primary_10_1021_cbmi_3c00069
crossref_primary_10_1063_5_0080794
crossref_primary_10_1002_smll_202310455
crossref_primary_10_1021_acsaem_0c02120
crossref_primary_10_1021_acsaelm_3c00086
crossref_primary_10_1002_smtd_202301793
crossref_primary_10_1007_s40843_020_1324_8
crossref_primary_10_1680_jsuin_21_00058
crossref_primary_10_1002_aesr_202100199
crossref_primary_10_1021_acsomega_0c02800
crossref_primary_10_1039_C9QM00112C
crossref_primary_10_1002_admi_202202365
crossref_primary_10_1016_j_matlet_2021_130294
crossref_primary_10_1002_solr_202300502
crossref_primary_10_1016_j_mssp_2021_105666
crossref_primary_10_1007_s10854_023_10004_w
crossref_primary_10_1021_acs_iecr_1c00789
crossref_primary_10_1063_5_0012202
crossref_primary_10_4236_ampc_2023_138011
crossref_primary_10_1039_D0TA10492B
crossref_primary_10_1016_j_nanoen_2024_109543
crossref_primary_10_1007_s13391_023_00428_1
crossref_primary_10_1038_s41598_022_14452_y
crossref_primary_10_1021_acsenergylett_2c01640
crossref_primary_10_1021_acsami_2c06903
crossref_primary_10_1109_JPHOTOV_2018_2868010
crossref_primary_10_1016_j_cej_2022_138962
crossref_primary_10_1021_acsanm_2c01410
crossref_primary_10_3390_nano12183121
crossref_primary_10_1088_1361_6463_ab1626
crossref_primary_10_1002_admi_202001425
crossref_primary_10_1016_j_jpowsour_2022_231518
crossref_primary_10_1039_D0TA11916D
crossref_primary_10_1002_aenm_201903090
crossref_primary_10_1021_acsenergylett_0c01350
crossref_primary_10_1016_j_joule_2022_01_006
crossref_primary_10_1021_acsami_3c03679
crossref_primary_10_1016_j_apsusc_2023_157003
crossref_primary_10_1002_aenm_201901726
crossref_primary_10_1002_aenm_202200632
crossref_primary_10_1021_acsaem_0c02963
crossref_primary_10_1002_aelm_201900935
crossref_primary_10_1016_j_electacta_2020_136387
crossref_primary_10_1016_j_solener_2022_01_060
crossref_primary_10_1016_j_jallcom_2023_173320
crossref_primary_10_1021_jacs_2c08487
crossref_primary_10_1002_adma_201900067
crossref_primary_10_1002_aenm_202201733
crossref_primary_10_1039_D2TA06336K
crossref_primary_10_1021_jacs_8b13423
crossref_primary_10_1002_ange_202003813
crossref_primary_10_1002_smll_202000733
crossref_primary_10_1007_s11082_022_04522_w
crossref_primary_10_1002_admi_201901469
crossref_primary_10_2139_ssrn_3932608
crossref_primary_10_1088_1674_4926_41_5_052202
crossref_primary_10_1016_j_mtsust_2023_100381
crossref_primary_10_1002_adfm_201902582
crossref_primary_10_1016_j_optmat_2021_111891
crossref_primary_10_2139_ssrn_4171695
crossref_primary_10_1088_1361_6463_abb487
crossref_primary_10_1021_acsaem_0c00767
crossref_primary_10_1039_D3TA01276J
crossref_primary_10_1002_adma_201704208
crossref_primary_10_1021_acsaem_9b00060
crossref_primary_10_1039_D0TA00798F
crossref_primary_10_1002_solr_202300156
crossref_primary_10_1021_acs_jpcc_2c08845
crossref_primary_10_1039_D0MA00528B
crossref_primary_10_1103_PhysRevApplied_15_014006
crossref_primary_10_1038_s41563_019_0399_z
crossref_primary_10_1007_s10853_023_08910_9
crossref_primary_10_1039_D0NR03499A
crossref_primary_10_1002_chem_202000005
crossref_primary_10_1002_adfm_201808059
crossref_primary_10_1021_acsaem_7b00018
crossref_primary_10_1016_j_xcrp_2021_100346
crossref_primary_10_1038_s41377_021_00662_y
crossref_primary_10_1109_ACCESS_2021_3114383
crossref_primary_10_1021_acsaem_3c00723
crossref_primary_10_1002_solr_202301013
crossref_primary_10_1039_C7TC03482B
crossref_primary_10_1039_C8TA05291C
crossref_primary_10_1002_smll_202207445
crossref_primary_10_1016_j_nanoen_2019_104099
crossref_primary_10_3390_cryst12010068
crossref_primary_10_3390_en14061751
crossref_primary_10_1039_D0NR08428J
crossref_primary_10_1039_D1TC02407H
crossref_primary_10_1021_acs_jpcc_8b11898
crossref_primary_10_3390_nano10040763
crossref_primary_10_1016_j_optmat_2022_113060
crossref_primary_10_1016_j_omx_2022_100218
crossref_primary_10_1002_aenm_201701235
crossref_primary_10_1002_aenm_202400965
crossref_primary_10_1039_C9RA03188J
crossref_primary_10_1038_s41467_019_08507_4
crossref_primary_10_1021_acsami_2c03492
crossref_primary_10_1039_D3VA00401E
crossref_primary_10_1016_j_matlet_2021_130448
crossref_primary_10_1016_j_solmat_2020_110435
crossref_primary_10_1002_aenm_201900444
crossref_primary_10_1016_j_nanoen_2018_08_031
crossref_primary_10_3390_nano13091492
crossref_primary_10_1021_acsaelm_0c00116
crossref_primary_10_1021_acs_jpclett_9b02757
crossref_primary_10_1063_5_0187208
crossref_primary_10_1364_PRJ_393647
crossref_primary_10_1016_j_apsusc_2023_157209
crossref_primary_10_1016_j_cplett_2020_137276
crossref_primary_10_1021_jacs_9b12391
crossref_primary_10_1021_acsenergylett_8b00923
crossref_primary_10_1002_solr_202000647
crossref_primary_10_1016_j_physb_2023_415190
crossref_primary_10_1016_j_jechem_2024_02_062
crossref_primary_10_1021_acsnano_8b05514
crossref_primary_10_1039_C9SE00200F
crossref_primary_10_35848_1347_4065_acd38c
crossref_primary_10_1002_adom_202001317
crossref_primary_10_1002_adom_201900407
crossref_primary_10_1016_j_jallcom_2024_174990
crossref_primary_10_1016_j_scib_2021_03_018
crossref_primary_10_1016_j_optmat_2020_110213
crossref_primary_10_1016_j_optmat_2020_110453
crossref_primary_10_1021_acsami_8b20899
crossref_primary_10_1039_D0SE00782J
