Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2‑Phenylpyridine Ligands
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on...
Saved in:
Published in | Organometallics Vol. 34; no. 11; pp. 2683 - 2694 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
08.06.2015
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. |
---|---|
AbstractList | We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(eta(5)-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(eta(5)-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(eta(5)-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected piano-stool configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 mu M, with the most potent complex, [(eta(5)-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 mu M), being 10x more active than the parent, [(eta(5)-Cp*)Ir(2-phenylpyridine)Cl], and 2x more active than [(eta(5)-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(eta(5)-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(eta(5)-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η 5 -Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH 2 OH, −CH 3 ) or electron-withdrawing (−F, −CHO, −NO 2 ) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η 5 -Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] ( 1 ) and [(η 5 -Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] ( 2 ) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD + . Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC 50 values ranging from 1 to 89 μM, with the most potent complex, [(η 5 -Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] ( 13 ) (A2780 IC 50 = 1.18 μM), being 10× more active than the parent, [(η 5 -Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η 5 -Cp xPh )Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η 5 -Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] ( 2 ) and [(η 5 -Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] ( 4 ) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η -Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH OH, -CH ) or electron-withdrawing (-F, -CHO, -NO ) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η -Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] ( ) and [(η -Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] ( ) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD . Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC values ranging from 1 to 89 μM, with the most potent complex, [(η -Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] ( ) (A2780 IC = 1.18 μM), being 10× more active than the parent, [(η -Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η -Cp )Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η -Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] ( ) and [(η -Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] ( ) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems. |
Author | Romero-Canelón, Isolda Habtemariam, Abraha Clarkson, Guy J Sadler, Peter J Millett, Adam J |
AuthorAffiliation | Department of Chemistry University of Warwick |
AuthorAffiliation_xml | – name: University of Warwick – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Adam J surname: Millett fullname: Millett, Adam J – sequence: 2 givenname: Abraha surname: Habtemariam fullname: Habtemariam, Abraha – sequence: 3 givenname: Isolda surname: Romero-Canelón fullname: Romero-Canelón, Isolda – sequence: 4 givenname: Guy J surname: Clarkson fullname: Clarkson, Guy J – sequence: 5 givenname: Peter J surname: Sadler fullname: Sadler, Peter J email: P.J.Sadler@warwick.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26146437$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktFu0zAUhi00xLrBI4ByOYRSbMdxEiEhlYyxSJVAAq4txzlpPSV2sZOOXo1X4BV5EhxaKuBmXNnS-b__HB__Z-jEWAMIPSV4TjAlL6Xyc-tW0tgehnlaY4yL7AGakZTimGNGTtAM04zHWZIkp-jM-5sg4VlCH6FTygnjLMlm6K60ZnDSD9qsooUZtJJGgYsWatBbPewi20bXsmvjj9I0t1qto8rpRo_9RVVVz6PS9psOvoKP3oB0k8fVaAJqjey6XXSpt-A8RPTHt-8f1mB23WY34QaipQ6zN_4xetjKzsOTw3mOPl-9_VRex8v376pysYxlSoohJlhRRWQrORQkJ0BIQ1vOWJNjqDOs0iJPaJZhCoQ2lGc457VqC1CMMJpmaXKOXu99N2PdQ6NgenUnNk730u2ElVr8XTF6LVZ2KxjLKUkmg4uDgbNfRvCD6LVX0HXSgB29IDnlnBaEFUH67M9exya_tx4EL_aCW6ht65WGsPOjLHxTkvKckTzcfo2e_7-61IOc1l_a0QwBTfeoctZ7B-0RI1hMMRIhRuIYI3GIUeBe_cOpg2_Yje7upcmenso3dnQhDP4e5ieYwOUs |
CitedBy_id | crossref_primary_10_1021_acs_jmedchem_3c00704 crossref_primary_10_1021_acs_organomet_7b00250 crossref_primary_10_1016_j_jinorgbio_2016_09_015 crossref_primary_10_1016_j_jorganchem_2019_120887 crossref_primary_10_1016_j_molstruc_2021_131321 crossref_primary_10_1039_C5DT03037D crossref_primary_10_1016_j_ccr_2017_12_007 crossref_primary_10_3390_ph14070685 crossref_primary_10_1002_chem_201801090 crossref_primary_10_1016_j_ejmech_2015_12_035 crossref_primary_10_1002_slct_202203615 crossref_primary_10_1002_zaac_201600260 crossref_primary_10_1016_j_jinorgbio_2024_112586 crossref_primary_10_1002_aoc_5171 crossref_primary_10_1021_acschembio_7b00090 crossref_primary_10_1039_D3DT01696J crossref_primary_10_1039_C8NJ03360A crossref_primary_10_1021_acs_jmedchem_4c00406 crossref_primary_10_1016_j_ejmech_2020_112192 crossref_primary_10_1039_C8DT01858H crossref_primary_10_1002_zaac_202200382 crossref_primary_10_3389_fphar_2022_1025544 crossref_primary_10_1039_D0DT02408B crossref_primary_10_1016_j_molstruc_2016_01_070 crossref_primary_10_1021_acs_inorgchem_3c03801 crossref_primary_10_1002_aoc_3610 crossref_primary_10_1021_acs_jmedchem_6b00917 crossref_primary_10_1039_D0DT03414B crossref_primary_10_1021_acs_inorgchem_5b02697 crossref_primary_10_1002_ejic_201601129 crossref_primary_10_1021_acs_chemrev_8b00493 crossref_primary_10_1021_acs_organomet_4c00284 crossref_primary_10_1039_C7DT00575J crossref_primary_10_3389_fchem_2022_906954 crossref_primary_10_1016_j_molstruc_2018_09_070 crossref_primary_10_1039_C7AN00075H