Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2‑Phenylpyridine Ligands

We report the synthesis, characterization, and antiproliferative activity of 15 iridium­(III) half-sandwich complexes of the type [(η5-Cp*)­Ir­(2-(R′-phenyl)-R-pyridine)­Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on...

Full description

Saved in:
Bibliographic Details
Published inOrganometallics Vol. 34; no. 11; pp. 2683 - 2694
Main Authors Millett, Adam J, Habtemariam, Abraha, Romero-Canelón, Isolda, Clarkson, Guy J, Sadler, Peter J
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 08.06.2015
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the synthesis, characterization, and antiproliferative activity of 15 iridium­(III) half-sandwich complexes of the type [(η5-Cp*)­Ir­(2-(R′-phenyl)-R-pyridine)­Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)­Ir­(2-(2′-fluorophenyl)­pyridine)­Cl] (1) and [(η5-Cp*)­Ir­(2-(4′-fluorophenyl)­pyridine)­Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)­Ir­(2-(2′-methylphenyl)­pyridine)­Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)­Ir­(2-phenylpyridine)­Cl], and 2× more active than [(η5-CpxPh)­Ir­(2-phenylpyridine)­Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)­Ir­(2-(4′-fluorophenyl)­pyridine)­Cl] (2) and [(η5-Cp*)­Ir­(2-phenyl-5-fluoropyridine)­Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
AbstractList We report the synthesis, characterization, and antiproliferative activity of 15 iridium­(III) half-sandwich complexes of the type [(η5-Cp*)­Ir­(2-(R′-phenyl)-R-pyridine)­Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)­Ir­(2-(2′-fluorophenyl)­pyridine)­Cl] (1) and [(η5-Cp*)­Ir­(2-(4′-fluorophenyl)­pyridine)­Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)­Ir­(2-(2′-methylphenyl)­pyridine)­Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)­Ir­(2-phenylpyridine)­Cl], and 2× more active than [(η5-CpxPh)­Ir­(2-phenylpyridine)­Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)­Ir­(2-(4′-fluorophenyl)­pyridine)­Cl] (2) and [(η5-Cp*)­Ir­(2-phenyl-5-fluoropyridine)­Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(eta(5)-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(eta(5)-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(eta(5)-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected piano-stool configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 mu M, with the most potent complex, [(eta(5)-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 mu M), being 10x more active than the parent, [(eta(5)-Cp*)Ir(2-phenylpyridine)Cl], and 2x more active than [(eta(5)-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(eta(5)-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(eta(5)-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η 5 -Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH 2 OH, −CH 3 ) or electron-withdrawing (−F, −CHO, −NO 2 ) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η 5 -Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] ( 1 ) and [(η 5 -Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] ( 2 ) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD + . Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC 50 values ranging from 1 to 89 μM, with the most potent complex, [(η 5 -Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] ( 13 ) (A2780 IC 50 = 1.18 μM), being 10× more active than the parent, [(η 5 -Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η 5 -Cp xPh )Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η 5 -Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] ( 2 ) and [(η 5 -Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] ( 4 ) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH2OH, -CH3) or electron-withdrawing (-F, -CHO, -NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η -Cp*)Ir(2-(R'-phenyl)-R-pyridine)Cl] bearing either an electron-donating (-OH, -CH OH, -CH ) or electron-withdrawing (-F, -CHO, -NO ) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η -Cp*)Ir(2-(2'-fluorophenyl)pyridine)Cl] ( ) and [(η -Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] ( ) exhibit the expected "piano-stool" configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD . Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC values ranging from 1 to 89 μM, with the most potent complex, [(η -Cp*)Ir(2-(2'-methylphenyl)pyridine)Cl] ( ) (A2780 IC = 1.18 μM), being 10× more active than the parent, [(η -Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η -Cp )Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η -Cp*)Ir(2-(4'-fluorophenyl)pyridine)Cl] ( ) and [(η -Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] ( ) preferentially localized in the cytosol > membrane and particulate > nucleus > cytoskeleton. This work highlights the strong dependence of biological behavior on the nature and position of the substituent on the chelating ligand and shows how this class of organometallic anticancer complexes can be fine-tuned to increase their potency without using extended cyclopentadienyl systems.
Author Romero-Canelón, Isolda
Habtemariam, Abraha
Clarkson, Guy J
Sadler, Peter J
Millett, Adam J
AuthorAffiliation Department of Chemistry
University of Warwick
AuthorAffiliation_xml – name: University of Warwick
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Adam J
  surname: Millett
  fullname: Millett, Adam J
– sequence: 2
  givenname: Abraha
  surname: Habtemariam
  fullname: Habtemariam, Abraha
– sequence: 3
  givenname: Isolda
  surname: Romero-Canelón
  fullname: Romero-Canelón, Isolda
– sequence: 4
  givenname: Guy J
  surname: Clarkson
  fullname: Clarkson, Guy J
– sequence: 5
  givenname: Peter J
  surname: Sadler
  fullname: Sadler, Peter J
  email: P.J.Sadler@warwick.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26146437$$D View this record in MEDLINE/PubMed
BookMark eNqNktFu0zAUhi00xLrBI4ByOYRSbMdxEiEhlYyxSJVAAq4txzlpPSV2sZOOXo1X4BV5EhxaKuBmXNnS-b__HB__Z-jEWAMIPSV4TjAlL6Xyc-tW0tgehnlaY4yL7AGakZTimGNGTtAM04zHWZIkp-jM-5sg4VlCH6FTygnjLMlm6K60ZnDSD9qsooUZtJJGgYsWatBbPewi20bXsmvjj9I0t1qto8rpRo_9RVVVz6PS9psOvoKP3oB0k8fVaAJqjey6XXSpt-A8RPTHt-8f1mB23WY34QaipQ6zN_4xetjKzsOTw3mOPl-9_VRex8v376pysYxlSoohJlhRRWQrORQkJ0BIQ1vOWJNjqDOs0iJPaJZhCoQ2lGc457VqC1CMMJpmaXKOXu99N2PdQ6NgenUnNk730u2ElVr8XTF6LVZ2KxjLKUkmg4uDgbNfRvCD6LVX0HXSgB29IDnlnBaEFUH67M9exya_tx4EL_aCW6ht65WGsPOjLHxTkvKckTzcfo2e_7-61IOc1l_a0QwBTfeoctZ7B-0RI1hMMRIhRuIYI3GIUeBe_cOpg2_Yje7upcmenso3dnQhDP4e5ieYwOUs