crossref_primary_10_1002_aenm_202003628
crossref_primary_10_1021_acsmaterialslett_3c00496
crossref_primary_10_1039_D0CE01676D
crossref_primary_10_1007_s10008_019_04438_8
crossref_primary_10_1039_C9TC01770D
crossref_primary_10_1021_acs_energyfuels_3c04050
crossref_primary_10_1002_solr_202200941
crossref_primary_10_1002_aenm_201702772
crossref_primary_10_1021_acs_jpclett_2c00735
crossref_primary_10_1021_acsmaterialslett_2c00275
crossref_primary_10_1038_s41598_021_02796_w
crossref_primary_10_1007_s12648_022_02401_4
crossref_primary_10_3389_fchem_2020_00200
crossref_primary_10_1088_1361_6463_aaa727
crossref_primary_10_1038_s41598_022_19541_6
crossref_primary_10_1002_adfm_201802320
crossref_primary_10_1016_j_electacta_2022_141586
crossref_primary_10_1021_acsaem_1c02412
crossref_primary_10_1021_acsami_9b04991
crossref_primary_10_1002_ange_202216634
crossref_primary_10_1039_D3TA04502A
crossref_primary_10_1021_acs_chemmater_1c03238
crossref_primary_10_1021_acsenergylett_9b00885
crossref_primary_10_1002_anie_201910471
crossref_primary_10_1016_j_mtcomm_2023_107000
crossref_primary_10_1016_j_mtener_2024_101549
crossref_primary_10_1021_acsami_9b11039
crossref_primary_10_1016_j_optcom_2022_129104
crossref_primary_10_1002_adma_201902762
crossref_primary_10_1016_j_pmatsci_2020_100737
crossref_primary_10_1002_ange_202401604
crossref_primary_10_1016_j_matchemphys_2020_124032
crossref_primary_10_1063_5_0176240
crossref_primary_10_1016_j_orgel_2023_106937
crossref_primary_10_1002_smll_201907531
crossref_primary_10_1002_solr_202000811
crossref_primary_10_1021_acsami_0c18009
crossref_primary_10_1038_s41598_023_40837_8
crossref_primary_10_1088_1674_4926_42_11_112201
crossref_primary_10_1016_j_nanoen_2020_104866
crossref_primary_10_1021_acsami_3c10126
crossref_primary_10_1063_5_0083073
crossref_primary_10_1002_aenm_202002761
crossref_primary_10_1016_j_orgel_2024_107049
crossref_primary_10_1002_solr_202100794
crossref_primary_10_1007_s10854_022_09199_1
crossref_primary_10_1002_ange_202402904
crossref_primary_10_1007_s11082_020_2262_5
crossref_primary_10_1016_j_chemphys_2022_111593
crossref_primary_10_1063_5_0087879
crossref_primary_10_1016_j_micrna_2023_207739
crossref_primary_10_1098_rsos_221127
crossref_primary_10_1021_acsenergylett_2c01271
crossref_primary_10_1088_1361_6463_aafea9
crossref_primary_10_1016_j_cclet_2023_109425
crossref_primary_10_1016_j_solmat_2023_112500
crossref_primary_10_1103_PhysRevApplied_13_034018
crossref_primary_10_1109_JPHOTOV_2019_2922388
crossref_primary_10_1016_j_orgel_2021_106349
crossref_primary_10_1021_acs_jpclett_1c01909
crossref_primary_10_1039_D2TA08827D
crossref_primary_10_1002_smll_202005671
crossref_primary_10_1007_s12633_023_02761_4
crossref_primary_10_1039_D3RA02170J
crossref_primary_10_3390_nano9111627
crossref_primary_10_1039_C8TA03782E
crossref_primary_10_1039_D1SE00687H
crossref_primary_10_1016_j_apsusc_2020_148536
crossref_primary_10_1002_admi_202002041
crossref_primary_10_1002_aenm_201903851
crossref_primary_10_1021_acsomega_2c03775
crossref_primary_10_1002_smll_202207092
crossref_primary_10_1002_smll_202302337
crossref_primary_10_1021_acsaem_1c00226
crossref_primary_10_1002_aenm_202103128
crossref_primary_10_1002_ange_202112555
crossref_primary_10_1039_D1TC05035D
crossref_primary_10_1021_acsami_0c02923
crossref_primary_10_1002_solr_202100772
crossref_primary_10_1016_j_solmat_2019_110251
crossref_primary_10_1002_aenm_202302743
crossref_primary_10_1002_smtd_202100046
crossref_primary_10_1016_j_egyr_2022_10_019
crossref_primary_10_1039_D4TA01773K
crossref_primary_10_1016_j_jallcom_2019_152887
crossref_primary_10_1021_acs_jpclett_3c03059
crossref_primary_10_1021_acsenergylett_1c01526
crossref_primary_10_1039_D0EE01967D
crossref_primary_10_1002_aenm_201902579
crossref_primary_10_1002_aenm_201901489
crossref_primary_10_1021_acsami_8b12760
crossref_primary_10_1002_anie_202401604
crossref_primary_10_1021_acsenergylett_9b00847
crossref_primary_10_1002_smll_202005495
crossref_primary_10_1002_advs_202103729
crossref_primary_10_1021_acsami_9b13259
crossref_primary_10_1002_solr_202100121
crossref_primary_10_3390_electronics12153319
crossref_primary_10_1002_anie_202100218
crossref_primary_10_1021_acsaem_8b00913
crossref_primary_10_1021_acs_jpclett_9b00618
crossref_primary_10_1016_j_mseb_2022_116227
crossref_primary_10_1038_s41467_020_18015_5
crossref_primary_10_1016_j_colsurfa_2023_132075
crossref_primary_10_1021_acsapm_1c00891
crossref_primary_10_1063_5_0156215
crossref_primary_10_1039_D0TC00922A
crossref_primary_10_1002_smll_201905557
crossref_primary_10_1002_solr_202301077
crossref_primary_10_1021_acs_jpcc_7b12813
crossref_primary_10_1039_D1SC04221A
crossref_primary_10_1039_C9EE02020A
crossref_primary_10_1021_acsami_7b15031
crossref_primary_10_1016_j_jpcs_2023_111777
crossref_primary_10_3390_nano12122100
crossref_primary_10_1021_acsami_0c08674
crossref_primary_10_1016_j_micrna_2024_207816
crossref_primary_10_1098_rsos_172158
crossref_primary_10_1016_j_solmat_2018_12_010
crossref_primary_10_1016_j_ijleo_2024_171638
crossref_primary_10_1039_D0TC02354J
crossref_primary_10_1016_j_solmat_2021_111095
crossref_primary_10_1002_adfm_202303729
crossref_primary_10_1002_anie_202007353
crossref_primary_10_35848_1347_4065_acd42b