crossref_primary_10_3390_molecules25194540 crossref_primary_10_1016_j_bioorg_2025_108319 crossref_primary_10_1039_D0QI00538J crossref_primary_10_1016_j_jinorgbio_2019_01_011 crossref_primary_10_1016_j_jorganchem_2017_09_028 crossref_primary_10_1021_acs_chemrev_6b00168 crossref_primary_10_1021_acs_inorgchem_7b01693 crossref_primary_10_1246_cl_190179 crossref_primary_10_2174_1871520622666220331085144 crossref_primary_10_1016_j_dyepig_2018_11_009 crossref_primary_10_1039_D4DT03219E crossref_primary_10_1021_acs_inorgchem_9b02227 crossref_primary_10_1039_D0SC00897D crossref_primary_10_1039_C7NJ02224G crossref_primary_10_1039_C9DT04581C crossref_primary_10_1016_j_ica_2019_119265 crossref_primary_10_1021_acs_organomet_8b00415 crossref_primary_10_1016_j_jinorgbio_2017_02_017 crossref_primary_10_1002_asia_201501048 crossref_primary_10_1002_slct_201600882 crossref_primary_10_1016_j_jorganchem_2017_06_027 crossref_primary_10_1021_acs_inorgchem_2c03015 crossref_primary_10_1039_C8DT00438B crossref_primary_10_1039_D4QI02472A crossref_primary_10_3390_pharmaceutics15122750 crossref_primary_10_1021_acs_inorgchem_6b02488 crossref_primary_10_1016_j_ccr_2023_215462 crossref_primary_10_1002_ejic_201700704 crossref_primary_10_1002_chem_201701714 crossref_primary_10_1021_acs_jmedchem_3c01276 crossref_primary_10_1021_acs_organomet_1c00462 crossref_primary_10_1021_acs_jmedchem_8b00906 crossref_primary_10_1002_ejoc_201800135 crossref_primary_10_1021_acs_inorgchem_9b02402 crossref_primary_10_1155_2020_8890950 crossref_primary_10_1016_j_jorganchem_2017_03_038 crossref_primary_10_1007_s10904_018_0957_x crossref_primary_10_2139_ssrn_4184524 crossref_primary_10_1016_j_poly_2023_116540 crossref_primary_10_3390_v13060980 crossref_primary_10_1002_anie_201911510 crossref_primary_10_1016_j_jinorgbio_2024_112792 crossref_primary_10_1016_j_ccr_2018_01_010 crossref_primary_10_1039_C8OB00723C crossref_primary_10_1002_ajoc_202300384 crossref_primary_10_1021_acs_organomet_6b00580 crossref_primary_10_1021_acs_jmedchem_5b01194 crossref_primary_10_1016_j_inoche_2020_108364 crossref_primary_10_1016_j_jorganchem_2016_08_005 crossref_primary_10_1080_00958972_2020_1753037 crossref_primary_10_1007_s13738_022_02569_w crossref_primary_10_1039_C8AN02094A crossref_primary_10_1016_j_ejmech_2017_09_007 crossref_primary_10_1021_jacs_6b03246 crossref_primary_10_1016_j_jinorgbio_2015_10_008 crossref_primary_10_1016_j_jorganchem_2016_08_004 crossref_primary_10_1002_ange_201911510 crossref_primary_10_1016_j_jorganchem_2016_10_018 crossref_primary_10_1021_acs_biomac_7b00445 crossref_primary_10_1039_C6DT04341K crossref_primary_10_1039_C6NJ02153K crossref_primary_10_1002_aoc_4476 crossref_primary_10_1021_acs_jmedchem_9b02000 crossref_primary_10_1002_aoc_4633 crossref_primary_10_1002_ejic_201601216 crossref_primary_10_1016_j_jinorgbio_2023_112393 crossref_primary_10_1021_acs_inorgchem_9b03006 crossref_primary_10_1002_cbic_202000511 crossref_primary_10_1021_acs_organomet_7b00742 crossref_primary_10_1016_j_jinorgbio_2022_112010 crossref_primary_10_1002_chem_201700717 crossref_primary_10_1016_j_jinorgbio_2016_06_017 |
Cites_doi | 10.2174/156802611794785226 10.1021/jm3017442 10.1006/jmra.1995.1047 10.1016/j.jorganchem.2013.01.009 10.1039/b820839e 10.1021/om201177y 10.1016/j.biomaterials.2014.10.070 10.1128/AAC.42.2.389 10.1039/c2sc20220d 10.1002/ejic.201300600 10.1016/j.biochi.2009.03.017 10.1021/om2005468 10.1089/ars.2007.1672 10.1039/C4QI00098F 10.1021/ic400835n 10.1002/cmdc.201300479 10.1063/1.448799 10.1021/ol2005424 10.1021/ja207785f 10.1021/jm2000932 10.1021/ic401529u 10.1038/377649a0 10.1021/om300373t 10.1002/anie.201404686 10.1038/194178b0 10.1007/s00775-012-0883-2 10.1021/ic201860s 10.1021/ic00105a048 10.1021/ml3002852 10.1021/ic200607j 10.1039/C4MT00112E 10.1039/c2dt32104a 10.1039/c003085f 10.1002/anie.201311161 10.1107/S0108767390000277 10.1039/C4CC09251A 10.1021/jm901556u 10.1002/ange.200602873 10.1021/om500644f 10.1007/s00775-009-0615-4 10.1002/anie.201300747 10.1021/ic302219v 10.1021/jm9000133 10.1093/bioinformatics/btl079 10.1016/S0010-8545(99)90232-1 10.1021/ar500310z 10.1021/ic201388n 10.1039/c2dt31654d 10.1016/0006-3002(59)90176-3 10.1021/om800207t 10.1021/ar400266c 10.1063/1.438980 10.1021/ja00840a034 10.3390/molecules19056031 10.1002/chem.201203712 10.1002/anie.201108175 10.1021/jm500455p 10.1039/c3sc22294b 10.1039/c1dt10522a 10.1039/C3MT00341H 10.1063/1.478522 10.1039/C4DT01033G 10.1021/om9000742 10.1073/pnas.0800076105 10.1021/cb400070a 10.1002/anie.200602873 10.1039/c4cc09251a 10.1039/c4dt01033g 10.1039/c4mt00112e 10.1039/c4qi00098f 10.1107/S2053229614024218 10.1039/c3mt00341h |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society Copyright © 2015 American Chemical Society 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society – notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society |
DBID | N~. AAYXX CITATION 17B 1KM BLEPL DTL EGQ GVOUP NPM 7X8 5PM |
DOI | 10.1021/acs.organomet.5b00097 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2015 PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic |
DatabaseTitleList | Web of Science MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6041 |
EndPage | 2694 |
ExternalDocumentID | PMC4482135 26146437 000356841800075 10_1021_acs_organomet_5b00097 c163009084 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC) grantid: EP/F034210/1 – fundername: ERC; European Research Council (ERC); European Commission grantid: 247450 – fundername: Science City (AWM/ERDF); European Commission – fundername: European Research Council grantid: 247450 |
GroupedDBID | 123 55A 7~N AABXI ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ LG6 N~. P2P ROL TN5 TWZ UI2 VF5 VG9 VQA W1F X XFK XKZ YNT YZZ -DZ -~X 4.4 5VS 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK XSW 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 5PM |