CitedBy_id crossref_primary_10_1021_acs_jmedchem_3c00704
crossref_primary_10_1021_acs_organomet_7b00250
crossref_primary_10_1016_j_jinorgbio_2016_09_015
crossref_primary_10_1016_j_jorganchem_2019_120887
crossref_primary_10_1016_j_molstruc_2021_131321
crossref_primary_10_1039_C5DT03037D
crossref_primary_10_1016_j_ccr_2017_12_007
crossref_primary_10_3390_ph14070685
crossref_primary_10_1002_chem_201801090
crossref_primary_10_1016_j_ejmech_2015_12_035
crossref_primary_10_1002_slct_202203615
crossref_primary_10_1002_zaac_201600260
crossref_primary_10_1016_j_jinorgbio_2024_112586
crossref_primary_10_1002_aoc_5171
crossref_primary_10_1021_acschembio_7b00090
crossref_primary_10_1039_D3DT01696J
crossref_primary_10_1039_C8NJ03360A
crossref_primary_10_1021_acs_jmedchem_4c00406
crossref_primary_10_1016_j_ejmech_2020_112192
crossref_primary_10_1039_C8DT01858H
crossref_primary_10_1002_zaac_202200382
crossref_primary_10_3389_fphar_2022_1025544
crossref_primary_10_1039_D0DT02408B
crossref_primary_10_1016_j_molstruc_2016_01_070
crossref_primary_10_1021_acs_inorgchem_3c03801
crossref_primary_10_1002_aoc_3610
crossref_primary_10_1021_acs_jmedchem_6b00917
crossref_primary_10_1039_D0DT03414B
crossref_primary_10_1021_acs_inorgchem_5b02697
crossref_primary_10_1002_ejic_201601129
crossref_primary_10_1021_acs_chemrev_8b00493
crossref_primary_10_1021_acs_organomet_4c00284
crossref_primary_10_1039_C7DT00575J
crossref_primary_10_3389_fchem_2022_906954
crossref_primary_10_1016_j_molstruc_2018_09_070
crossref_primary_10_1039_C7AN00075H
crossref_primary_10_3390_molecules25194540
crossref_primary_10_1016_j_bioorg_2025_108319
crossref_primary_10_1039_D0QI00538J
crossref_primary_10_1016_j_jinorgbio_2019_01_011
crossref_primary_10_1016_j_jorganchem_2017_09_028
crossref_primary_10_1021_acs_chemrev_6b00168
crossref_primary_10_1021_acs_inorgchem_7b01693
crossref_primary_10_1246_cl_190179
crossref_primary_10_2174_1871520622666220331085144
crossref_primary_10_1016_j_dyepig_2018_11_009
crossref_primary_10_1039_D4DT03219E
crossref_primary_10_1021_acs_inorgchem_9b02227
crossref_primary_10_1039_D0SC00897D
crossref_primary_10_1039_C7NJ02224G
crossref_primary_10_1039_C9DT04581C
crossref_primary_10_1016_j_ica_2019_119265
crossref_primary_10_1021_acs_organomet_8b00415
crossref_primary_10_1016_j_jinorgbio_2017_02_017
crossref_primary_10_1002_asia_201501048
crossref_primary_10_1002_slct_201600882
crossref_primary_10_1016_j_jorganchem_2017_06_027
crossref_primary_10_1021_acs_inorgchem_2c03015
crossref_primary_10_1039_C8DT00438B
crossref_primary_10_1039_D4QI02472A
crossref_primary_10_3390_pharmaceutics15122750
crossref_primary_10_1021_acs_inorgchem_6b02488
crossref_primary_10_1016_j_ccr_2023_215462
crossref_primary_10_1002_ejic_201700704
crossref_primary_10_1002_chem_201701714
crossref_primary_10_1021_acs_jmedchem_3c01276
crossref_primary_10_1021_acs_organomet_1c00462
crossref_primary_10_1021_acs_jmedchem_8b00906
crossref_primary_10_1002_ejoc_201800135
crossref_primary_10_1021_acs_inorgchem_9b02402
crossref_primary_10_1155_2020_8890950
crossref_primary_10_1016_j_jorganchem_2017_03_038
crossref_primary_10_1007_s10904_018_0957_x
crossref_primary_10_2139_ssrn_4184524
crossref_primary_10_1016_j_poly_2023_116540
crossref_primary_10_3390_v13060980
crossref_primary_10_1002_anie_201911510
crossref_primary_10_1016_j_jinorgbio_2024_112792
crossref_primary_10_1016_j_ccr_2018_01_010
crossref_primary_10_1039_C8OB00723C
crossref_primary_10_1002_ajoc_202300384
crossref_primary_10_1021_acs_organomet_6b00580
crossref_primary_10_1021_acs_jmedchem_5b01194
crossref_primary_10_1016_j_inoche_2020_108364
crossref_primary_10_1016_j_jorganchem_2016_08_005
crossref_primary_10_1080_00958972_2020_1753037
crossref_primary_10_1007_s13738_022_02569_w
crossref_primary_10_1039_C8AN02094A
crossref_primary_10_1016_j_ejmech_2017_09_007
crossref_primary_10_1021_jacs_6b03246
crossref_primary_10_1016_j_jinorgbio_2015_10_008
crossref_primary_10_1016_j_jorganchem_2016_08_004
crossref_primary_10_1002_ange_201911510
crossref_primary_10_1016_j_jorganchem_2016_10_018
crossref_primary_10_1021_acs_biomac_7b00445
crossref_primary_10_1039_C6DT04341K
crossref_primary_10_1039_C6NJ02153K
crossref_primary_10_1002_aoc_4476
crossref_primary_10_1021_acs_jmedchem_9b02000
crossref_primary_10_1002_aoc_4633
crossref_primary_10_1002_ejic_201601216
crossref_primary_10_1016_j_jinorgbio_2023_112393
crossref_primary_10_1021_acs_inorgchem_9b03006
crossref_primary_10_1002_cbic_202000511
crossref_primary_10_1021_acs_organomet_7b00742
crossref_primary_10_1016_j_jinorgbio_2022_112010
crossref_primary_10_1002_chem_201700717
crossref_primary_10_1016_j_jinorgbio_2016_06_017
Cites_doi 10.2174/156802611794785226
10.1021/jm3017442
10.1006/jmra.1995.1047
10.1016/j.jorganchem.2013.01.009
10.1039/b820839e
10.1021/om201177y
10.1016/j.biomaterials.2014.10.070
10.1128/AAC.42.2.389
10.1039/c2sc20220d
10.1002/ejic.201300600
10.1016/j.biochi.2009.03.017
10.1021/om2005468
10.1089/ars.2007.1672
10.1039/C4QI00098F
10.1021/ic400835n
10.1002/cmdc.201300479
10.1063/1.448799
10.1021/ol2005424
10.1021/ja207785f
10.1021/jm2000932
10.1021/ic401529u
10.1038/377649a0
10.1021/om300373t
10.1002/anie.201404686
10.1038/194178b0
10.1007/s00775-012-0883-2
10.1021/ic201860s
10.1021/ic00105a048
10.1021/ml3002852
10.1021/ic200607j
10.1039/C4MT00112E
10.1039/c2dt32104a
10.1039/c003085f
10.1002/anie.201311161
10.1107/S0108767390000277
10.1039/C4CC09251A
10.1021/jm901556u
10.1002/ange.200602873
10.1021/om500644f
10.1007/s00775-009-0615-4
10.1002/anie.201300747
10.1021/ic302219v
10.1021/jm9000133
10.1093/bioinformatics/btl079
10.1016/S0010-8545(99)90232-1
10.1021/ar500310z
10.1021/ic201388n
10.1039/c2dt31654d
10.1016/0006-3002(59)90176-3
10.1021/om800207t
10.1021/ar400266c
10.1063/1.438980
10.1021/ja00840a034
10.3390/molecules19056031
10.1002/chem.201203712
10.1002/anie.201108175
10.1021/jm500455p
10.1039/c3sc22294b
10.1039/c1dt10522a
10.1039/C3MT00341H
10.1063/1.478522
10.1039/C4DT01033G
10.1021/om9000742
10.1073/pnas.0800076105
10.1021/cb400070a
10.1002/anie.200602873
10.1039/c4cc09251a
10.1039/c4dt01033g
10.1039/c4mt00112e
10.1039/c4qi00098f
10.1107/S2053229614024218
10.1039/c3mt00341h
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright © 2015 American Chemical Society 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
– notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society
DBID N~.
AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GVOUP
NPM
7X8
5PM
DOI 10.1021/acs.organomet.5b00097
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2015
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
DatabaseTitleList
Web of Science

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6041
EndPage 2694
ExternalDocumentID PMC4482135
26146437
000356841800075
10_1021_acs_organomet_5b00097
c163009084
Genre Journal Article
GrantInformation_xml – fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC)
  grantid: EP/F034210/1
– fundername: ERC; European Research Council (ERC); European Commission
  grantid: 247450
– fundername: Science City (AWM/ERDF); European Commission
– fundername: European Research Council
  grantid: 247450
GroupedDBID 123
55A
7~N
AABXI
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
LG6
N~.
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
VQA
W1F
X
XFK
XKZ
YNT
YZZ
-DZ
-~X
4.4
5VS
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
XSW
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
5PM
ID FETCH-LOGICAL-a519t-10c2c1afa6e9181e11d2f644d80eb70c598327702e12d267086bcf9ec41425753
IEDL.DBID N~.
ISICitedReferencesCount 114
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000356841800075
ISSN 0276-7333
IngestDate Thu Aug 21 18:17:41 EDT 2025
Thu Jul 10 19:30:13 EDT 2025
Mon Jul 21 05:58:41 EDT 2025
Fri Aug 29 16:13:21 EDT 2025
Wed Jul 09 19:53:13 EDT 2025
Tue Jul 01 00:53:46 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
Thu Aug 27 13:51:23 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords LOCALIZATION
MOLECULAR CALCULATIONS
RHODIUM
DNA
REACTIVITY
DINUCLEAR
RUTHENIUM
IR
WATER EXCHANGE
CELLULAR ACCUMULATION
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a519t-10c2c1afa6e9181e11d2f644d80eb70c598327702e12d267086bcf9ec41425753
Notes UKRI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3076-3191
0000-0003-3847-4626
0000-0003-2128-800X
OpenAccessLink http://dx.doi.org/10.1021/acs.organomet.5b00097
PMID 26146437
PQID 1826629149
PQPubID 23479
PageCount 12
ParticipantIDs webofscience_primary_000356841800075CitationCount
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482135
crossref_primary_10_1021_acs_organomet_5b00097
proquest_miscellaneous_1826629149
acs_journals_10_1021_acs_organomet_5b00097
pubmed_primary_26146437
webofscience_primary_000356841800075
crossref_citationtrail_10_1021_acs_organomet_5b00097
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-08
PublicationDateYYYYMMDD 2015-06-08
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-08
  day: 08
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Organometallics
PublicationTitleAbbrev ORGANOMETALLICS
PublicationTitleAlternate Organometallics
PublicationYear 2015
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References Gupta G. (ref3/cit3f) 2014; 19
Steunenberg P. (ref13/cit13) 2012; 51
Meier S. M. (ref28/cit28) 2013; 4
Shaul P. (ref32/cit32b) 2013; 4
Wirth S. (ref6/cit6) 2010; 15
Liu Z. (ref35/cit35a) 2014; 1
Geldmacher Y. (ref11/cit11b) 2012; 17
Lucas S. J. (ref3/cit3e) 2012; 41
Mendoza-Ferri M.-G. (ref31/cit31a) 2008; 27
Ma D.-L. (ref1/cit1f) 2014; 53
Fujita K.-i. (ref24/cit24) 2011; 13
Leung C.-H. (ref3/cit3i) 2015; 51
ref37/cit37
Garbutcheon-Singh K. B. G. M. P. (ref1/cit1a) 2011; 11
Li Y. (ref3/cit3g) 2015; 39
Ludwig G. (ref3/cit3b) 2014; 9
Hearn J. M. (ref3/cit3d) 2013; 8
Tönnemann J. (ref36/cit36) 2013; 2013
Almodares Z. (ref7/cit7) 2014; 53
Hwang T. L. (ref40/cit40) 1995; 112
Takahara P. M. (ref21/cit21a) 1995; 377
Novohradsky V. (ref3/cit3a) 2014; 6
Tripathy S. K. (ref2/cit2a) 2014; 43
Capobianco J. O. (ref32/cit32a) 1998; 42
Liu Z. (ref4/cit4b) 2011; 30
Hartinger C. G. (ref1/cit1c) 2012; 31
Liu H.-K. (ref21/cit21c) 2006; 118
Kerns E. H. (ref29/cit29) 2008
Li L. (ref17/cit17b) 2009; 28
Betanzos-Lara S. (ref23/cit23b) 2012; 31
Dougan S. J. (ref27/cit27) 2008; 105
Furrer M. A. (ref2/cit2c) 2013; 19
Betanzos-Lara S. (ref8/cit8b) 2012; 51
Romero-Canelón I. (ref9/cit9) 2013; 52
Liu Z. (ref35/cit35b) 2014; 47
Liu Z. (ref8/cit8a) 2013; 52
Dadci L. (ref19/cit19) 1995; 34
Ying W. (ref26/cit26) 2007; 10
McLean A. D. (ref14/cit14c) 1980; 72
Lu Y. (ref33/cit33) 2009; 52
Maenaka Y. (ref25/cit25) 2011; 134
Liu Z. (ref5/cit5) 2011; 50
Hay P. J. (ref14/cit14b) 1985; 82
Liu Z. (ref4/cit4a) 2011; 54
Novohradsky V. (ref12/cit12) 2014; 6
Fu Y. (ref23/cit23a) 2012; 3
Hanif M. (ref31/cit31c) 2010; 39
Ruiz J. (ref23/cit23c) 2011; 50
ref39/cit39
Adamo C. (ref14/cit14a) 1999; 110
Payne R. (ref3/cit3c) 2013; 729
Pullman B. (ref22/cit22) 1959; 36
Helm L. (ref20/cit20) 1999; 187
Romero-Canelón I. (ref2/cit2b) 2013; 56
Ruiz J. (ref3/cit3h) 2013; 52
Chow M. J. (ref1/cit1e) 2014; 57
Burgoyne N. J. (ref18/cit18) 2006; 22
Sheldrick G. (ref38/cit38) 1990; 46
Sava G. (ref1/cit1b) 2011; 40
Ruiz J. (ref11/cit11a) 2012; 41
Liu Z. (ref34/cit34) 2014; 33
Liu Z. (ref10/cit10) 2014; 53
ref15/cit15
Park-Gehrke L. S. (ref17/cit17a) 2009
Pizarro A. M. (ref21/cit21b) 2009; 91
van Rijt S. H. (ref31/cit31b) 2009; 53
Hansch C. (ref30/cit30) 1962; 194
Lichter R. L. (ref16/cit16) 1975; 97
Ma D.-L. (ref1/cit1d) 2014; 47