crossref_primary_10_1007_s10800_024_02148_2
crossref_primary_10_1039_C9TC02003A
crossref_primary_10_1016_j_solener_2022_10_024
crossref_primary_10_1109_LED_2022_3183194
crossref_primary_10_1021_acs_jpclett_0c01687
crossref_primary_10_1038_s43246_020_0028_z
crossref_primary_10_1016_j_solener_2019_09_055
crossref_primary_10_1021_acsaem_1c00028
crossref_primary_10_1021_acs_nanolett_9b00936
crossref_primary_10_1002_adma_202102588
crossref_primary_10_1016_j_orgel_2022_106697
crossref_primary_10_1134_S1063778823110200
crossref_primary_10_1088_2053_1591_ac9270
crossref_primary_10_1016_j_joule_2018_07_011
crossref_primary_10_1039_C7TC02652H
crossref_primary_10_1063_1_5043172
crossref_primary_10_1002_aenm_202000502
crossref_primary_10_1051_epjpv_2021004
crossref_primary_10_1016_j_joule_2023_11_018
crossref_primary_10_35848_1347_4065_ac6a33
crossref_primary_10_1016_j_solener_2021_07_076
crossref_primary_10_1021_acsami_2c20124
crossref_primary_10_1002_solr_201900207
crossref_primary_10_1039_D2TC02110B
crossref_primary_10_1063_1_5021138
crossref_primary_10_1039_C9TC04335G
crossref_primary_10_1002_smll_202302194
crossref_primary_10_1039_D4MH00290C
crossref_primary_10_1002_eem2_12696
crossref_primary_10_1002_solr_202200210
crossref_primary_10_1021_acsami_9b18082
crossref_primary_10_1039_C9SC05694G
crossref_primary_10_1016_j_solmat_2020_110912
crossref_primary_10_1155_2023_3367579
crossref_primary_10_1016_j_mtcomm_2023_107879
crossref_primary_10_1002_ente_202201395
crossref_primary_10_1039_C9CP00564A
crossref_primary_10_1039_D2QM01369J
crossref_primary_10_1002_smtd_202000937
crossref_primary_10_1016_j_optmat_2020_109933
crossref_primary_10_1039_C9TA11894B
crossref_primary_10_1109_ACCESS_2021_3070112
crossref_primary_10_1039_C9TC01152H
crossref_primary_10_1021_acsenergylett_9b01356
crossref_primary_10_1016_j_ijleo_2023_171550
crossref_primary_10_1103_PhysRevMaterials_4_085405
crossref_primary_10_1116_1_5049434
crossref_primary_10_1021_acsomega_7b00973
crossref_primary_10_1021_acsaem_3c00292
crossref_primary_10_1016_j_matlet_2020_127979
crossref_primary_10_7498_aps_68_20190468
crossref_primary_10_1007_s11664_021_09333_5
crossref_primary_10_1063_5_0064398
crossref_primary_10_1002_solr_202200226
crossref_primary_10_1002_cphc_201801038
crossref_primary_10_1038_s41560_019_0382_6
crossref_primary_10_1002_aesr_202100050
crossref_primary_10_1002_solr_201900217
crossref_primary_10_3389_fenrg_2018_00128
crossref_primary_10_1002_anie_202402904
crossref_primary_10_1021_acsomega_3c07754
crossref_primary_10_1021_acsenergylett_3c00614
crossref_primary_10_1002_pssa_202300782
crossref_primary_10_1002_ente_201901196
crossref_primary_10_1021_acsami_2c01640
crossref_primary_10_3390_ma11112106
crossref_primary_10_1016_j_apsusc_2020_148728
crossref_primary_10_1002_aenm_202400055
crossref_primary_10_1016_j_surfin_2021_101703
crossref_primary_10_1039_C9TA06688H
crossref_primary_10_1088_1361_6528_ab97d4
crossref_primary_10_1039_C7RA13744C
crossref_primary_10_35848_1347_4065_abdad3
crossref_primary_10_1039_D0MA00902D
crossref_primary_10_1002_solr_202100983
crossref_primary_10_1021_acsami_8b02549
crossref_primary_10_1021_acsenergylett_4c00839
crossref_primary_10_1002_solr_202400364
crossref_primary_10_1016_j_solener_2020_10_045
crossref_primary_10_1063_1_5127866
crossref_primary_10_1021_acsami_3c11409
crossref_primary_10_1021_acsami_1c02929
crossref_primary_10_1002_pssa_202100472
crossref_primary_10_1002_adma_202104346
crossref_primary_10_1016_j_rio_2023_100444
crossref_primary_10_1007_s11082_023_05119_7
crossref_primary_10_1002_smll_202101839
crossref_primary_10_1002_solr_202400113
crossref_primary_10_1007_s10854_022_08151_7
crossref_primary_10_1515_nanoph_2021_0033
crossref_primary_10_1016_j_jechem_2023_10_053
crossref_primary_10_1002_solr_202200267
crossref_primary_10_1016_j_nanoen_2020_105505
crossref_primary_10_1021_acsami_9b23255
crossref_primary_10_1021_acsami_9b21074
crossref_primary_10_1002_adma_201805214
crossref_primary_10_1016_j_nanoen_2022_107044
crossref_primary_10_1021_acsphotonics_3c00777
crossref_primary_10_1002_admi_201801118
crossref_primary_10_1016_j_mtphys_2021_100513
crossref_primary_10_1039_D1MA00345C
crossref_primary_10_1016_j_synthmet_2024_117679
crossref_primary_10_1002_smll_202402997
crossref_primary_10_1002_anie_202003813
crossref_primary_10_1002_adom_202300757
crossref_primary_10_1021_acsami_0c02960
crossref_primary_10_1088_1757_899X_1120_1_012017
crossref_primary_10_3390_photonics11010087
crossref_primary_10_1016_j_matchemphys_2023_128281
crossref_primary_10_1016_j_joule_2020_03_017
crossref_primary_10_1039_D3CP01496G
crossref_primary_10_1002_smtd_202300377
crossref_primary_10_1063_1_5029278
crossref_primary_10_1002_solr_201900167
crossref_primary_10_1016_j_jpowsour_2021_230212
crossref_primary_10_1039_C7TC05658C
crossref_primary_10_1002_advs_201801350
crossref_primary_10_1016_j_joule_2023_01_008
crossref_primary_10_1016_j_mtsust_2021_100090
crossref_primary_10_1007_s10853_020_05059_7
crossref_primary_10_1039_D0CS00573H
crossref_primary_10_1039_D0NR05739H
crossref_primary_10_1016_j_solener_2020_02_025
crossref_primary_10_1021_acsaem_8b00382
crossref_primary_10_1016_j_mattod_2022_04_009
crossref_primary_10_1016_j_jssc_2022_123149