ID | FETCH-LOGICAL-a519t-10c2c1afa6e9181e11d2f644d80eb70c598327702e12d267086bcf9ec41425753 |
IEDL.DBID | N~. |
ISICitedReferencesCount | 114 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000356841800075 |
ISSN | 0276-7333 |
IngestDate | Thu Aug 21 18:17:41 EDT 2025 Thu Jul 10 19:30:13 EDT 2025 Mon Jul 21 05:58:41 EDT 2025 Fri Aug 29 16:13:21 EDT 2025 Wed Jul 09 19:53:13 EDT 2025 Tue Jul 01 00:53:46 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 Thu Aug 27 13:51:23 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | LOCALIZATION MOLECULAR CALCULATIONS RHODIUM DNA REACTIVITY DINUCLEAR RUTHENIUM IR WATER EXCHANGE CELLULAR ACCUMULATION |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a519t-10c2c1afa6e9181e11d2f644d80eb70c598327702e12d267086bcf9ec41425753 |
Notes | UKRI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3076-3191 0000-0003-3847-4626 0000-0003-2128-800X |
OpenAccessLink | http://dx.doi.org/10.1021/acs.organomet.5b00097 |
PMID | 26146437 |
PQID | 1826629149 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | webofscience_primary_000356841800075CitationCount pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482135 crossref_primary_10_1021_acs_organomet_5b00097 proquest_miscellaneous_1826629149 acs_journals_10_1021_acs_organomet_5b00097 pubmed_primary_26146437 webofscience_primary_000356841800075 crossref_citationtrail_10_1021_acs_organomet_5b00097 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-08 |
PublicationDateYYYYMMDD | 2015-06-08 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Organometallics |
PublicationTitleAbbrev | ORGANOMETALLICS |
PublicationTitleAlternate | Organometallics |
PublicationYear | 2015 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | Gupta G. (ref3/cit3f) 2014; 19 Steunenberg P. (ref13/cit13) 2012; 51 Meier S. M. (ref28/cit28) 2013; 4 Shaul P. (ref32/cit32b) 2013; 4 Wirth S. (ref6/cit6) 2010; 15 Liu Z. (ref35/cit35a) 2014; 1 Geldmacher Y. (ref11/cit11b) 2012; 17 Lucas S. J. (ref3/cit3e) 2012; 41 Mendoza-Ferri M.-G. (ref31/cit31a) 2008; 27 Ma D.-L. (ref1/cit1f) 2014; 53 Fujita K.-i. (ref24/cit24) 2011; 13 Leung C.-H. (ref3/cit3i) 2015; 51 ref37/cit37 Garbutcheon-Singh K. B. G. M. P. (ref1/cit1a) 2011; 11 Li Y. (ref3/cit3g) 2015; 39 Ludwig G. (ref3/cit3b) 2014; 9 Hearn J. M. (ref3/cit3d) 2013; 8 Tönnemann J. (ref36/cit36) 2013; 2013 Almodares Z. (ref7/cit7) 2014; 53 Hwang T. L. (ref40/cit40) 1995; 112 Takahara P. M. (ref21/cit21a) 1995; 377 Novohradsky V. (ref3/cit3a) 2014; 6 Tripathy S. K. (ref2/cit2a) 2014; 43 Capobianco J. O. (ref32/cit32a) 1998; 42 Liu Z. (ref4/cit4b) 2011; 30 Hartinger C. G. (ref1/cit1c) 2012; 31 Liu H.-K. (ref21/cit21c) 2006; 118 Kerns E. H. (ref29/cit29) 2008 Li L. (ref17/cit17b) 2009; 28 Betanzos-Lara S. (ref23/cit23b) 2012; 31 Dougan S. J. (ref27/cit27) 2008; 105 Furrer M. A. (ref2/cit2c) 2013; 19 Betanzos-Lara S. (ref8/cit8b) 2012; 51 Romero-Canelón I. (ref9/cit9) 2013; 52 Liu Z. (ref35/cit35b) 2014; 47 Liu Z. (ref8/cit8a) 2013; 52 Dadci L. (ref19/cit19) 1995; 34 Ying W. (ref26/cit26) 2007; 10 McLean A. D. (ref14/cit14c) 1980; 72 Lu Y. (ref33/cit33) 2009; 52 Maenaka Y. (ref25/cit25) 2011; 134 Liu Z. (ref5/cit5) 2011; 50 Hay P. J. (ref14/cit14b) 1985; 82 Liu Z. (ref4/cit4a) 2011; 54 Novohradsky V. (ref12/cit12) 2014; 6 Fu Y. (ref23/cit23a) 2012; 3 Hanif M. (ref31/cit31c) 2010; 39 Ruiz J. (ref23/cit23c) 2011; 50 ref39/cit39 Adamo C. (ref14/cit14a) 1999; 110 Payne R. (ref3/cit3c) 2013; 729 Pullman B. (ref22/cit22) 1959; 36 Helm L. (ref20/cit20) 1999; 187 Romero-Canelón I. (ref2/cit2b) 2013; 56 Ruiz J. (ref3/cit3h) 2013; 52 Chow M. J. (ref1/cit1e) 2014; 57 Burgoyne N. J. (ref18/cit18) 2006; 22 Sheldrick G. (ref38/cit38) 1990; 46 Sava G. (ref1/cit1b) 2011; 40 Ruiz J. (ref11/cit11a) 2012; 41 Liu Z. (ref34/cit34) 2014; 33 Liu Z. (ref10/cit10) 2014; 53 ref15/cit15 Park-Gehrke L. S. (ref17/cit17a) 2009 Pizarro A. M. (ref21/cit21b) 2009; 91 van Rijt S. H. (ref31/cit31b) 2009; 53 Hansch C. (ref30/cit30) 1962; 194 Lichter R. L. (ref16/cit16) 1975; 97 Ma D.-L. (ref1/cit1d) 2014; 47 Dougan, SJ (WOS:000258723800010) 2008; 105 Betanzos-Lara, S (WOS:000303954100004) 2012; 31 Ruiz, J (WOS:000314007500053) 2013; 52 Almodares, Z (WOS:000330204000017) 2014; 53 Geldmacher, Y (WOS:000302771600013) 2012; 17 Fu, Y (WOS:000305900700011) 2012; 3 Li, Y (WOS:000347760600011) 2015; 39 Romero-Canelon, I (WOS:000326669200010) 2013; 52 Chow, MJ (WOS:000339540800017) 2014; 57 Kerns, EH (WOS:000311101200044) 2008 Liu, Z (WOS:000289697800035) 2011; 54 Wirth, S (WOS:000275104400013) 2010; 15 Li, L (WOS:000267020700020) 2009; 28 van Rijt, SH (WOS:000273672100029) 2010; 53 Maenaka, Y (WOS:000301084200071) 2012; 134 Liu, HK (WOS:000242929500016) 2006; 45 MCLEAN, AD (WOS:A1980JU69700043) 1980; 72 Frisch, M. J. (000356841800075.11) 2004 HAY, PJ (WOS:A1985ABS5500035) 1985; 82 HWANG, TL (WOS:A1995QG80600024) 1995; 112 Gupta, G (WOS:000337113000036) 2014; 19 Lucas, SJ (WOS:000310371500005) 2012; 41 PULLMAN, B (WOS:A1959WF20100006) 1959; 36 Ma, DL (WOS:000342676100007) 2014; 53 Liu, Z (WOS:000291422100057) 2011; 50 Liu, Z (WOS:000333634800030) 2014; 53 TAKAHARA, PM (WOS:A1995TA27500058) 1995; 377 Ying, WH (WOS:000251947600001) 2008; 10 Shaul, P (WOS:000323593800003) 2013; 4 Romero-Canelon, I (WOS:000315182100054) 2013; 56 Sheldrick, GM (WOS:000347804100002) 2015; 71 Tripathy, SK (WOS:000342965200010) 2014; 43 Meier, SM (WOS:000315597900056) 2013; 4 Ma, DL (WOS:000346683200022) 2014; 47 Capobianco, JO (WOS:000071750300031) 1998; 42 Hearn, JM (WOS:000320979300028) 2013; 8 Hanif, M (WOS:000280527300022) 2010; 39 Park-Gehrke, LS (WOS:000263840500013) 2009 Lu, YX (WOS:000265911800024) 2009; 52 Adamo, C (WOS:000079419000010) 1999; 110 Ruiz, J (WOS:000294699700055) 2011; 50 Steunenberg, P (WOS:000300466300019) 2012; 51 HANSCH, C (WOS:A19628768B00050) 1962; 194 Furrer, MA (WOS:000315142300032) 2013; 19 Novohradsky, V (WOS:000333565800030) 2014; 6 Pizarro, AM (WOS:000270636500002) 2009; 91 DADCI, L (WOS:A1995QC36000048) 1995; 34 Hartinger, CG (WOS:000308263500003) 2012; 31 Fujita, K (WOS:000289956700035) 2011; 13 Liu, Z (WOS:000343026500036) 2014; 33 Tonnemann, J (WOS:000323819900008) 2013; 2013 Burgoyne, NJ (WOS:000238356700008) 2006; 22 LICHTER, RL (WOS:A1975W110700034) 1975; 97 Mendoza-Ferri, MG (WOS:000256232600005) 2008; 27 Liu, Z (WOS:000364543000002) 2014; 1 SHELDRICK, GM (WOS:A1990DJ92700008) 1990; 46 Ludwig, G (WOS:000338991100027) 2014; 9 Garbutcheon-Singh, KB (WOS:000288989800004) 2011; 11 Liu, Z (WOS:000317064600022) 2013; 52 Ruiz, J (WOS:000309545100027) 2012; 41 Novohradsky, V (WOS:000341019600018) 2014; 6 (000356841800075.1) 2007 Liu, Z (WOS:000334658200020) 2014; 47 Helm, L (WOS:000081116300008) 1999; 187 Betanzos-Lara, S (WOS:000302607500025) 2012; 51 Sava, G (WOS:000294475100001) 2011; 40 Leung, CH (WOS:000350212600003) 2015; 51 Liu, Z (WOS:000294647500032) 2011; 30 Payne, R (WOS:000315803600004) 2013; 729 |
References_xml | – volume: 11 start-page: 521 year: 2011 ident: ref1/cit1a publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802611794785226 – volume: 56 start-page: 1291 year: 2013 ident: ref2/cit2b publication-title: J. Med. Chem. doi: 10.1021/jm3017442 – volume: 112 start-page: 275 year: 1995 ident: ref40/cit40 publication-title: J. Magn. Reson. doi: 10.1006/jmra.1995.1047 – volume: 729 start-page: 20 year: 2013 ident: ref3/cit3c publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2013.01.009 – start-page: 1972 year: 2009 ident: ref17/cit17a publication-title: Dalton Trans. doi: 10.1039/b820839e – volume: 31 start-page: 3466 year: 2012 ident: ref23/cit23b publication-title: Organometallics doi: 10.1021/om201177y – volume: 39 start-page: 95 year: 2015 ident: ref3/cit3g publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.070 – volume: 42 start-page: 389 year: 1998 ident: ref32/cit32a publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.42.2.389 – volume: 3 start-page: 2485 year: 2012 ident: ref23/cit23a publication-title: Chem. Sci. doi: 10.1039/c2sc20220d – volume: 2013 start-page: 4558 year: 2013 ident: ref36/cit36 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300600 – volume: 91 start-page: 1198 year: 2009 ident: ref21/cit21b publication-title: Biochimie doi: 10.1016/j.biochi.2009.03.017 – volume: 30 start-page: 4702 year: 2011 ident: ref4/cit4b publication-title: Organometallics doi: 10.1021/om2005468 – volume: 10 start-page: 179 year: 2007 ident: ref26/cit26 publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2007.1672 – volume: 1 start-page: 668 year: 2014 ident: ref35/cit35a publication-title: Inorg. Chem. Front. doi: 10.1039/C4QI00098F – volume: 52 start-page: 12276 year: 2013 ident: ref9/cit9 publication-title: Inorg. Chem. doi: 10.1021/ic400835n – volume: 9 start-page: 1586 year: 2014 ident: ref3/cit3b publication-title: ChemMedChem doi: 10.1002/cmdc.201300479 – volume: 82 start-page: 270 year: 1985 ident: ref14/cit14b publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 13 start-page: 2278 year: 2011 ident: ref24/cit24 publication-title: Org. Lett. doi: 10.1021/ol2005424 – volume: 134 start-page: 367 year: 2011 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207785f – volume: 54 start-page: 3011 year: 2011 ident: ref4/cit4a publication-title: J. Med. Chem. doi: 10.1021/jm2000932 – volume: 53 start-page: 727 year: 2014 ident: ref7/cit7 publication-title: Inorg. Chem. doi: 10.1021/ic401529u – volume: 377 start-page: 649 year: 1995 ident: ref21/cit21a publication-title: Nature doi: 10.1038/377649a0 – volume: 31 start-page: 5677 year: 2012 ident: ref1/cit1c publication-title: Organometallics doi: 10.1021/om300373t – volume: 53 start-page: 9178 year: 2014 ident: ref1/cit1f publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404686 – volume: 194 start-page: 178 year: 1962 ident: ref30/cit30 publication-title: Nature doi: 10.1038/194178b0 – volume: 17 start-page: 631 year: 2012 ident: ref11/cit11b publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-012-0883-2 – volume: 51 start-page: 2105 year: 2012 ident: ref13/cit13 publication-title: Inorg. Chem. doi: 10.1021/ic201860s – volume: 34 start-page: 306 year: 1995 ident: ref19/cit19 publication-title: Inorg. Chem. doi: 10.1021/ic00105a048 – volume: 4 start-page: 323 year: 2013 ident: ref32/cit32b publication-title: ACS Med. Chem. Lett. doi: 10.1021/ml3002852 – volume: 50 start-page: 5777 year: 2011 ident: ref5/cit5 publication-title: Inorg. Chem. doi: 10.1021/ic200607j – volume: 6 start-page: 1491 year: 2014 ident: ref3/cit3a publication-title: Metallomics doi: 10.1039/C4MT00112E – volume: 41 start-page: 13800 year: 2012 ident: ref3/cit3e publication-title: Dalton Trans. doi: 10.1039/c2dt32104a – volume: 39 start-page: 7345 year: 2010 ident: ref31/cit31c publication-title: Dalton Trans. doi: 10.1039/c003085f – volume: 53 start-page: 3941 year: 2014 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311161 – volume: 46 start-page: 467 year: 1990 ident: ref38/cit38 publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr. doi: 10.1107/S0108767390000277 – volume: 51 start-page: 3973 year: 2015 ident: ref3/cit3i publication-title: Chem. Commun. doi: 10.1039/C4CC09251A – volume: 53 start-page: 840 year: 2009 ident: ref31/cit31b publication-title: J. Med. Chem. doi: 10.1021/jm901556u – volume: 118 start-page: 8333 year: 2006 ident: ref21/cit21c publication-title: Angew. Chem. doi: 10.1002/ange.200602873 – volume: 33 start-page: 5324 year: 2014 ident: ref34/cit34 publication-title: Organometallics doi: 10.1021/om500644f – volume: 15 start-page: 429 year: 2010 