Dougan, SJ (WOS:000258723800010) 2008; 105
Betanzos-Lara, S (WOS:000303954100004) 2012; 31
Ruiz, J (WOS:000314007500053) 2013; 52
Almodares, Z (WOS:000330204000017) 2014; 53
Geldmacher, Y (WOS:000302771600013) 2012; 17
Fu, Y (WOS:000305900700011) 2012; 3
Li, Y (WOS:000347760600011) 2015; 39
Romero-Canelon, I (WOS:000326669200010) 2013; 52
Chow, MJ (WOS:000339540800017) 2014; 57
Kerns, EH (WOS:000311101200044) 2008
Liu, Z (WOS:000289697800035) 2011; 54
Wirth, S (WOS:000275104400013) 2010; 15
Li, L (WOS:000267020700020) 2009; 28
van Rijt, SH (WOS:000273672100029) 2010; 53
Maenaka, Y (WOS:000301084200071) 2012; 134
Liu, HK (WOS:000242929500016) 2006; 45
MCLEAN, AD (WOS:A1980JU69700043) 1980; 72
Frisch, M. J. (000356841800075.11) 2004
HAY, PJ (WOS:A1985ABS5500035) 1985; 82
HWANG, TL (WOS:A1995QG80600024) 1995; 112
Gupta, G (WOS:000337113000036) 2014; 19
Lucas, SJ (WOS:000310371500005) 2012; 41
PULLMAN, B (WOS:A1959WF20100006) 1959; 36
Ma, DL (WOS:000342676100007) 2014; 53
Liu, Z (WOS:000291422100057) 2011; 50
Liu, Z (WOS:000333634800030) 2014; 53
TAKAHARA, PM (WOS:A1995TA27500058) 1995; 377
Ying, WH (WOS:000251947600001) 2008; 10
Shaul, P (WOS:000323593800003) 2013; 4
Romero-Canelon, I (WOS:000315182100054) 2013; 56
Sheldrick, GM (WOS:000347804100002) 2015; 71
Tripathy, SK (WOS:000342965200010) 2014; 43
Meier, SM (WOS:000315597900056) 2013; 4
Ma, DL (WOS:000346683200022) 2014; 47
Capobianco, JO (WOS:000071750300031) 1998; 42
Hearn, JM (WOS:000320979300028) 2013; 8
Hanif, M (WOS:000280527300022) 2010; 39
Park-Gehrke, LS (WOS:000263840500013) 2009
Lu, YX (WOS:000265911800024) 2009; 52
Adamo, C (WOS:000079419000010) 1999; 110
Ruiz, J (WOS:000294699700055) 2011; 50
Steunenberg, P (WOS:000300466300019) 2012; 51
HANSCH, C (WOS:A19628768B00050) 1962; 194
Furrer, MA (WOS:000315142300032) 2013; 19
Novohradsky, V (WOS:000333565800030) 2014; 6
Pizarro, AM (WOS:000270636500002) 2009; 91
DADCI, L (WOS:A1995QC36000048) 1995; 34
Hartinger, CG (WOS:000308263500003) 2012; 31
Fujita, K (WOS:000289956700035) 2011; 13
Liu, Z (WOS:000343026500036) 2014; 33
Tonnemann, J (WOS:000323819900008) 2013; 2013
Burgoyne, NJ (WOS:000238356700008) 2006; 22
LICHTER, RL (WOS:A1975W110700034) 1975; 97
Mendoza-Ferri, MG (WOS:000256232600005) 2008; 27
Liu, Z (WOS:000364543000002) 2014; 1
SHELDRICK, GM (WOS:A1990DJ92700008) 1990; 46
Ludwig, G (WOS:000338991100027) 2014; 9
Garbutcheon-Singh, KB (WOS:000288989800004) 2011; 11
Liu, Z (WOS:000317064600022) 2013; 52
Ruiz, J (WOS:000309545100027) 2012; 41
Novohradsky, V (WOS:000341019600018) 2014; 6
(000356841800075.1) 2007
Liu, Z (WOS:000334658200020) 2014; 47
Helm, L (WOS:000081116300008) 1999; 187
Betanzos-Lara, S (WOS:000302607500025) 2012; 51
Sava, G (WOS:000294475100001) 2011; 40
Leung, CH (WOS:000350212600003) 2015; 51
Liu, Z (WOS:000294647500032) 2011; 30
Payne, R (WOS:000315803600004) 2013; 729
References_xml – volume: 11
  start-page: 521
  year: 2011
  ident: ref1/cit1a
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802611794785226
– volume: 56
  start-page: 1291
  year: 2013
  ident: ref2/cit2b
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3017442
– volume: 112
  start-page: 275
  year: 1995
  ident: ref40/cit40
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmra.1995.1047
– volume: 729
  start-page: 20
  year: 2013
  ident: ref3/cit3c
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2013.01.009
– start-page: 1972
  year: 2009
  ident: ref17/cit17a
  publication-title: Dalton Trans.
  doi: 10.1039/b820839e
– volume: 31
  start-page: 3466
  year: 2012
  ident: ref23/cit23b
  publication-title: Organometallics
  doi: 10.1021/om201177y
– volume: 39
  start-page: 95
  year: 2015
  ident: ref3/cit3g
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.070
– volume: 42
  start-page: 389
  year: 1998
  ident: ref32/cit32a
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.42.2.389
– volume: 3
  start-page: 2485
  year: 2012
  ident: ref23/cit23a
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20220d
– volume: 2013
  start-page: 4558
  year: 2013
  ident: ref36/cit36
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201300600
– volume: 91
  start-page: 1198
  year: 2009
  ident: ref21/cit21b
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2009.03.017
– volume: 30
  start-page: 4702
  year: 2011
  ident: ref4/cit4b
  publication-title: Organometallics
  doi: 10.1021/om2005468
– volume: 10
  start-page: 179
  year: 2007
  ident: ref26/cit26
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2007.1672
– volume: 1
  start-page: 668
  year: 2014
  ident: ref35/cit35a
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C4QI00098F
– volume: 52
  start-page: 12276
  year: 2013
  ident: ref9/cit9
  publication-title: Inorg. Chem.
  doi: 10.1021/ic400835n
– volume: 9
  start-page: 1586
  year: 2014
  ident: ref3/cit3b
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201300479
– volume: 82
  start-page: 270
  year: 1985
  ident: ref14/cit14b
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 13
  start-page: 2278
  year: 2011
  ident: ref24/cit24
  publication-title: Org. Lett.