crossref_primary_10_1016_j_solmat_2021_111548
crossref_primary_10_1109_JPHOT_2022_3146365
crossref_primary_10_1007_s42452_021_04877_x
crossref_primary_10_1002_advs_202002296
crossref_primary_10_1002_admi_202201191
crossref_primary_10_1021_acsaem_2c01881
crossref_primary_10_1021_acsaem_1c00920
crossref_primary_10_1007_s10825_023_02038_4
crossref_primary_10_1016_j_isci_2024_109200
crossref_primary_10_1021_acsami_8b06619
crossref_primary_10_1063_5_0062818
crossref_primary_10_1016_j_ijleo_2020_165430
crossref_primary_10_1088_1361_6528_ab19dd
crossref_primary_10_3390_en14133868
crossref_primary_10_1002_aenm_202203607
crossref_primary_10_1088_1674_4926_43_5_051202
crossref_primary_10_3390_en13071643
crossref_primary_10_1002_aenm_202101854
crossref_primary_10_1016_j_optmat_2020_110524
crossref_primary_10_1016_j_jpowsour_2021_229451
crossref_primary_10_1039_D2CP04599K
crossref_primary_10_1039_D0EE03312J
crossref_primary_10_1002_adma_202002176
crossref_primary_10_1021_acsaem_0c01329
crossref_primary_10_1016_j_cej_2024_151778
crossref_primary_10_1109_TED_2020_3014272
crossref_primary_10_3390_ma14112698
crossref_primary_10_1021_acsami_0c05878
crossref_primary_10_1021_acsami_2c13585
crossref_primary_10_1002_solr_202200862
crossref_primary_10_1002_solr_202200623
crossref_primary_10_1021_acs_nanolett_3c03655
crossref_primary_10_1021_acs_jpcc_1c09313
crossref_primary_10_1002_asia_202100803
crossref_primary_10_1016_j_solener_2020_12_069
crossref_primary_10_1002_smtd_202100725
crossref_primary_10_1364_OE_442345
crossref_primary_10_1016_j_solmat_2021_111512
crossref_primary_10_1016_j_joule_2020_02_003
crossref_primary_10_1002_aenm_201701757
crossref_primary_10_1016_j_jallcom_2022_168680
crossref_primary_10_1016_j_synthmet_2020_116497
crossref_primary_10_1002_aenm_202003382
crossref_primary_10_3934_dcdsb_2024081
crossref_primary_10_1016_j_nanoen_2021_105882
crossref_primary_10_1021_acsami_0c04975
crossref_primary_10_1016_j_orgel_2018_12_012
crossref_primary_10_1021_acsami_0c11253
crossref_primary_10_1109_JPHOTOV_2019_2914919
crossref_primary_10_1111_jace_17763
crossref_primary_10_1021_acsnano_7b07559
crossref_primary_10_1002_adom_202100192
crossref_primary_10_3390_app12188987
crossref_primary_10_1088_2515_7655_ac975a
crossref_primary_10_1002_solr_202200645
crossref_primary_10_1016_j_nanoen_2018_02_049
crossref_primary_10_1021_acsami_9b22556
crossref_primary_10_1080_15567036_2023_2192182
crossref_primary_10_1021_acsami_8b20924
crossref_primary_10_1016_j_optmat_2020_109738
crossref_primary_10_1039_D1TC04208D
crossref_primary_10_1016_j_enconman_2022_115955
crossref_primary_10_1039_D2SE00828A
crossref_primary_10_1002_ange_201804852
crossref_primary_10_1002_cplu_202100204
crossref_primary_10_1038_s41467_018_04634_6
crossref_primary_10_1021_acs_jpclett_8b02824
crossref_primary_10_1016_j_jpowsour_2021_230481
crossref_primary_10_1021_acsami_8b05560
crossref_primary_10_1038_s41377_021_00515_8
crossref_primary_10_3390_polym12040737
crossref_primary_10_1039_D1TA10388A
crossref_primary_10_1039_D3CC01195J
crossref_primary_10_1002_solr_202000308
crossref_primary_10_1002_solr_202100159
crossref_primary_10_1016_j_solener_2019_05_056
crossref_primary_10_1021_acsami_1c07610
crossref_primary_10_1038_s41467_020_19199_6
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1007_s40243_020_00185_3
crossref_primary_10_1016_j_jmat_2021_04_002
crossref_primary_10_1039_D0SE01774D
crossref_primary_10_1063_5_0012141
crossref_primary_10_1038_s41427_020_00265_w
crossref_primary_10_7567_1882_0786_ab0eec
crossref_primary_10_1002_ente_201900627
crossref_primary_10_1021_acs_jpclett_9b00641
crossref_primary_10_1021_acs_chemrev_2c00843
crossref_primary_10_1002_adfm_202200024
crossref_primary_10_1039_D3DT04192A
crossref_primary_10_1063_5_0012384
crossref_primary_10_1002_sstr_202300546
crossref_primary_10_1002_advs_202105307
crossref_primary_10_1063_5_0164413
crossref_primary_10_1021_acsmaterialslett_1c00474
crossref_primary_10_1016_j_mssp_2022_107118
crossref_primary_10_1038_s41467_023_43852_5
crossref_primary_10_1021_acsaem_8b01076
crossref_primary_10_3390_polym15183674
crossref_primary_10_1039_C8TC05998E
crossref_primary_10_1002_anie_202315143
crossref_primary_10_1002_er_6133
crossref_primary_10_1016_j_solmat_2020_110594
crossref_primary_10_1021_acs_jpcc_9b01581
crossref_primary_10_1016_j_matpr_2021_02_682
crossref_primary_10_1016_j_cej_2023_144561
crossref_primary_10_1039_D1RA02260A
crossref_primary_10_3389_fchem_2020_00825
crossref_primary_10_1002_ange_201910471
crossref_primary_10_1021_acsami_9b15148
crossref_primary_10_1021_acsenergylett_0c00120
crossref_primary_10_1088_1674_4926_44_12_120501
crossref_primary_10_1002_aenm_202200975
crossref_primary_10_1002_smll_202310368
crossref_primary_10_1007_s10854_022_08368_6
crossref_primary_10_1002_aesr_202000068
crossref_primary_10_1016_j_rinp_2019_102839
crossref_primary_10_1002_aenm_202303664
crossref_primary_10_1021_acsami_3c15520
crossref_primary_10_1016_j_cej_2023_145632
crossref_primary_10_1002_ejic_202100360
crossref_primary_10_1039_D0CC04043F
crossref_primary_10_1039_D1TC05714F
crossref_primary_10_1002_solr_202000315
crossref_primary_10_1016_j_nanoen_2021_106127
crossref_primary_10_1007_s10825_021_01827_z