ident: ref6/cit6 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-009-0615-4 – ident: ref37/cit37 – volume: 52 start-page: 4194 year: 2013 ident: ref8/cit8a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300747 – volume: 52 start-page: 974 year: 2013 ident: ref3/cit3h publication-title: Inorg. Chem. doi: 10.1021/ic302219v – volume: 52 start-page: 2854 year: 2009 ident: ref33/cit33 publication-title: J. Med. Chem. doi: 10.1021/jm9000133 – volume: 22 start-page: 1335 year: 2006 ident: ref18/cit18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl079 – volume: 187 start-page: 151 year: 1999 ident: ref20/cit20 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(99)90232-1 – volume: 47 start-page: 3614 year: 2014 ident: ref1/cit1d publication-title: Acc. Chem. Res. doi: 10.1021/ar500310z – volume: 50 start-page: 9164 year: 2011 ident: ref23/cit23c publication-title: Inorg. Chem. doi: 10.1021/ic201388n – volume: 41 start-page: 12847 year: 2012 ident: ref11/cit11a publication-title: Dalton Trans. doi: 10.1039/c2dt31654d – volume: 36 start-page: 343 year: 1959 ident: ref22/cit22 publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(59)90176-3 – volume: 27 start-page: 2405 year: 2008 ident: ref31/cit31a publication-title: Organometallics doi: 10.1021/om800207t – volume: 47 start-page: 1174 year: 2014 ident: ref35/cit35b publication-title: Acc. Chem. Res. doi: 10.1021/ar400266c – volume: 72 start-page: 5639 year: 1980 ident: ref14/cit14c publication-title: J. Chem. Phys. doi: 10.1063/1.438980 – volume: 97 start-page: 1808 year: 1975 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00840a034 – volume: 19 start-page: 6031 year: 2014 ident: ref3/cit3f publication-title: Molecules doi: 10.3390/molecules19056031 – volume-title: Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization year: 2008 ident: ref29/cit29 – volume: 19 start-page: 3198 year: 2013 ident: ref2/cit2c publication-title: Chem.—Eur. J. doi: 10.1002/chem.201203712 – volume: 51 start-page: 3897 year: 2012 ident: ref8/cit8b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108175 – volume: 57 start-page: 6043 year: 2014 ident: ref1/cit1e publication-title: J. Med. Chem. doi: 10.1021/jm500455p – ident: ref39/cit39 – volume: 4 start-page: 1837 year: 2013 ident: ref28/cit28 publication-title: Chem. Sci. doi: 10.1039/c3sc22294b – volume: 40 start-page: 9069 year: 2011 ident: ref1/cit1b publication-title: Dalton Trans. doi: 10.1039/c1dt10522a – volume: 6 start-page: 682 year: 2014 ident: ref12/cit12 publication-title: Metallomics doi: 10.1039/C3MT00341H – volume: 110 start-page: 6158 year: 1999 ident: ref14/cit14a publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 43 start-page: 14546 year: 2014 ident: ref2/cit2a publication-title: Dalton Trans. doi: 10.1039/C4DT01033G – volume: 28 start-page: 3492 year: 2009 ident: ref17/cit17b publication-title: Organometallics doi: 10.1021/om9000742 – volume: 105 start-page: 11628 year: 2008 ident: ref27/cit27 publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.0800076105 – ident: ref15/cit15 – volume: 8 start-page: 1335 year: 2013 ident: ref3/cit3d publication-title: ACS Chem. Biol. doi: 10.1021/cb400070a – volume: 97 start-page: 1808 year: 1975 ident: WOS:A1975W110700034 article-title: FLUOROPYRIDINES C-13 CHEMICAL-SHIFTS AND CARBON-FLUORINE COUPLING-CONSTANTS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 194 start-page: 178 year: 1962 ident: WOS:A19628768B00050 article-title: CORRELATION OF BIOLOGICAL ACTIVITY OF PHENOXYACETIC ACIDS WITH HAMMETT SUBSTITUENT CONSTANTS AND PARTITION COEFFICIENTS publication-title: NATURE – start-page: 1 year: 2008 ident: WOS:000311101200044 article-title: Drug-Like Properties: Concepts, Structure Design and Methods publication-title: DRUG-LIKE PROPERTIES: CONCEPTS, STRUCTURE DESIGN AND METHODS – start-page: 1972 year: 2009 ident: WOS:000263840500013 article-title: Synthesis and oxidation of Cp*Ir-III compounds: functionalization of a Cp* methyl group publication-title: DALTON TRANSACTIONS doi: 10.1039/b820839e – volume: 45 start-page: 8153 year: 2006 ident: WOS:000242929500016 article-title: Diversity in guanine-selective DNA binding modes for an organometallic ruthenium arene complex publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200602873 – volume: 91 start-page: 1198 year: 2009 ident: WOS:000270636500002 article-title: Unusual DNA binding modes for metal anticancer complexes publication-title: BIOCHIMIE doi: 10.1016/j.biochi.2009.03.017 – volume: 54 start-page: 3011 year: 2011 ident: WOS:000289697800035 article-title: Organometallic Half-Sandwich Iridium Anticancer Complexes publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm2000932 – volume: 2013 start-page: 4558 year: 2013 ident: WOS:000323819900008 article-title: Efficient and Rapid Synthesis of Chlorido-Bridged Half-Sandwich Complexes of Ruthenium, Rhodium, and Iridium by Microwave Heating publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY doi: 10.1002/ejic.201300600 – volume: 134 start-page: 367 year: 2012 ident: WOS:000301084200071 article-title: Efficient Catalytic Interconversion between NADH and NAD(+) Accompanied by Generation and Consumption of Hydrogen with a Water-Soluble Iridium Complex at Ambient Pressure and Temperature publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja207785f – volume: 52 start-page: 12276 year: 2013 ident: WOS:000326669200010 article-title: Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic400835n – volume: 52 start-page: 4194 year: 2013 ident: WOS:000317064600022 article-title: Reduction of Quinones by NADH Catalyzed by Organoiridium Complexes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201300747 – volume: 50 start-page: 5777 year: 2011 ident: WOS:000291422100057 article-title: Contrasting Reactivity