  doi: 10.1021/ol2005424
– volume: 134
  start-page: 367
  year: 2011
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207785f
– volume: 54
  start-page: 3011
  year: 2011
  ident: ref4/cit4a
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2000932
– volume: 53
  start-page: 727
  year: 2014
  ident: ref7/cit7
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401529u
– volume: 377
  start-page: 649
  year: 1995
  ident: ref21/cit21a
  publication-title: Nature
  doi: 10.1038/377649a0
– volume: 31
  start-page: 5677
  year: 2012
  ident: ref1/cit1c
  publication-title: Organometallics
  doi: 10.1021/om300373t
– volume: 53
  start-page: 9178
  year: 2014
  ident: ref1/cit1f
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404686
– volume: 194
  start-page: 178
  year: 1962
  ident: ref30/cit30
  publication-title: Nature
  doi: 10.1038/194178b0
– volume: 17
  start-page: 631
  year: 2012
  ident: ref11/cit11b
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-012-0883-2
– volume: 51
  start-page: 2105
  year: 2012
  ident: ref13/cit13
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201860s
– volume: 34
  start-page: 306
  year: 1995
  ident: ref19/cit19
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00105a048
– volume: 4
  start-page: 323
  year: 2013
  ident: ref32/cit32b
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/ml3002852
– volume: 50
  start-page: 5777
  year: 2011
  ident: ref5/cit5
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200607j
– volume: 6
  start-page: 1491
  year: 2014
  ident: ref3/cit3a
  publication-title: Metallomics
  doi: 10.1039/C4MT00112E
– volume: 41
  start-page: 13800
  year: 2012
  ident: ref3/cit3e
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt32104a
– volume: 39
  start-page: 7345
  year: 2010
  ident: ref31/cit31c
  publication-title: Dalton Trans.
  doi: 10.1039/c003085f
– volume: 53
  start-page: 3941
  year: 2014
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311161
– volume: 46
  start-page: 467
  year: 1990
  ident: ref38/cit38
  publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr.
  doi: 10.1107/S0108767390000277
– volume: 51
  start-page: 3973
  year: 2015
  ident: ref3/cit3i
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09251A
– volume: 53
  start-page: 840
  year: 2009
  ident: ref31/cit31b
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901556u
– volume: 118
  start-page: 8333
  year: 2006
  ident: ref21/cit21c
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200602873
– volume: 33
  start-page: 5324
  year: 2014
  ident: ref34/cit34
  publication-title: Organometallics
  doi: 10.1021/om500644f
– volume: 15
  start-page: 429
  year: 2010
  ident: ref6/cit6
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-009-0615-4
– ident: ref37/cit37
– volume: 52
  start-page: 4194
  year: 2013
  ident: ref8/cit8a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300747
– volume: 52
  start-page: 974
  year: 2013
  ident: ref3/cit3h
  publication-title: Inorg. Chem.
  doi: 10.1021/ic302219v
– volume: 52
  start-page: 2854
  year: 2009
  ident: ref33/cit33
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9000133
– volume: 22
  start-page: 1335
  year: 2006
  ident: ref18/cit18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl079
– volume: 187
  start-page: 151
  year: 1999
  ident: ref20/cit20
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(99)90232-1
– volume: 47
  start-page: 3614
  year: 2014
  ident: ref1/cit1d
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500310z
– volume: 50
  start-page: 9164
  year: 2011
  ident: ref23/cit23c
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201388n
– volume: 41
  start-page: 12847
  year: 2012
  ident: ref11/cit11a
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31654d
– volume: 36
  start-page: 343
  year: 1959
  ident: ref22/cit22
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0006-3002(59)90176-3
– volume: 27
  start-page: 2405
  year: 2008
  ident: ref31/cit31a
  publication-title: Organometallics
  doi: 10.1021/om800207t
– volume: 47
  start-page: 1174
  year: 2014
  ident: ref35/cit35b
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400266c
– volume: 72
  start-page: 5639
  year: 1980
  ident: ref14/cit14c
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438980
– volume: 97
  start-page: 1808
  year: 1975
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00840a034
– volume: 19
  start-page: 6031
  year: 2014
  ident: ref3/cit3f
  publication-title: Molecules
  doi: 10.3390/molecules19056031
– volume-title: Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization
  year: 2008
  ident: ref29/cit29
– volume: 19
  start-page: 3198
  year: 2013
  ident: ref2/cit2c
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201203712
– volume: 51
  start-page: 3897
  year: 2012
  ident: ref8/cit8b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108175
– volume: 57
  start-page: 6043
  year: 2014
  ident: ref1/cit1e
  publication-title: J. Med. Chem.
  doi: 10.1021/jm500455p
– ident: ref39/cit39
– volume: 4
  start-page: 1837
  year: 2013
  ident: ref28/cit28
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc22294b
– volume: 40
  start-page: 9069
  year: 2011
  ident: ref1/cit1b
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10522a
– volume: 6
  start-page: 682
  year: 2014
  ident: ref12/cit12
  publication-title: Metallomics
  doi: 10.1039/C3MT00341H
– volume: 110
  start-page: 6158
  year: 1999
  ident: ref14/cit14a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 43
  start-page: 14546
  year: 2014
  ident: ref2/cit2a
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT01033G
– volume: 28
  start-page: 3492
  year: 2009
  ident: ref17/cit17b
  publication-title: Organometallics
  doi: 10.1021/om9000742
– volume: 105
  start-page: 11628
  year: 2008
  ident: ref27/cit27
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0800076105
– ident: ref15/cit15
– volume: 8
  start-page: 1335
  year: 2013
  ident: ref3/cit3d
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400070a
– volume: 97
  start-page: 1808
  year: 1975
  ident: WOS:A1975W110700034
  article-title: FLUOROPYRIDINES C-13 CHEMICAL-SHIFTS AND CARBON-FLUORINE COUPLING-CONSTANTS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 194
  start-page: 178
  year: 1962
  ident: WOS:A19628768B00050
  article-title: CORRELATION OF BIOLOGICAL ACTIVITY OF PHENOXYACETIC ACIDS WITH HAMMETT SUBSTITUENT CONSTANTS AND PARTITION COEFFICIENTS
  publication-title: NATURE
– start-page: 1
  year: 2008
  ident: WOS:000311101200044
  article-title: Drug-Like Properties: Concepts, Structure Design and Methods
  publication-title: DRUG-LIKE PROPERTIES: CONCEPTS, STRUCTURE DESIGN AND METHODS
– start-page: 1972
  year: 2009
  ident: WOS:000263840500013
  article-title: Synthesis and oxidation of Cp*Ir-III compounds: functionalization of a Cp* methyl group
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/b820839e
– volume: 45
  start-page: 8153
  year: 2006
  ident: WOS:000242929500016
  article-title: Diversity in guanine-selective DNA binding modes for an organometallic ruthenium arene complex
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200602873
– volume: 91
  start-page: 1198
  year: 2009
  ident: WOS:000270636500002
  article-title: Unusual DNA binding modes for metal anticancer complexes
  publication-title: BIOCHIMIE
  doi: 10.1016/j.biochi.2009.03.017
– volume: 54
  start-page: 3011
  year: 2011
  ident: WOS:000289697800035
  article-title: Organometallic Half-Sandwich Iridium Anticancer Complexes
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm2000932
– volume: 2013
  start-page: 4558
  year: 2013
  ident: WOS:000323819900008