crossref_primary_10_3390_ma17051064
crossref_primary_10_1016_j_cej_2022_140284
crossref_primary_10_3390_nano13081313
crossref_primary_10_1039_C8CS00853A
crossref_primary_10_1002_adma_201907864
crossref_primary_10_1021_acsenergylett_2c00485
crossref_primary_10_1016_j_nanoen_2019_01_060
crossref_primary_10_1007_s10854_023_11385_8
crossref_primary_10_1109_TED_2017_2763091
crossref_primary_10_1002_adom_202302257
crossref_primary_10_1016_j_apsusc_2022_152826
crossref_primary_10_1021_acs_jpclett_1c00954
crossref_primary_10_1021_acs_chemrev_0c00107
crossref_primary_10_1093_nsr_nwae042
crossref_primary_10_1016_j_apmt_2021_100946
crossref_primary_10_1002_eom2_12081
crossref_primary_10_1016_j_electacta_2019_06_134
crossref_primary_10_1016_j_solener_2019_05_006
crossref_primary_10_1021_acsmaterialslett_2c00123
crossref_primary_10_1039_D2TC00982J
crossref_primary_10_1021_acsenergylett_0c02136
crossref_primary_10_1002_aesr_202000065
crossref_primary_10_1021_acsami_0c17877
crossref_primary_10_1021_acs_jpcc_0c01826
crossref_primary_10_1016_j_orgel_2020_105987
crossref_primary_10_1002_solr_202100191
crossref_primary_10_1007_s42247_024_00732_y
crossref_primary_10_1016_j_cej_2022_135715
crossref_primary_10_1021_acsaem_1c01415
crossref_primary_10_15541_jim20210199
crossref_primary_10_1063_5_0082425
crossref_primary_10_1002_admi_202001144
crossref_primary_10_1021_acsami_9b18452
crossref_primary_10_1088_1361_648X_abff92
crossref_primary_10_1016_j_progsolidstchem_2024_100463
crossref_primary_10_1002_aenm_201902706
crossref_primary_10_3389_fchem_2019_00936
crossref_primary_10_1007_s10825_022_01953_2
crossref_primary_10_1016_j_mtener_2023_101400
crossref_primary_10_1021_acsenergylett_3c01368
crossref_primary_10_1002_anie_201915422
crossref_primary_10_1021_acs_chemmater_9b00702
crossref_primary_10_1021_acsenergylett_0c00172
crossref_primary_10_1021_acsenergylett_0c01022
crossref_primary_10_1002_cjoc_202200505
crossref_primary_10_1021_acsenergylett_0c02599
crossref_primary_10_1021_acsami_0c17652
crossref_primary_10_1002_chem_201805656
crossref_primary_10_1002_aenm_201703506
crossref_primary_10_1016_j_jpowsour_2018_03_014
crossref_primary_10_1039_D2SE00516F
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1002_ente_201900877
crossref_primary_10_1002_anie_202216634
crossref_primary_10_1002_aenm_201902650
crossref_primary_10_1002_smtd_202400302
crossref_primary_10_1063_5_0051342
crossref_primary_10_1002_aenm_202102131
crossref_primary_10_1021_acsami_2c21731
crossref_primary_10_1016_j_solener_2019_04_098
crossref_primary_10_1039_D0TC00383B
crossref_primary_10_1039_D2CP00341D
crossref_primary_10_1016_j_jallcom_2020_156785
crossref_primary_10_1021_acsaem_9b00486
crossref_primary_10_1007_s11356_020_12087_y
crossref_primary_10_1016_j_nanoen_2019_104186
crossref_primary_10_1002_ange_202315143
crossref_primary_10_1016_j_matt_2021_02_020
crossref_primary_10_1021_acsami_7b14019
crossref_primary_10_1088_1361_6528_ac9f4f
crossref_primary_10_1021_acs_jpclett_0c00018
crossref_primary_10_1002_solr_202201016
crossref_primary_10_1021_acsaem_1c00367
crossref_primary_10_1016_j_surfin_2021_101213
crossref_primary_10_1002_ente_202300083
crossref_primary_10_1016_j_cej_2021_129581
crossref_primary_10_1088_1361_6463_aaddde
crossref_primary_10_3390_app12189382
crossref_primary_10_1002_admi_201801667
crossref_primary_10_1016_j_jechem_2020_06_030
crossref_primary_10_1039_D3TC04511K
crossref_primary_10_1016_j_solmat_2022_112148
crossref_primary_10_1039_D0TC02455D
crossref_primary_10_1038_s41467_021_25311_1
crossref_primary_10_1557_s43578_022_00540_2
crossref_primary_10_1021_acsenergylett_9b02720
crossref_primary_10_1016_j_optmat_2024_115538
crossref_primary_10_1021_acs_jpcc_2c05055
crossref_primary_10_1016_j_solener_2020_07_059
crossref_primary_10_1002_pssr_202200216
crossref_primary_10_1002_solr_202000714
crossref_primary_10_1016_j_solener_2020_08_095
crossref_primary_10_1016_j_optmat_2021_111362
crossref_primary_10_1063_1_5053845
crossref_primary_10_1002_adfm_201906763
crossref_primary_10_1021_acsaem_1c00588
crossref_primary_10_1002_adma_202204380
crossref_primary_10_1007_s10570_019_02724_2
crossref_primary_10_1088_1742_6596_2310_1_012013
crossref_primary_10_1364_OME_442770
crossref_primary_10_1002_ange_202100218
crossref_primary_10_1016_j_solener_2022_09_015
crossref_primary_10_1016_j_mssp_2021_106296
crossref_primary_10_1039_D0TA10535J
crossref_primary_10_1039_D3TC00022B
crossref_primary_10_1038_s41467_021_21805_0
crossref_primary_10_1039_D3NA00529A
crossref_primary_10_1002_adma_202208320
crossref_primary_10_1021_acs_energyfuels_4c00763
crossref_primary_10_1002_cssc_202201590
crossref_primary_10_1039_D2SE00995A
crossref_primary_10_1002_aenm_202401414
crossref_primary_10_1146_annurev_conmatphys_042020_025347
crossref_primary_10_1039_D1MA00819F
crossref_primary_10_1021_acs_jpcc_8b00998
crossref_primary_10_1016_j_solmat_2020_110837
crossref_primary_10_1002_admi_201800326
crossref_primary_10_1002_aenm_202400563
crossref_primary_10_1002_anie_202112555
crossref_primary_10_1021_acsaem_0c00854
crossref_primary_10_1002_aenm_202200961
crossref_primary_10_1016_j_hybadv_2022_100006
crossref_primary_10_1002_solr_201700213
crossref_primary_10_1002_admi_202300043