and Cancer Cell Cytotoxicity of Isoelectronic Organometallic Iridium(III) Complexes publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic200607j – volume: 36 start-page: 343 year: 1959 ident: WOS:A1959WF20100006 article-title: THE ELECTRONIC STRUCTURE OF THE PURINE-PYRIMIDINE PAIRS OF DNA publication-title: BIOCHIMICA ET BIOPHYSICA ACTA – volume: 187 start-page: 151 year: 1999 ident: WOS:000081116300008 article-title: Water exchange on metal ions: experiments and simulations publication-title: COORDINATION CHEMISTRY REVIEWS – volume: 41 start-page: 13800 year: 2012 ident: WOS:000310371500005 article-title: Synthesis of iridium and ruthenium complexes with (N,N), (N,O) and (O,O) coordinating bidentate ligands as potential anti-cancer agents publication-title: DALTON TRANSACTIONS doi: 10.1039/c2dt32104a – volume: 51 start-page: 2105 year: 2012 ident: WOS:000300466300019 article-title: Phosphorescence Imaging of Living Cells with Amino Acid-Functionalized Tris(2-phenylpyridine)iridium(III) Complexes publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic201860s – volume: 41 start-page: 12847 year: 2012 ident: WOS:000309545100027 article-title: Novel C,N-chelate rhodium(III) and iridium(III) antitumor complexes incorporating a lipophilic steroidal conjugate and their interaction with DNA publication-title: DALTON TRANSACTIONS doi: 10.1039/c2dt31654d – volume: 4 start-page: 323 year: 2013 ident: WOS:000323593800003 article-title: The Structure of Anthracycline Derivatives Determines Their Subcellular Localization and Cytotoxic Activity publication-title: ACS MEDICINAL CHEMISTRY LETTERS doi: 10.1021/ml3002852 – volume: 27 start-page: 2405 year: 2008 ident: WOS:000256232600005 article-title: Influence of the spacer length on the in vitro anticancer activity of dinuclear ruthenium-arene compounds publication-title: ORGANOMETALLICS doi: 10.1021/om800207t – volume: 112 start-page: 275 year: 1995 ident: WOS:A1995QG80600024 article-title: WATER SUPPRESSION THAT WORKS - EXCITATION SCULPTING USING ARBITRARY WAVE-FORMS AND PULSED-FIELD GRADIENTS publication-title: JOURNAL OF MAGNETIC RESONANCE SERIES A – volume: 28 start-page: 3492 year: 2009 ident: WOS:000267020700020 article-title: C-H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl2](2) (M = Ir, Rh): Regioselectivity, Kinetics, and Mechanism publication-title: ORGANOMETALLICS doi: 10.1021/om9000742 – volume: 50 start-page: 9164 year: 2011 ident: WOS:000294699700055 article-title: A Potent Ruthenium(II) Antitumor Complex Bearing a Lipophilic Levonorgestrel Group publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic201388n – volume: 33 start-page: 5324 year: 2014 ident: WOS:000343026500036 article-title: Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C boolean AND I-Chelated and Pyridine Ligands publication-title: ORGANOMETALLICS doi: 10.1021/om500644f – volume: 47 start-page: 3614 year: 2014 ident: WOS:000346683200022 article-title: Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500310z – volume: 39 start-page: 7345 year: 2010 ident: WOS:000280527300022 article-title: Osmium(II)-versus ruthenium(II)-arene carbohydrate-based anticancer compounds: similarities and differences publication-title: DALTON TRANSACTIONS doi: 10.1039/c003085f – volume: 105 start-page: 11628 year: 2008 ident: WOS:000258723800010 article-title: Catalytic organometallic anticancer complexes publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0800076105 – volume: 51 start-page: 3973 year: 2015 ident: WOS:000350212600003 article-title: A metal-based tumour necrosis factor-alpha converting enzyme inhibitor publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc09251a – volume: 43 start-page: 14546 year: 2014 ident: WOS:000342965200010 article-title: Dinuclear [{(p-cym)RuCl}(2)(mu-phpy)](PF6)(2) and heterodinuclear [(PPY)(2)Ir(mu-phpy)Ru(p-cym)Cl](PF6)(2) complexes: synthesis, structure and anticancer activity publication-title: DALTON TRANSACTIONS doi: 10.1039/c4dt01033g – year: 2007 ident: 000356841800075.1 publication-title: CrysAlis PRO – volume: 110 start-page: 6158 year: 1999 ident: WOS:000079419000010 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 53 start-page: 9178 year: 2014 ident: WOS:000342676100007 article-title: Antagonizing STAT3 Dimerization with a Rhodium(III) Complex publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201404686 – volume: 9 start-page: 1586 year: 2014 ident: WOS:000338991100027 article-title: Anticancer Potential of (Pentamethylcyclopentadienyl)chloridoiridium(III) Complexes Bearing kappa P and kappa P,kappa S-Coordinated Ph2PCH2CH2CH2S(O)(x)Ph (x=0-2) Ligands publication-title: CHEMMEDCHEM doi: 10.1002/cmdc.201300479 – volume: 52 start-page: 2854 year: 2009 ident: WOS:000265911800024 article-title: Halogen Bonding-A Novel Interaction for Rational Drug Design? publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm9000133 – volume: 4 start-page: 1837 year: 2013 ident: WOS:000315597900056 article-title: Novel metal(II) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents publication-title: CHEMICAL SCIENCE doi: 10.1039/c3sc22294b – volume: 17 start-page: 631 year: 2012 ident: WOS:000302771600013 article-title: Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts publication-title: JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY doi: 10.1007/s00775-012-0883-2 – volume: 729 start-page: 20 year: 2013 ident: WOS:000315803600004 article-title: Neutral and cationic multinuclear half-sandwich rhodium and iridium complexes coordinated to poly(propyleneimine) dendritic scaffolds: Synthesis and cytotoxicity publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY doi: 10.1016/j.jorganchem.2013.01.009 – volume: 39 start-page: 95 year: 2015 ident: WOS:000347760600011 