  article-title: Efficient and Rapid Synthesis of Chlorido-Bridged Half-Sandwich Complexes of Ruthenium, Rhodium, and Iridium by Microwave Heating
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
  doi: 10.1002/ejic.201300600
– volume: 134
  start-page: 367
  year: 2012
  ident: WOS:000301084200071
  article-title: Efficient Catalytic Interconversion between NADH and NAD(+) Accompanied by Generation and Consumption of Hydrogen with a Water-Soluble Iridium Complex at Ambient Pressure and Temperature
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja207785f
– volume: 52
  start-page: 12276
  year: 2013
  ident: WOS:000326669200010
  article-title: Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic400835n
– volume: 52
  start-page: 4194
  year: 2013
  ident: WOS:000317064600022
  article-title: Reduction of Quinones by NADH Catalyzed by Organoiridium Complexes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201300747
– volume: 50
  start-page: 5777
  year: 2011
  ident: WOS:000291422100057
  article-title: Contrasting Reactivity and Cancer Cell Cytotoxicity of Isoelectronic Organometallic Iridium(III) Complexes
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic200607j
– volume: 36
  start-page: 343
  year: 1959
  ident: WOS:A1959WF20100006
  article-title: THE ELECTRONIC STRUCTURE OF THE PURINE-PYRIMIDINE PAIRS OF DNA
  publication-title: BIOCHIMICA ET BIOPHYSICA ACTA
– volume: 187
  start-page: 151
  year: 1999
  ident: WOS:000081116300008
  article-title: Water exchange on metal ions: experiments and simulations
  publication-title: COORDINATION CHEMISTRY REVIEWS
– volume: 41
  start-page: 13800
  year: 2012
  ident: WOS:000310371500005
  article-title: Synthesis of iridium and ruthenium complexes with (N,N), (N,O) and (O,O) coordinating bidentate ligands as potential anti-cancer agents
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c2dt32104a
– volume: 51
  start-page: 2105
  year: 2012
  ident: WOS:000300466300019
  article-title: Phosphorescence Imaging of Living Cells with Amino Acid-Functionalized Tris(2-phenylpyridine)iridium(III) Complexes
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic201860s
– volume: 41
  start-page: 12847
  year: 2012
  ident: WOS:000309545100027
  article-title: Novel C,N-chelate rhodium(III) and iridium(III) antitumor complexes incorporating a lipophilic steroidal conjugate and their interaction with DNA
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c2dt31654d
– volume: 4
  start-page: 323
  year: 2013
  ident: WOS:000323593800003
  article-title: The Structure of Anthracycline Derivatives Determines Their Subcellular Localization and Cytotoxic Activity
  publication-title: ACS MEDICINAL CHEMISTRY LETTERS
  doi: 10.1021/ml3002852
– volume: 27
  start-page: 2405
  year: 2008
  ident: WOS:000256232600005
  article-title: Influence of the spacer length on the in vitro anticancer activity of dinuclear ruthenium-arene compounds
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om800207t
– volume: 112
  start-page: 275
  year: 1995
  ident: WOS:A1995QG80600024
  article-title: WATER SUPPRESSION THAT WORKS - EXCITATION SCULPTING USING ARBITRARY WAVE-FORMS AND PULSED-FIELD GRADIENTS
  publication-title: JOURNAL OF MAGNETIC RESONANCE SERIES A
– volume: 28
  start-page: 3492
  year: 2009
  ident: WOS:000267020700020
  article-title: C-H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl2](2) (M = Ir, Rh): Regioselectivity, Kinetics, and Mechanism
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om9000742
– volume: 50
  start-page: 9164
  year: 2011
  ident: WOS:000294699700055
  article-title: A Potent Ruthenium(II) Antitumor Complex Bearing a Lipophilic Levonorgestrel Group
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic201388n
– volume: 33
  start-page: 5324
  year: 2014
  ident: WOS:000343026500036
  article-title: Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C boolean AND I-Chelated and Pyridine Ligands
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om500644f
– volume: 47
  start-page: 3614
  year: 2014
  ident: WOS:000346683200022
  article-title: Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar500310z
– volume: 39
  start-page: 7345
  year: 2010
  ident: WOS:000280527300022
  article-title: Osmium(II)-versus ruthenium(II)-arene carbohydrate-based anticancer compounds: similarities and differences
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c003085f
– volume: 105
  start-page: 11628
  year: 2008
  ident: WOS:000258723800010
  article-title: Catalytic organometallic anticancer complexes
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0800076105
– volume: 51
  start-page: 3973
  year: 2015
  ident: WOS:000350212600003
  article-title: A metal-based tumour necrosis factor-alpha converting enzyme inhibitor
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c4cc09251a
– volume: 43
  start-page: 14546
  year: 2014
  ident: WOS:000342965200010
  article-title: Dinuclear [{(p-cym)RuCl}(2)(mu-phpy)](PF6)(2) and heterodinuclear [(PPY)(2)Ir(mu-phpy)Ru(p-cym)Cl](PF6)(2) complexes: synthesis, structure and anticancer activity
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c4dt01033g
– year: 2007
  ident: 000356841800075.1
  publication-title: CrysAlis PRO
– volume: 110
  start-page: 6158
  year: 1999
  ident: WOS:000079419000010
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 53
  start-page: 9178
  year: 2014
  ident: WOS:000342676100007
  article-title: Antagonizing STAT3 Dimerization with a Rhodium(III) Complex
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201404686
– volume: 9
  start-page: 1586
  year: 2014
  ident: WOS:000338991100027
  article-title: Anticancer Potential of (Pentamethylcyclopentadienyl)chloridoiridium(III) Complexes Bearing kappa P and kappa P,kappa S-Coordinated Ph2PCH2CH2CH2S(O)(x)Ph (x=0-2) Ligands
  publication-title: CHEMMEDCHEM
  doi: 10.1002/cmdc.201300479
– volume: 52
  start-page: 2854
  year: 2009
  ident: WOS:000265911800024
  article-title: Halogen Bonding-A Novel Interaction for Rational Drug Design?
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm9000133
– volume: 4
  start-page: 1837
  year: 2013
  ident: WOS:000315597900056
  article-title: Novel metal(II) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c3sc22294b
– volume: 17
  start-page: 631
  year: 2012
  ident: WOS:000302771600013
  article-title: Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts
  publication-title: JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
  doi: 10.1007/s00775-012-0883-2
– volume: 729
  start-page: 20
  year: 2013
  ident: WOS:000315803600004
  article-title: Neutral and cationic multinuclear half-sandwich rhodium and iridium complexes coordinated to poly(propyleneimine) dendritic scaffolds: Synthesis and cytotoxicity
  publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY
  doi: 10.1016/j.jorganchem.2013.01.009
– volume: 39
  start-page: 95
  year: 2015
  ident: WOS:000347760600011
  article-title: Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents
  publication-title: BIOMATERIALS
  doi: 10.1016/j.biomaterials.2014.10.070
– volume: 19
  start-page: 3198
  year: 2013
  ident: WOS:000315142300032
  article-title: Synthesis, Characterisation and In Vitro Anticancer Activity of Hexanuclear Thiolato-Bridged Arene Ruthenium Metalla-Prisms
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201203712
– volume: 47
  start-page: 1174
  year: 2014
  ident: WOS:000334658200020
  article-title: Organoiridium Complexes: Anticancer Agents and Catalysts
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar400266c
– volume: 40
  start-page: 9069
  year: 2011
  ident: WOS:000294475100001
  article-title: Metal-based antitumour drugs in the post-genomic era: what comes next?