crossref_primary_10_1021_acsaem_1c01013
crossref_primary_10_1002_adfm_202008908
crossref_primary_10_1016_j_solmat_2019_110197
crossref_primary_10_1039_C9TC05439A
crossref_primary_10_1039_D2TC03039J
crossref_primary_10_1039_D1SE00369K
crossref_primary_10_1002_solr_202100219
crossref_primary_10_1103_PhysRevMaterials_4_024602
crossref_primary_10_1016_j_apsusc_2023_157140
crossref_primary_10_1002_adma_202309154
crossref_primary_10_1080_14686996_2018_1442091
crossref_primary_10_1016_j_jpowsour_2020_228443
crossref_primary_10_1002_solr_201900303
crossref_primary_10_1016_j_jechem_2020_06_061
crossref_primary_10_1021_acsami_9b17535
crossref_primary_10_1016_j_orgel_2023_106879
crossref_primary_10_1021_acs_jpclett_1c04038
crossref_primary_10_1063_1_5021293
crossref_primary_10_1002_adfm_202100931
crossref_primary_10_1021_acsenergylett_1c01898
crossref_primary_10_1021_acsami_0c17258
crossref_primary_10_1016_j_cej_2024_152370
crossref_primary_10_1039_C9TC05679C
crossref_primary_10_1039_D2EE01256A
crossref_primary_10_1016_j_heliyon_2022_e11455
crossref_primary_10_1002_ange_202007353
crossref_primary_10_1021_acs_chemrev_8b00318
crossref_primary_10_1039_C7TA08761F
crossref_primary_10_26599_EMD_2024_9370018
crossref_primary_10_1002_solr_202100830
crossref_primary_10_1007_s00339_022_06027_5
crossref_primary_10_3390_electronics10020121
crossref_primary_10_1002_aenm_202001958
crossref_primary_10_1039_D4CP00034J
crossref_primary_10_1002_solr_202200560
crossref_primary_10_1002_ente_202100229
crossref_primary_10_1021_acsnano_7b08561
crossref_primary_10_3390_cryst13111566
crossref_primary_10_1021_acsaem_2c03434
crossref_primary_10_1002_solr_202400201
crossref_primary_10_1007_s10854_020_03771_3
crossref_primary_10_1016_j_heliyon_2023_e20603
crossref_primary_10_1038_s41467_021_27560_6
crossref_primary_10_1016_j_cej_2022_135477
crossref_primary_10_1039_D0TC03012K
crossref_primary_10_1039_D3NR01032E
crossref_primary_10_1002_solr_201900554
crossref_primary_10_1016_j_solener_2022_07_001
crossref_primary_10_3934_matersci_2017_4_956
crossref_primary_10_1039_C7SC04837H
crossref_primary_10_1039_D0TA10242C
crossref_primary_10_1002_aesr_202100156
crossref_primary_10_1039_D0TA07567A
crossref_primary_10_1039_D0TA05583B
crossref_primary_10_1021_acsaem_1c02113
crossref_primary_10_1021_acs_cgd_1c00548
crossref_primary_10_1002_smtd_202200260
crossref_primary_10_1002_adfm_201905021
crossref_primary_10_1016_j_jmat_2022_09_006
crossref_primary_10_1016_j_jmat_2022_09_005
crossref_primary_10_3390_ma12172727
crossref_primary_10_31590_ejosat_640344
crossref_primary_10_1016_j_nanoen_2018_06_054
crossref_primary_10_3390_nano13182570
crossref_primary_10_1016_j_nanoen_2018_06_057
crossref_primary_10_1002_solr_202300952
crossref_primary_10_1021_acsphotonics_2c00861
crossref_primary_10_1088_1402_4896_acfacf
crossref_primary_10_1021_acs_jpcc_9b10709
crossref_primary_10_1002_admi_202102137
crossref_primary_10_1021_acsaem_0c02144
crossref_primary_10_1098_rsos_230331
crossref_primary_10_1002_chem_201901112
crossref_primary_10_7567_1347_4065_ab2535
crossref_primary_10_1039_C8TA12254G
crossref_primary_10_1021_acs_jpclett_3c01156
crossref_primary_10_1021_acsnano_9b03098
crossref_primary_10_1016_j_nanoen_2020_104556
crossref_primary_10_1016_j_joule_2022_10_001
crossref_primary_10_1021_acsami_8b04861
crossref_primary_10_1016_j_matt_2019_05_026
crossref_primary_10_1016_j_solener_2022_07_035
crossref_primary_10_1021_acs_cgd_3c01432
crossref_primary_10_1039_D0TA00978D
crossref_primary_10_1016_j_joule_2022_10_007
crossref_primary_10_1039_D1SE00188D
crossref_primary_10_1002_solr_202100864
crossref_primary_10_1021_acsaem_9b00856
crossref_primary_10_1021_acs_jpclett_2c00089
crossref_primary_10_1039_D1TC05445G
crossref_primary_10_1002_aenm_201904001
crossref_primary_10_1002_solr_202300930
crossref_primary_10_1021_acsaem_1c03040
crossref_primary_10_1007_s43630_021_00023_z
crossref_primary_10_1051_epjap_2023230023
crossref_primary_10_1016_j_jallcom_2023_172841
crossref_primary_10_1002_solr_202000060
crossref_primary_10_1002_adma_202107739
crossref_primary_10_1016_j_solener_2020_05_095
crossref_primary_10_1002_aenm_202102730
crossref_primary_10_1016_j_solener_2022_07_049
crossref_primary_10_1002_adma_201900428
crossref_primary_10_1002_adom_202100355
crossref_primary_10_1002_aenm_201801637
crossref_primary_10_1016_j_solener_2021_11_029
crossref_primary_10_1007_s10854_019_02438_y
crossref_primary_10_1002_aenm_202101420
crossref_primary_10_1016_j_solener_2020_03_038
crossref_primary_10_1038_s41928_021_00644_3
crossref_primary_10_1002_solr_202000098
crossref_primary_10_1002_adma_202108616
crossref_primary_10_1063_5_0147435
crossref_primary_10_1088_1742_6596_2751_1_012027
crossref_primary_10_1088_2053_1591_ad495b
crossref_primary_10_1002_admi_202200912
crossref_primary_10_1016_j_device_2023_100221
crossref_primary_10_1039_C9CP05381F
crossref_primary_10_1016_j_nanoen_2019_104321
crossref_primary_10_3390_coatings13111885
crossref_primary_10_3390_polym15224387
crossref_primary_10_1002_adfm_202212606
crossref_primary_10_1063_5_0011735
crossref_primary_10_1039_C9EE03736E
crossref_primary_10_1088_1361_6463_ac2d63
crossref_primary_10_1016_j_joule_2021_02_012
crossref_primary_10_1002_ange_201915422