article-title: Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents publication-title: BIOMATERIALS doi: 10.1016/j.biomaterials.2014.10.070 – volume: 19 start-page: 3198 year: 2013 ident: WOS:000315142300032 article-title: Synthesis, Characterisation and In Vitro Anticancer Activity of Hexanuclear Thiolato-Bridged Arene Ruthenium Metalla-Prisms publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201203712 – volume: 47 start-page: 1174 year: 2014 ident: WOS:000334658200020 article-title: Organoiridium Complexes: Anticancer Agents and Catalysts publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar400266c – volume: 40 start-page: 9069 year: 2011 ident: WOS:000294475100001 article-title: Metal-based antitumour drugs in the post-genomic era: what comes next? publication-title: DALTON TRANSACTIONS doi: 10.1039/c1dt10522a – volume: 31 start-page: 3466 year: 2012 ident: WOS:000303954100004 article-title: Photoactivatable Organometallic Pyridyl Ruthenium(II) Arene Complexes publication-title: ORGANOMETALLICS doi: 10.1021/om201177y – volume: 53 start-page: 727 year: 2014 ident: WOS:000330204000017 article-title: Rhodium, Iridium, and Ruthenium Half-Sandwich Picolinamide Complexes as Anticancer Agents publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic401529u – volume: 82 start-page: 299 year: 1985 ident: WOS:A1985ABS5500035 article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR K TO AU INCLUDING THE OUTERMOST CORE ORBITALS publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 57 start-page: 6043 year: 2014 ident: WOS:000339540800017 article-title: Discovery and Investigation of Anticancer Ruthenium-Arene Schiff-Base Complexes via Water-Promoted Combinatorial Three-Component Assembly publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm500455p – volume: 22 start-page: 1335 year: 2006 ident: WOS:000238356700008 article-title: Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces publication-title: BIOINFORMATICS doi: 10.1093/bioinformatics/btl079 – volume: 6 start-page: 1491 year: 2014 ident: WOS:000341019600018 article-title: A dual-targeting, apoptosis-inducing organometallic half-sandwich iridium anticancer complex publication-title: METALLOMICS doi: 10.1039/c4mt00112e – volume: 42 start-page: 389 year: 1998 ident: WOS:000071750300031 article-title: Cellular accumulation, localization, and activity of a synthetic cyclopeptamine in fungi publication-title: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY – volume: 34 start-page: 306 year: 1995 ident: WOS:A1995QC36000048 article-title: PI-ARENE AQUA COMPLEXES OF COBALT, RHODIUM, IRIDIUM, AND RUTHENIUM - PREPARATION, STRUCTURE, AND KINETICS OF WATER EXCHANGE AND WATER SUBSTITUTION publication-title: INORGANIC CHEMISTRY – volume: 53 start-page: 840 year: 2010 ident: WOS:000273672100029 article-title: Cytotoxicity, Hydrophobicity, Uptake, and Distribution of Osmium(II) Anticancer Complexes in Ovarian Cancer Cells publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm901556u – volume: 377 start-page: 649 year: 1995 ident: WOS:A1995TA27500058 article-title: CRYSTAL-STRUCTURE OF DOUBLE-STRANDED DNA CONTAINING THE MAJOR ADDUCT OF THE ANTICANCER DRUG CISPLATIN publication-title: NATURE – volume: 30 start-page: 4702 year: 2011 ident: WOS:000294647500032 article-title: Organometallic Iridium(III) Cyclopentadienyl Anticancer Complexes Containing C,N-Chelating Ligands publication-title: ORGANOMETALLICS doi: 10.1021/om2005468 – volume: 72 start-page: 5639 year: 1980 ident: WOS:A1980JU69700043 article-title: CONTRACTED GAUSSIAN-BASIS SETS FOR MOLECULAR CALCULATIONS .1. 2ND ROW ATOMS, Z=11-18 publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 13 start-page: 2278 year: 2011 ident: WOS:000289956700035 article-title: Dehydrogenative Oxidation of Primary and Secondary Alcohols Catalyzed by a Cp*Ir Complex Having a Functional C,N-Chelate Ligand publication-title: ORGANIC LETTERS doi: 10.1021/ol2005424 – volume: 53 start-page: 3941 year: 2014 ident: WOS:000333634800030 article-title: The Potent Oxidant Anticancer Activity of Organoiridium Catalysts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201311161 – volume: 8 start-page: 1335 year: 2013 ident: WOS:000320979300028 article-title: Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis publication-title: ACS CHEMICAL BIOLOGY doi: 10.1021/cb400070a – volume: 51 start-page: 3897 year: 2012 ident: WOS:000302607500025 article-title: Organometallic Ruthenium and Iridium Transfer-Hydrogenation Catalysts Using Coenzyme NADH as a Cofactor publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201108175 – volume: 1 start-page: 668 year: 2014 ident: WOS:000364543000002 article-title: Formation of glutathione sulfenate and sulfinate complexes by an organoiridium(III) anticancer complex publication-title: INORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c4qi00098f – volume: 52 start-page: 974 year: 2013 ident: WOS:000314007500053 article-title: Novel Bis-C,N-Cyclometalated Iridium(III) Thiosemicarbazide Antitumor Complexes: Interactions with Human Serum Albumin and DNA, and Inhibition of Cathepsin B publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic302219v – volume: 31 start-page: 5677 year: 2012 ident: WOS:000308263500003 article-title: Challenges and Opportunities in the Development of Organometallic Anticancer Drugs publication-title: ORGANOMETALLICS doi: 10.1021/om300373t – volume: 3 start-page: 2485 year: 2012 ident: WOS:000305900700011 article-title: The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes publication-title: CHEMICAL SCIENCE doi: 10.1039/c2sc20220d – volume: 10 start-page: 179 year: 2008 ident: WOS:000251947600001 article-title: NAD(+)/ NADH and NADP(+)/NADPH in cellular functions and cell death: Regulation and biological consequences publication-title: ANTIOXIDANTS & REDOX SIGNALING doi: 10.1089/ars.2007.1672 – volume: 46 start-page: 467 year: 1990 ident: WOS:A1990DJ92700008 article-title: PHASE ANNEALING IN SHELX-90 - DIRECT METHODS FOR LARGER STRUCTURES publication-title: ACTA CRYSTALLOGRAPHICA SECTION A – volume: 19 start-page: 6031 year: 2014 ident: WOS:000337113000036 article-title: Exploiting Natural Products to Build Metalla-Assemblies: The Anticancer Activity of Embelin-Derived Rh(III) and Ir(III) Metalla-Rectangles publication-title: MOLECULES doi: 10.3390/molecules19056031 – volume: 71 start-page: 3 year: 2015 ident: WOS:000347804100002 article-title: Crystal structure refinement with SHELXL publication-title: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY doi: 10.1107/S2053229614024218 – volume: 6 start-page: 682 year: 2014 ident: WOS:000333565800030 article-title: Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand publication-title: METALLOMICS doi: 10.1039/c3mt00341h – year: 2004 ident: 000356841800075.11 publication-title: Gaussian 03, Revision D.02 – volume: 15 start-page: 429 year: 2010 ident: WOS:000275104400013 article-title: Rhodium(III) and iridium(III) complexes with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis, structure, and biological activity publication-title: JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY doi: 10.1007/s00775-009-0615-4 – volume: 11 start-page: 521 year: 2011 ident: WOS:000288989800004 article-title: Transition Metal Based Anticancer Drugs publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY – volume: 56 start-page: 1291 year: 2013 ident: WOS:000315182100054 article-title: The Contrasting Activity of Iodido versus Chlorido Ruthenium and Osmium Arene Azo- and Imino-pyridine Anticancer Complexes: Control of Cell Selectivity, Cross-Resistance, p53 Dependence, and Apoptosis Pathway publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm3017442 |
SSID | ssj0006732 |
Score | 2.4888096 |
Snippet | We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type... We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type... We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η... We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η 5... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2683 |
SubjectTerms | Chemistry Chemistry, Inorganic & Nuclear Chemistry, Organic Physical Sciences Science & Technology |
Title | Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2‑Phenylpyridine Ligands |
URI | http://dx.doi.org/10.1021/acs.organomet.5b00097 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000356841800075 https://www.ncbi.nlm.nih.gov/pubmed/26146437 https://www.proquest.com/docview/1826629149 https://pubmed.ncbi.nlm.nih.gov/PMC4482135 |
Volume | 34 |
WOS | 000356841800075 |
WOSCitedRecordID | wos000356841800075 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-N8QAviP-EwWSkPQBSuthJ7OSxFKoWAUIak_YWuY69RsrSqUnF-gJ8Bb4in4Szk0YUmAavic-JfHe-3_nOdwAHgVGI2Uzs81AYH-2x9BPNuS_oLE4UC6XJ7W3k9x_45Dh6exKf7MDhJRF8Rg-lqgeuw9HiTDeD2KECcQ2uM46iZztdfhn0Wy8XriMZulr4tTAMN1d2LpvGmiRVb5ukP3Dm39MlfzNRzhyNb8OtDkeSYcv4O7Cjq7twY7Rp33YPvtq6U0tZ27RmMqzskTVOsyRD1faLIAtDJrI0_pGs8s-FmpPpssiL1dnz6XT6gth9otQXuiavUBfsHGO0gO3BYbkmr106hybsx7fvH-e6Wpfna0teafKuOLXXh-_D8fjNp9HE77ot-BJRXIP7sWKKSiO5TtHsa0pzZhAt5UmgZyJQcYrKL0TANGU54wJ9oZkyqVYRtXofhw9gt1pU-hGQIExMGokIwY6OEJKmiAFoOAsSGYlU5MaDl7jsWactdeYC4Yxm9mHPo6zjkQfRhjuZ6uqW2_YZ5VVkg57svC3ccRXBsw3rM2SVjZvISi9W-HvognGWoi_pwcNWFPop0QGNbOzTA7ElJP0AW757-01VzF0Zb3SMGQ1jDw5-Faee0AV5eRLRxOE6D-i_DBt1K2QrGjSP_2ed9-AmgsHYpcElT2C3Wa70UwRczWwfHY7R0b5TtZ9GXCwl |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5VAuvB8uLzHTAzDj1JIfso8hkEkg7TDTdujNI8sS8TR1OrEzEC7wF_iL_BJWimNIgSm92l5ZXq92v9WudgF2PC0Rs-nQjXyuXbTHwo1VFLmcZmEsmS90bk4j7-1Hg6Pg7XF4vAHR6iwMTqLCkSobxP9VXYDuNtdEOT1VdSe04IBfgasISJiR7G7voNXAEbeNydDjwpf6vr86ufOvYYxlktW6ZfoDbv49a_KcpbJWqX8DPrTfY5NRTjrzOuvIL-dKPV7-g2_C9Qaoku5Ssm7Bhipvw1Zv1R_uDnw1ha1mojJ506Rbmj1xnOCMdOWyIQWZajIQE-0eiDL_VMgxGc6KvJifPh8Ohy-IUUQT9VlV5BUuNjNGH03scmdysiCvbb6IIuzHt-_vx6pcTM4WhrxUZFR8NOeT78JR_81hb-A27RxcgTCxRoUvmaRCi0gliCsUpTnTCMfy2FMZ92SYoHbh3GOKspxFHJ2tTOpEyYAaxRL692CznJbqARDPj3US8ADRlAoQ8yYIMqifebEIeMJz7cBLZF_aLMcqtZF2RlNzseVp2vDUgWD131PZFEY3_TkmF5F1WrKzZWWQiwierYQqxV9lAjOiVNM5Tg99vIgl6Kw6cH8pZO2Q6OEGJrjqAF8Tv_YBUx98_U5ZjG2dcPS8GfVDB3Z-F9SW0EaRozigsQWODtD_eazXcMiUTKi3L8Pnp7A1ONwbpaPh_ruHcA2RZ2hz7uJHsFnP5uoxors6e2KX8k8rE06p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkYALWt7haaQ9AFK6sfNwcixdqgaWaiVYaW-R49g0UtatmlTQC7t_gb-4v4Sxk0aUhxauTmZieeyZbzLjGYT2PCUAs6nQjXymXLDH3I1lFLmM5GEsqM9VYW4jf5hGk-Pg3Ul40mVVmrswMIkaONU2iG9O9aJQXYUBst-Ncz0_lc0gtACBXUXXAJJ4pm3D9Nug18IRs83JwOuCD_u-v7m98zc2xjqJets6_QY5_5w5-Yu1spZpvItudZASD9s9cBtdkfoOujHadHK7i85MCaolr02GMx5q8_ca2CzxULStI_Bc4QmvlPuR6-JLKWY4XZZFuTp9mabpK2xURiW_yhq_gWNheIzBGLb_EKs1PrCZHRLTi_PvRzOp19Vibci1xIflZ3OT-B46Hr_9NJq4XeMFlwOga0A1CyoIVzySCSAASUhBFQCnIvZkzjwRJqAHGPOoJLSgEQO3KBcqkSIgRgWE_n20o-daPkTY82OVBCwA3CMDQKcJwAHi517MA5awQjnoNSx71h2cOrMxcUoyM9jLKOtk5KBgI51MdCXMTSeN6jKyQU-2aGt4XEbwYiP6DERlQihcy_kKpgfeWEQTcCsd9KDdCj1L8EUDEwZ1ENvaJP0LppL39hNdzmxFb_CRKfFDB-39vJ16QhvvjeKAxBbiOYj8y2ujboVMcYPm0f-s83N0_ehgnB2m0_eP0U2AiKFNjoufoJ1muZJPAYY1-TN73n4AEvsx3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrasting+Anticancer+Activity+of+Half-Sandwich+Iridium%28III%29+Complexes+Bearing+Functionally+Diverse+2-Phenylpyridine+Ligands&rft.jtitle=Organometallics&rft.au=Millett%2C+Adam+J&rft.au=Habtemariam%2C+Abraha&rft.au=Romero-Canel%C3%B3n%2C+Isolda&rft.au=Clarkson%2C+Guy+J&rft.date=2015-06-08&rft.issn=0276-7333&rft.volume=34&rft.issue=11&rft.spage=2683&rft_id=info:doi/10.1021%2Facs.organomet.5b00097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0276-7333&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0276-7333&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0276-7333&client=summon |