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c1dt10522a
– volume: 31
  start-page: 3466
  year: 2012
  ident: WOS:000303954100004
  article-title: Photoactivatable Organometallic Pyridyl Ruthenium(II) Arene Complexes
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om201177y
– volume: 53
  start-page: 727
  year: 2014
  ident: WOS:000330204000017
  article-title: Rhodium, Iridium, and Ruthenium Half-Sandwich Picolinamide Complexes as Anticancer Agents
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic401529u
– volume: 82
  start-page: 299
  year: 1985
  ident: WOS:A1985ABS5500035
  article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR K TO AU INCLUDING THE OUTERMOST CORE ORBITALS
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 57
  start-page: 6043
  year: 2014
  ident: WOS:000339540800017
  article-title: Discovery and Investigation of Anticancer Ruthenium-Arene Schiff-Base Complexes via Water-Promoted Combinatorial Three-Component Assembly
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm500455p
– volume: 22
  start-page: 1335
  year: 2006
  ident: WOS:000238356700008
  article-title: Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces
  publication-title: BIOINFORMATICS
  doi: 10.1093/bioinformatics/btl079
– volume: 6
  start-page: 1491
  year: 2014
  ident: WOS:000341019600018
  article-title: A dual-targeting, apoptosis-inducing organometallic half-sandwich iridium anticancer complex
  publication-title: METALLOMICS
  doi: 10.1039/c4mt00112e
– volume: 42
  start-page: 389
  year: 1998
  ident: WOS:000071750300031
  article-title: Cellular accumulation, localization, and activity of a synthetic cyclopeptamine in fungi
  publication-title: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
– volume: 34
  start-page: 306
  year: 1995
  ident: WOS:A1995QC36000048
  article-title: PI-ARENE AQUA COMPLEXES OF COBALT, RHODIUM, IRIDIUM, AND RUTHENIUM - PREPARATION, STRUCTURE, AND KINETICS OF WATER EXCHANGE AND WATER SUBSTITUTION
  publication-title: INORGANIC CHEMISTRY
– volume: 53
  start-page: 840
  year: 2010
  ident: WOS:000273672100029
  article-title: Cytotoxicity, Hydrophobicity, Uptake, and Distribution of Osmium(II) Anticancer Complexes in Ovarian Cancer Cells
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm901556u
– volume: 377
  start-page: 649
  year: 1995
  ident: WOS:A1995TA27500058
  article-title: CRYSTAL-STRUCTURE OF DOUBLE-STRANDED DNA CONTAINING THE MAJOR ADDUCT OF THE ANTICANCER DRUG CISPLATIN
  publication-title: NATURE
– volume: 30
  start-page: 4702
  year: 2011
  ident: WOS:000294647500032
  article-title: Organometallic Iridium(III) Cyclopentadienyl Anticancer Complexes Containing C,N-Chelating Ligands
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om2005468
– volume: 72
  start-page: 5639
  year: 1980
  ident: WOS:A1980JU69700043
  article-title: CONTRACTED GAUSSIAN-BASIS SETS FOR MOLECULAR CALCULATIONS .1. 2ND ROW ATOMS, Z=11-18
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 13
  start-page: 2278
  year: 2011
  ident: WOS:000289956700035
  article-title: Dehydrogenative Oxidation of Primary and Secondary Alcohols Catalyzed by a Cp*Ir Complex Having a Functional C,N-Chelate Ligand
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol2005424
– volume: 53
  start-page: 3941
  year: 2014
  ident: WOS:000333634800030
  article-title: The Potent Oxidant Anticancer Activity of Organoiridium Catalysts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201311161
– volume: 8
  start-page: 1335
  year: 2013
  ident: WOS:000320979300028
  article-title: Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis
  publication-title: ACS CHEMICAL BIOLOGY
  doi: 10.1021/cb400070a
– volume: 51
  start-page: 3897
  year: 2012
  ident: WOS:000302607500025
  article-title: Organometallic Ruthenium and Iridium Transfer-Hydrogenation Catalysts Using Coenzyme NADH as a Cofactor
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201108175
– volume: 1
  start-page: 668
  year: 2014
  ident: WOS:000364543000002
  article-title: Formation of glutathione sulfenate and sulfinate complexes by an organoiridium(III) anticancer complex
  publication-title: INORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/c4qi00098f
– volume: 52
  start-page: 974
  year: 2013
  ident: WOS:000314007500053
  article-title: Novel Bis-C,N-Cyclometalated Iridium(III) Thiosemicarbazide Antitumor Complexes: Interactions with Human Serum Albumin and DNA, and Inhibition of Cathepsin B
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic302219v
– volume: 31
  start-page: 5677
  year: 2012
  ident: WOS:000308263500003
  article-title: Challenges and Opportunities in the Development of Organometallic Anticancer Drugs
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om300373t
– volume: 3
  start-page: 2485
  year: 2012
  ident: WOS:000305900700011
  article-title: The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c2sc20220d
– volume: 10
  start-page: 179
  year: 2008
  ident: WOS:000251947600001
  article-title: NAD(+)/ NADH and NADP(+)/NADPH in cellular functions and cell death: Regulation and biological consequences
  publication-title: ANTIOXIDANTS & REDOX SIGNALING
  doi: 10.1089/ars.2007.1672
– volume: 46
  start-page: 467
  year: 1990
  ident: WOS:A1990DJ92700008
  article-title: PHASE ANNEALING IN SHELX-90 - DIRECT METHODS FOR LARGER STRUCTURES
  publication-title: ACTA CRYSTALLOGRAPHICA SECTION A
– volume: 19
  start-page: 6031
  year: 2014
  ident: WOS:000337113000036
  article-title: Exploiting Natural Products to Build Metalla-Assemblies: The Anticancer Activity of Embelin-Derived Rh(III) and Ir(III) Metalla-Rectangles
  publication-title: MOLECULES
  doi: 10.3390/molecules19056031
– volume: 71
  start-page: 3
  year: 2015
  ident: WOS:000347804100002
  article-title: Crystal structure refinement with SHELXL
  publication-title: ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY
  doi: 10.1107/S2053229614024218
– volume: 6
  start-page: 682
  year: 2014
  ident: WOS:000333565800030
  article-title: Mechanism of cellular accumulation of an iridium(III) pentamethylcyclopentadienyl anticancer complex containing a C,N-chelating ligand
  publication-title: METALLOMICS
  doi: 10.1039/c3mt00341h
– year: 2004
  ident: 000356841800075.11
  publication-title: Gaussian 03, Revision D.02
– volume: 15
  start-page: 429
  year: 2010
  ident: WOS:000275104400013
  article-title: Rhodium(III) and iridium(III) complexes with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis, structure, and biological activity
  publication-title: JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
  doi: 10.1007/s00775-009-0615-4
– volume: 11
  start-page: 521
  year: 2011
  ident: WOS:000288989800004
  article-title: Transition Metal Based Anticancer Drugs
  publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY
– volume: 56
  start-page: 1291
  year: 2013
  ident: WOS:000315182100054
  article-title: The Contrasting Activity of Iodido versus Chlorido Ruthenium and Osmium Arene Azo- and Imino-pyridine Anticancer Complexes: Control of Cell Selectivity, Cross-Resistance, p53 Dependence, and Apoptosis Pathway
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm3017442
SSID ssj0006732
Score 2.4888096
Snippet We report the synthesis, characterization, and antiproliferative activity of 15 iridium­(III) half-sandwich complexes of the type...
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type...
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η...
We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η 5...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2683
SubjectTerms Chemistry
Chemistry, Inorganic & Nuclear
Chemistry, Organic
Physical Sciences
Science & Technology
Title Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2‑Phenylpyridine Ligands
URI http://dx.doi.org/10.1021/acs.organomet.5b00097
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000356841800075
https://www.ncbi.nlm.nih.gov/pubmed/26146437
https://www.proquest.com/docview/1826629149
https://pubmed.ncbi.nlm.nih.gov/PMC4482135
Volume 34
WOS 000356841800075
WOSCitedRecordID wos000356841800075
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-N8QAviP-EwWSkPQBSuthJ7OSxFKoWAUIak_YWuY69RsrSqUnF-gJ8Bb4in4Szk0YUmAavic-JfHe-3_nOdwAHgVGI2Uzs81AYH-2x9BPNuS_oLE4UC6XJ7W3k9x_45Dh6exKf7MDhJRF8Rg-lqgeuw9HiTDeD2KECcQ2uM46iZztdfhn0Wy8XriMZulr4tTAMN1d2LpvGmiRVb5ukP3Dm39MlfzNRzhyNb8OtDkeSYcv4O7Cjq7twY7Rp33YPvtq6U0tZ27RmMqzskTVOsyRD1faLIAtDJrI0_pGs8s-FmpPpssiL1dnz6XT6gth9otQXuiavUBfsHGO0gO3BYbkmr106hybsx7fvH-e6Wpfna0teafKuOLXXh-_D8fjNp9HE77ot-BJRXIP7sWKKSiO5TtHsa0pzZhAt5UmgZyJQcYrKL0TANGU54wJ9oZkyqVYRtXofhw9gt1pU-hGQIExMGokIwY6OEJKmiAFoOAsSGYlU5MaDl7jsWactdeYC4Yxm9mHPo6zjkQfRhjuZ6uqW2_YZ5VVkg57svC3ccRXBsw3rM2SVjZvISi9W-HvognGWoi_pwcNWFPop0QGNbOzTA7ElJP0AW757-01VzF0Zb3SMGQ1jDw5-Faee0AV5eRLRxOE6D-i_DBt1K2QrGjSP_2ed9-AmgsHYpcElT2C3Wa70UwRczWwfHY7R0b5TtZ9GXCwl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5VAuvB8uLzHTAzDj1JIfso8hkEkg7TDTdujNI8sS8TR1OrEzEC7wF_iL_BJWimNIgSm92l5ZXq92v9WudgF2PC0Rs-nQjXyuXbTHwo1VFLmcZmEsmS90bk4j7-1Hg6Pg7XF4vAHR6iwMTqLCkSobxP9VXYDuNtdEOT1VdSe04IBfgasISJiR7G7voNXAEbeNydDjwpf6vr86ufOvYYxlktW6ZfoDbv49a_KcpbJWqX8DPrTfY5NRTjrzOuvIL-dKPV7-g2_C9Qaoku5Ssm7Bhipvw1Zv1R_uDnw1ha1mojJ506Rbmj1xnOCMdOWyIQWZajIQE-0eiDL_VMgxGc6KvJifPh8Ohy-IUUQT9VlV5BUuNjNGH03scmdysiCvbb6IIuzHt-_vx6pcTM4WhrxUZFR8NOeT78JR_81hb-A27RxcgTCxRoUvmaRCi0gliCsUpTnTCMfy2FMZ92SYoHbh3GOKspxFHJ2tTOpEyYAaxRL692CznJbqARDPj3US8ADRlAoQ8yYIMqifebEIeMJz7cBLZF_aLMcqtZF2RlNzseVp2vDUgWD131PZFEY3_TkmF5F1WrKzZWWQiwierYQqxV9lAjOiVNM5Tg99vIgl6Kw6cH8pZO2Q6OEGJrjqAF8Tv_YBUx98_U5ZjG2dcPS8GfVDB3Z-F9SW0EaRozigsQWODtD_eazXcMiUTKi3L8Pnp7A1ONwbpaPh_ruHcA2RZ2hz7uJHsFnP5uoxors6e2KX8k8rE06p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkYALWt7haaQ9AFK6sfNwcixdqgaWaiVYaW-R49g0UtatmlTQC7t_gb-4v4Sxk0aUhxauTmZieeyZbzLjGYT2PCUAs6nQjXymXLDH3I1lFLmM5GEsqM9VYW4jf5hGk-Pg3Ul40mVVmrswMIkaONU2iG9O9aJQXYUBst-Ncz0_lc0gtACBXUXXAJJ4pm3D9Nug18IRs83JwOuCD_u-v7m98zc2xjqJets6_QY5_5w5-Yu1spZpvItudZASD9s9cBtdkfoOujHadHK7i85MCaolr02GMx5q8_ca2CzxULStI_Bc4QmvlPuR6-JLKWY4XZZFuTp9mabpK2xURiW_yhq_gWNheIzBGLb_EKs1PrCZHRLTi_PvRzOp19Vibci1xIflZ3OT-B46Hr_9NJq4XeMFlwOga0A1CyoIVzySCSAASUhBFQCnIvZkzjwRJqAHGPOoJLSgEQO3KBcqkSIgRgWE_n20o-daPkTY82OVBCwA3CMDQKcJwAHi517MA5awQjnoNSx71h2cOrMxcUoyM9jLKOtk5KBgI51MdCXMTSeN6jKyQU-2aGt4XEbwYiP6DERlQihcy_kKpgfeWEQTcCsd9KDdCj1L8EUDEwZ1ENvaJP0LppL39hNdzmxFb_CRKfFDB-39vJ16QhvvjeKAxBbiOYj8y2ujboVMcYPm0f-s83N0_ehgnB2m0_eP0U2AiKFNjoufoJ1muZJPAYY1-TN73n4AEvsx3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrasting+Anticancer+Activity+of+Half-Sandwich+Iridium%28III%29+Complexes+Bearing+Functionally+Diverse+2-Phenylpyridine+Ligands&rft.jtitle=Organometallics&rft.au=Millett%2C+Adam+J&rft.au=Habtemariam%2C+Abraha&rft.au=Romero-Canel%C3%B3n%2C+Isolda&rft.au=Clarkson%2C+Guy+J&rft.date=2015-06-08&rft.issn=0276-7333&rft.volume=34&rft.issue=11&rft.spage=2683&rft_id=info:doi/10.1021%2Facs.organomet.5b00097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0276-7333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0276-7333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0276-7333&client=summon