Cites_doi 10.1109/T-ED.1977.18747
10.1039/C4EE02465F
10.1039/C6EE01729K
10.1063/1.333038
10.1021/nl501838y
10.1063/1.4922150
10.1002/ange.201409740
10.1126/sciadv.1602164
10.1126/science.1243982
10.1021/acs.jpclett.5b00199
10.1039/C6EE01889K
10.1021/acs.jpclett.5b00182
10.1039/C5RA16669A
10.1038/ncomms4461
10.1002/pip.2855
10.1126/science.1243167
10.1021/ja512833n
10.1021/jacs.6b06320
10.1142/p276
10.1002/adfm.201602519
10.1021/acs.nanolett.5b01917
10.1126/science.aaa0472
10.1021/acs.accounts.5b00411
10.1063/1.1889240
10.1063/1.2821368
10.1021/acs.jpclett.6b01951
10.1038/ncomms11683
10.1039/C4TA05033A
10.1021/jz500113x
10.1039/C5EE01265A
10.1103/PhysRevB.4.502
10.1002/aenm.201602432
10.1021/nn502115k
10.1002/adfm.200500396
10.1021/nn406020d
10.1063/1.2133906
10.1039/C4EE03664F
10.1063/1.4864778
10.1038/ncomms13831
10.1038/ncomms8497
10.1002/adma.201405372
10.1007/978-3-7091-8752-4
10.1002/adma.201305172
10.1039/C6EE02100J
10.1126/science.aaa5333
10.1038/nphoton.2013.341
10.1039/C5CP07117H
10.1063/1.89396
10.1021/acsenergylett.6b00719
10.1002/adma.201000883
10.1038/nature12509
10.1103/PhysRevB.89.155204
10.1016/j.orgel.2015.09.023
10.1002/aenm.201400812
10.1103/PhysRevB.72.085205
10.1021/acs.jpclett.7b00055
10.1021/ja809598r
10.1063/1.321593
10.1039/C6EE00413J
10.1021/acs.accounts.5b00420
10.1039/C5EE02740C
10.1038/ncomms10334
10.1103/PhysRevLett.112.156103
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright © 2017 American Chemical Society 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsenergylett.7b00236
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 1222
ExternalDocumentID 10_1021_acsenergylett_7b00236
28540366
b83135716
Genre Journal Article
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
ABQRX
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a519t-7bb4c1c8d3ee9815bd0b4aa223925f8bd48a7784b42c1a211bc1cb4af82d0d903
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Tue Sep 17 21:18:02 EDT 2024
Fri Aug 16 22:24:27 EDT 2024
Fri Aug 23 00:52:08 EDT 2024
Sat Sep 28 08:29:20 EDT 2024
Thu Aug 27 13:42:31 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a519t-7bb4c1c8d3ee9815bd0b4aa223925f8bd48a7784b42c1a211bc1cb4af82d0d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9784-6253
0000-0002-6558-5295
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5438194
PMID 28540366
PQID 1902480003
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438194
proquest_miscellaneous_1902480003
crossref_primary_10_1021_acsenergylett_7b00236
pubmed_primary_28540366
acs_journals_10_1021_acsenergylett_7b00236
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
PublicationCentury 2000
PublicationDate 2017-05-12
PublicationDateYYYYMMDD 2017-05-12
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
Nelson J. (ref26/cit26) 2003
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
Selberherr S. (ref37/cit37) 1984
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1109/T-ED.1977.18747
– ident: ref61/cit61
  doi: 10.1039/C4EE02465F
– ident: ref44/cit44
  doi: 10.1039/C6EE01729K
– ident: ref32/cit32
  doi: 10.1063/1.333038
– ident: ref19/cit19
  doi: 10.1021/nl501838y
– ident: ref10/cit10
  doi: 10.1063/1.4922150
– ident: ref35/cit35
  doi: 10.1002/ange.201409740
– ident: ref50/cit50
  doi: 10.1126/sciadv.1602164
– ident: ref3/cit3
  doi: 10.1126/science.1243982
– ident: ref46/cit46
  doi: 10.1021/acs.jpclett.5b00199
– ident: ref20/cit20
  doi: 10.1039/C6EE01889K
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.5b00182
– ident: ref17/cit17
  doi: 10.1039/C5RA16669A
– ident: ref4/cit4
  doi: 10.1038/ncomms4461
– ident: ref1/cit1
  doi: 10.1002/pip.2855
– ident: ref51/cit51
  doi: 10.1126/science.1243167
– ident: ref18/cit18
  doi: 10.1021/ja512833n
– ident: ref22/cit22
  doi: 10.1021/jacs.6b06320
– volume-title: The Physics of Solar Cells
  year: 2003
  ident: ref26/cit26
  doi: 10.1142/p276
  contributor:
    fullname: Nelson J.
– ident: ref47/cit47
  doi: 10.1002/adfm.201602519
– ident: ref24/cit24
  doi: 10.1021/acs.nanolett.5b01917
– ident: ref8/cit8
  doi: 10.1126/science.aaa0472
– ident: ref13/cit13
  doi: 10.1021/acs.accounts.5b00411
– ident: ref56/cit56
  doi: 10.1063/1.1889240
– ident: ref57/cit57
  doi: 10.1063/1.2821368
– ident: ref25/cit25
  doi: 10.1021/acs.jpclett.6b01951
– ident: ref53/cit53
– ident: ref45/cit45
  doi: 10.1038/ncomms11683
– ident: ref34/cit34
  doi: 10.1039/C4TA05033A
– ident: ref59/cit59
  doi: 10.1021/jz500113x
– ident: ref39/cit39
  doi: 10.1039/C5EE01265A
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.4.502
– ident: ref15/cit15
  doi: 10.1002/aenm.201602432
– ident: ref43/cit43
  doi: 10.1021/nn502115k
– ident: ref27/cit27
  doi: 10.1002/adfm.200500396
– ident: ref7/cit7
  doi: 10.1021/nn406020d
– ident: ref30/cit30
  doi: 10.1063/1.2133906
– ident: ref60/cit60
  doi: 10.1039/C4EE03664F
– ident: ref36/cit36
  doi: 10.1063/1.4864778
– ident: ref64/cit64
  doi: 10.1038/ncomms13831
– ident: ref38/cit38
  doi: 10.1038/ncomms8497
– ident: ref12/cit12
  doi: 10.1002/adma.201405372
– volume-title: Analysis and Simulation of Semiconductor Devices
  year: 1984
  ident: ref37/cit37
  doi: 10.1007/978-3-7091-8752-4
  contributor:
    fullname: Selberherr S.
