Adaptive Gaussian inverse regression with partially unknown operator
This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1204.1226 |
Cover
Loading…
Abstract | This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator subject to Gaussian white noise with respective noise levels \(\varepsilon\) and \(\sigma\). We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of \(f\) and \(A\). This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for \(f\) and \(A\) and noise levels \(\varepsilon\) and \(\sigma\). The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems. |
---|---|
AbstractList | This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator subject to Gaussian white noise with respective noise levels \(\varepsilon\) and \(\sigma\). We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of \(f\) and \(A\). This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for \(f\) and \(A\) and noise levels \(\varepsilon\) and \(\sigma\). The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems. Communications in Statistics - Theory and Methods (2013), 42(7):1343-1362 This work deals with the ill-posed inverse problem of reconstructing a function $f$ given implicitly as the solution of $g = Af$, where $A$ is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function $g$ and the singular values of the operator subject to Gaussian white noise with respective noise levels $\varepsilon$ and $\sigma$. We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of $f$ and $A$. This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for $f$ and $A$ and noise levels $\varepsilon$ and $\sigma$. The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems. |
Author | Johannes, Jan Schwarz, Maik |
Author_xml | – sequence: 1 givenname: Jan surname: Johannes fullname: Johannes, Jan – sequence: 2 givenname: Maik surname: Schwarz fullname: Schwarz, Maik |
BackLink | https://doi.org/10.48550/arXiv.1204.1226$$DView paper in arXiv https://doi.org/10.1080/03610926.2012.731548$$DView published paper (Access to full text may be restricted) |
BookMark | eNotjz1PwzAYhC0EEqV0Z0KWmFMcfyT2WBUoSJVYukdvnLfgUuxgJy39900py510Op3uuSGXPngk5C5nU6mVYo8Qf91umnMmB-HFBRlxIfJMS86vySSlDWOMFyVXSozI06yBtnM7pAvoU3LgqfM7jAlpxI-IQxQ83bvuk7YQOwfb7YH2_suHvaehxQhdiLfkag3bhJN_H5PVy_Nq_pot3xdv89kyA5XrDESdC1MqbIw1DAxoY0qdN8hRqtpCaWu0kklhuTKyscyuVa2gAF1rKNCIMbk_z_4RVm103xAP1Ym0OpEOhYdzoY3hp8fUVZvQRz9cqjjTSjKuSi2OFfNZTA |
ContentType | Paper Journal Article |
Copyright | 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ EPD GOX |
DOI | 10.48550/arxiv.1204.1226 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection arXiv Mathematics arXiv Statistics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1204_1226 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ EPD GOX |
ID | FETCH-LOGICAL-a518-a3b13975ed9c90a9a899781de2e45bca7cbec4043c2594dc0cf5b5a6a8b8a6e93 |
IEDL.DBID | GOX |
IngestDate | Wed Jul 23 00:25:25 EDT 2025 Mon Jun 30 09:32:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a518-a3b13975ed9c90a9a899781de2e45bca7cbec4043c2594dc0cf5b5a6a8b8a6e93 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/1204.1226 |
PQID | 2085402578 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1204_1226 proquest_journals_2085402578 |
PublicationCentury | 2000 |
PublicationDate | 20120405 2012-04-05 |
PublicationDateYYYYMMDD | 2012-04-05 |
PublicationDate_xml | – month: 04 year: 2012 text: 20120405 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2012 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.4816713 |
SecondaryResourceType | preprint |
Snippet | This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact... Communications in Statistics - Theory and Methods (2013), 42(7):1343-1362 This work deals with the ill-posed inverse problem of reconstructing a function $f$... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Eigenvectors Ill posed problems Inverse problems Linear operators Mathematics - Statistics Theory Minimax technique Noise Noise levels Optimization Parameters Sobolev space Statistics - Theory White noise |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagERIbbwoFeWANTeLYiSfEq1QMVYWK1C262A6qVKUhaRH8e3xuCgMSSwZn8vn0-buHvyPkSookRF7vp1zmvnUK5UscGSZD5PdxUUDu1D5HYvgaP0_5tE24NW1b5QYTHVDrhcIceR9nSdpYxzrYTfXu49QorK62IzS2iWchOLXBl3f3OBq__GRZIpFYzszW9Ukn3tWH-nP2cR1GQWw_qKnguZU_WOwumMEe8cZQmXqfbJnygOy4vkzVHJKHWw0VIhJ9glWDDx7prMROCkNr87buYS0pJlNphU4A8_kXXZWYKSvpojKuiH5EJoPHyf3Qbwcf-MDD1AeWIy_jRkslA5BgY6LE8koTmZjnChJlDY-qOMrGLrFWgSp4zkFAmqcgjGTHpFMuSnNKKDAhtaUg2sgg1oIBYzw1LBZQFKHRoktO3O6zaq1tkaFdMrRLl_Q29shat26y30M4-__3Odm1zCJyLS68RzrLemUu7O29zC_bI_oGgRaayQ priority: 102 providerName: ProQuest |
Title | Adaptive Gaussian inverse regression with partially unknown operator |
URI | https://www.proquest.com/docview/2085402578 https://arxiv.org/abs/1204.1226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ07T8MwEMdPbVlYEIhXoRQPrIG87MZjgT6EREGoSN2is-OgSiiN-kCw8NnxOSkLYskQOUPu_Pidff4fwJUUvYC43ku4VJ7tFNqTVDJMBsT3cZ6jcmqfEzF-jR9mfNaAy-1dGFx-zj8qfWC1uglCP74OLCE0oRmGlLE1eppVh41Oiatu_tvMEqZ782didavFcB_2asxj_covB9AwxSHc9zMsaXphI9ys6PYimxeUFmHY0rxVCakFo51RVpJH8f39i20K2vYq2KI07kT8CKbDwfRu7NVVDDzkQeJhpAiyuMmklj5KtAFOz0KiCU3MlcaetlYkiRttA5E4077OueIoMFEJCiOjY2gVi8KcAsNIyMzyRGakH2ciwijiiYligXkemEy04cT9fVpWQhUp2SUlu7Shs7VHWvfRVUrVOW30aIfs2b8fnsOuJYTQparwDrTWy425sKvwWnWhmQxHXdi5HUyeX7rOM_b5-D34AdHXi_k |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqKgQbbwoFPMAY2sSxEw8IIUoftFQMReoWXRwHVarS0AfQH8V_xOe2MCCxdcngTL47n797-DtCLqUIXMT1Tshl7BijUI7EkWHSRXzvpynElu2zK5ov_mOf9wvka_UWBtsqVz7ROupkpDBHXsFZkibWMQZ2m785ODUKq6urERoLs2jr-YcJ2SY3rZrR75Xn1R96901nOVXAAe6GDrAYQQ_XiVSyChJMwBEY0KY97fNYQaDMrpByRpnAwE9UVaU85iAgjEMQGrmXjMcv-oxJPFBhvfGT0vFEYAA6WxRDLVNYBcafg_dr16v65oMEDkW78sfx29usvkOKz5Dr8S4p6GyPbNomUDXZJ7W7BHJ0f7QBswm-rqSDDNs2NB3r10XDbEYxc0tztDgYDud0lmFaLqOjXNuK_QHprUMeh2QjG2X6mFBgQiYG7yRaVv1EMGCMh5r5AtLU1YkokSO7-yhfEGlEKJcI5VIi5ZU8ouUZmkS_Gj_5__cF2Wr2njpRp9Vtn5JtA2k821vDy2RjOp7pMwMbpvG5VRYl0ZqN4xtdGta_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Gaussian+inverse+regression+with+partially+unknown+operator&rft.jtitle=arXiv.org&rft.au=Johannes%2C+Jan&rft.au=Schwarz%2C+Maik&rft.date=2012-04-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1204.1226 |