– ident: ref11/cit11
  doi: 10.1002/adma.201305172
– ident: ref9/cit9
  doi: 10.1039/C6EE02100J
– ident: ref23/cit23
  doi: 10.1126/science.aaa5333
– ident: ref6/cit6
  doi: 10.1038/nphoton.2013.341
– ident: ref49/cit49
  doi: 10.1039/C5CP07117H
– ident: ref29/cit29
  doi: 10.1063/1.89396
– ident: ref58/cit58
  doi: 10.1021/acsenergylett.6b00719
– ident: ref52/cit52
  doi: 10.1002/adma.201000883
– ident: ref5/cit5
  doi: 10.1038/nature12509
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.89.155204
– ident: ref55/cit55
  doi: 10.1016/j.orgel.2015.09.023
– ident: ref14/cit14
  doi: 10.1002/aenm.201400812
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.72.085205
– ident: ref48/cit48
  doi: 10.1021/acs.jpclett.7b00055
– ident: ref2/cit2
  doi: 10.1021/ja809598r
– ident: ref31/cit31
  doi: 10.1063/1.321593
– ident: ref16/cit16
  doi: 10.1039/C6EE00413J
– ident: ref40/cit40
  doi: 10.1021/acs.accounts.5b00420
– ident: ref62/cit62
  doi: 10.1039/C5EE02740C
– ident: ref63/cit63
  doi: 10.1038/ncomms10334
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.112.156103
SSID ssj0001685858
Score 2.6149697
Snippet Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in...
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1214
SubjectTerms Letter
Title Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions
URI http://dx.doi.org/10.1021/acsenergylett.7b00236
https://www.ncbi.nlm.nih.gov/pubmed/28540366
https://search.proquest.com/docview/1902480003
https://pubmed.ncbi.nlm.nih.gov/PMC5438194
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RuNADFGhhoUWu1BMii5M4a4dbu0ApUhHSgsQt8iuwArKIZDn013fGu0tZEIJe40dke6z5xjPzDcA3iUrCdtI4QmXqIhQKHmmbu4hrbmzOuc1C1vvv487hmTg6z85nYOcFD34S72hb-5AGh-to2jJomc47mEskXhDCQt3ev0eVwKYeqtClikfkI5pk7bw0E2klW09rpWdQ82nE5CMVdLAIJ5NEnlHkyVV72Ji2_fOc1_Gtq_sAC2M4yr6P5GcJZny1DO8fkRSuwBVZqDdoQIczZP2Knfi7wX1Nz76sR5Yx6_rr63qX9foXFUUekSCxQcl-UvkJ9iMUbiKLfJuF98dSYzPqyFv8oCvH9jyFlLBfKP8f4exg_7R7GI1LNEQaoV8TSWOEja1yqfe5ijPjuBFaI-bIk6xUxgmlpVTCiMTGGo1Ng72xR6kSx13O008wWw0qvwbMGaulQsSnhRAmTU1u4kx7ZUqJNqNMW7CFm1WMr1hdBO95EhdTO1iMd7AF7cl5Frcj2o7XBnydnHqBF4y8JrrygyH-JyfaN7IdW7A6koKHKSn9FCEAjpZT8vHQgci7p1uq_mUg8c6IWy0X6_-zqg2YTwhVEHls8hlmm7uh_4KYqDGb4R78BfsWC8I
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ98OqDLaUYqaeqWZzEWTu9tUvp0gKqtKByi_xKWQFZRLI99Nd3xvuApaoqrn4ltmc039gznwHeSjQStpPGERpTF6FQ8Ejb3EVcc2Nzzm0Wst6Pjju9U_H1LDtbgM40FwZ_osaR6nCJf8suEO9imQ_ZcDidpi2Dsek8gqVMotEkSNTt356tBFL18BhdqnhEV0XT5J1_jUTGydbzxukvxHk_cPKOJdpfgR-zOYQAlIv2qDFt-_sevePDJ7kKyxNwyj6OpWkNFny1Dk_vUBY-gwvyV6_QnQ47ygYV--5vhr9qOgRmffKTWddfXtYfWH_ws6I4JBIrNizZF3qMgn0KzziRf_6ehdPIUmM1WsxrLNCVY3ueAkzYAWrDczjd_3zS7UWTBxsijUCwiaQxwsZWudT7XMWZcdwIrRGB5ElWKuOE0lIqYURiY42up8HW2KJUieMu5-kLWKyGld8A5ozVUiH-00IIk6YmN3GmvTKlRA9Spi14h4tVTBSuLsJdehIXcytYTFawBe3pthbXYxKP_3XYmW5-gepGdyi68sMRficnEjjyJFvwciwMsyEpGRUBAfaWc2Iya0BU3vM11eA8UHpnxLSWi1cPmdU2PO6dHB0WhwfH3zbhSUJ4g2hlk9ew2NyM_Baipca8CarxB_GrFCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkRAcyhvSFlgkTgiHtb3Orrm1KaHlUVUKlSr1YO3LbdTiRLXTQ399ZzZOaIoQguu-7Nmd0czszHwL8FaikrC9NI5QmboImYJH2uYu4pobm3Nus1D1_n2vt3Mgvhxmh21WJdXC4E_UuFIdgvgk1RNXtggD8Qds96EiDklqujIonN5tuJPJOIRoN_vDX_crAVg9PEiXKh5RuGhewPOnlUhB2XpZQf1mdd5MnrymjQYP4GhBR0hCOe1OG9O1lzcgHv-P0Iew2hqpbHPGVY_glq8ew_1r0IVP4JT81p_oVoeTZaOK7fvz8UVNl8FsSP4y6_uzs_ojG46OK8pHIvZi45J9pkcp2FZ4zon89Pcs3EqWGrtRc06wQVeObXtKNGG7KBVP4WDw6Ud_J2ofbog0GoRNJI0RNrbKpd7nKs6M40ZojZZInmSlMk4oLaUSRiQ21uiCGhyNI0qVOO5ynj6DlWpc-RfAnLFaKrQDtRDCpKnJTZxpr0wp0ZOUaQfe4WYVreDVRYipJ3GxtINFu4Md6M6PtpjMwDz-NuHNnAEKFDuKpejKj6f4nZzA4Mij7MDzGUMslqSiVDQMcLZcYpXFAIL0Xu6pRicB2jsjxLVcrP0LVa_h7v72oPi2u_d1He4lZHYQumyyASvN-dS_RKOpMa-CdFwBjewWoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recombination+in+Perovskite+Solar+Cells%3A+Significance+of+Grain+Boundaries%2C+Interface+Traps%2C+and+Defect+Ions&rft.jtitle=ACS+energy+letters&rft.au=Sherkar%2C+Tejas+S.&rft.au=Momblona%2C+Cristina&rft.au=Gil-Escrig%2C+Lid%C3%B3n&rft.au=%C3%81vila%2C+Jorge&rft.date=2017-05-12&rft.pub=American+Chemical+Society&rft.eissn=2380-8195&rft.volume=2&rft.issue=5&rft.spage=1214&rft.epage=1222&rft_id=info:doi/10.1021%2Facsenergylett.7b00236&rft_id=info%3Apmid%2F28540366&rft.externalDBID=PMC5438194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon