Adaptive Gaussian inverse regression with partially unknown operator

This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Johannes, Jan, Schwarz, Maik
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.04.2012
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1204.1226

Cover

Loading…
Abstract This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator subject to Gaussian white noise with respective noise levels \(\varepsilon\) and \(\sigma\). We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of \(f\) and \(A\). This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for \(f\) and \(A\) and noise levels \(\varepsilon\) and \(\sigma\). The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems.
AbstractList This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function \(g\) and the singular values of the operator subject to Gaussian white noise with respective noise levels \(\varepsilon\) and \(\sigma\). We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of \(f\) and \(A\). This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for \(f\) and \(A\) and noise levels \(\varepsilon\) and \(\sigma\). The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems.
Communications in Statistics - Theory and Methods (2013), 42(7):1343-1362 This work deals with the ill-posed inverse problem of reconstructing a function $f$ given implicitly as the solution of $g = Af$, where $A$ is a compact linear operator with unknown singular values and known eigenfunctions. We observe the function $g$ and the singular values of the operator subject to Gaussian white noise with respective noise levels $\varepsilon$ and $\sigma$. We develop a minimax theory in terms of both noise levels and propose an orthogonal series estimator attaining the minimax rates. This estimator requires the optimal choice of a dimension parameter depending on certain characteristics of $f$ and $A$. This work addresses the fully data-driven choice of the dimension parameter combining model selection with Lepski's method. We show that the fully data-driven estimator preserves minimax optimality over a wide range of classes for $f$ and $A$ and noise levels $\varepsilon$ and $\sigma$. The results are illustrated considering Sobolev spaces and mildly and severely ill-posed inverse problems.
Author Johannes, Jan
Schwarz, Maik
Author_xml – sequence: 1
  givenname: Jan
  surname: Johannes
  fullname: Johannes, Jan
– sequence: 2
  givenname: Maik
  surname: Schwarz
  fullname: Schwarz, Maik
BackLink https://doi.org/10.48550/arXiv.1204.1226$$DView paper in arXiv
https://doi.org/10.1080/03610926.2012.731548$$DView published paper (Access to full text may be restricted)
BookMark eNotjz1PwzAYhC0EEqV0Z0KWmFMcfyT2WBUoSJVYukdvnLfgUuxgJy39900py510Op3uuSGXPngk5C5nU6mVYo8Qf91umnMmB-HFBRlxIfJMS86vySSlDWOMFyVXSozI06yBtnM7pAvoU3LgqfM7jAlpxI-IQxQ83bvuk7YQOwfb7YH2_suHvaehxQhdiLfkag3bhJN_H5PVy_Nq_pot3xdv89kyA5XrDESdC1MqbIw1DAxoY0qdN8hRqtpCaWu0kklhuTKyscyuVa2gAF1rKNCIMbk_z_4RVm103xAP1Ym0OpEOhYdzoY3hp8fUVZvQRz9cqjjTSjKuSi2OFfNZTA
ContentType Paper
Journal Article
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
EPD
GOX
DOI 10.48550/arxiv.1204.1226
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Mathematics
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1204_1226
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
EPD
GOX
ID FETCH-LOGICAL-a518-a3b13975ed9c90a9a899781de2e45bca7cbec4043c2594dc0cf5b5a6a8b8a6e93
IEDL.DBID GOX
IngestDate Wed Jul 23 00:25:25 EDT 2025
Mon Jun 30 09:32:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a518-a3b13975ed9c90a9a899781de2e45bca7cbec4043c2594dc0cf5b5a6a8b8a6e93
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1204.1226
PQID 2085402578
PQPubID 2050157
ParticipantIDs arxiv_primary_1204_1226
proquest_journals_2085402578
PublicationCentury 2000
PublicationDate 20120405
2012-04-05
PublicationDateYYYYMMDD 2012-04-05
PublicationDate_xml – month: 04
  year: 2012
  text: 20120405
  day: 05
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4816713
SecondaryResourceType preprint
Snippet This work deals with the ill-posed inverse problem of reconstructing a function \(f\) given implicitly as the solution of \(g = Af\), where \(A\) is a compact...
Communications in Statistics - Theory and Methods (2013), 42(7):1343-1362 This work deals with the ill-posed inverse problem of reconstructing a function $f$...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Eigenvectors
Ill posed problems
Inverse problems
Linear operators
Mathematics - Statistics Theory
Minimax technique
Noise
Noise levels
Optimization
Parameters
Sobolev space
Statistics - Theory
White noise
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagERIbbwoFeWANTeLYiSfEq1QMVYWK1C262A6qVKUhaRH8e3xuCgMSSwZn8vn0-buHvyPkSookRF7vp1zmvnUK5UscGSZD5PdxUUDu1D5HYvgaP0_5tE24NW1b5QYTHVDrhcIceR9nSdpYxzrYTfXu49QorK62IzS2iWchOLXBl3f3OBq__GRZIpFYzszW9Ukn3tWH-nP2cR1GQWw_qKnguZU_WOwumMEe8cZQmXqfbJnygOy4vkzVHJKHWw0VIhJ9glWDDx7prMROCkNr87buYS0pJlNphU4A8_kXXZWYKSvpojKuiH5EJoPHyf3Qbwcf-MDD1AeWIy_jRkslA5BgY6LE8koTmZjnChJlDY-qOMrGLrFWgSp4zkFAmqcgjGTHpFMuSnNKKDAhtaUg2sgg1oIBYzw1LBZQFKHRoktO3O6zaq1tkaFdMrRLl_Q29shat26y30M4-__3Odm1zCJyLS68RzrLemUu7O29zC_bI_oGgRaayQ
  priority: 102
  providerName: ProQuest
Title Adaptive Gaussian inverse regression with partially unknown operator
URI https://www.proquest.com/docview/2085402578
https://arxiv.org/abs/1204.1226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ07T8MwEMdPbVlYEIhXoRQPrIG87MZjgT6EREGoSN2is-OgSiiN-kCw8NnxOSkLYskQOUPu_Pidff4fwJUUvYC43ku4VJ7tFNqTVDJMBsT3cZ6jcmqfEzF-jR9mfNaAy-1dGFx-zj8qfWC1uglCP74OLCE0oRmGlLE1eppVh41Oiatu_tvMEqZ782didavFcB_2asxj_covB9AwxSHc9zMsaXphI9ys6PYimxeUFmHY0rxVCakFo51RVpJH8f39i20K2vYq2KI07kT8CKbDwfRu7NVVDDzkQeJhpAiyuMmklj5KtAFOz0KiCU3MlcaetlYkiRttA5E4077OueIoMFEJCiOjY2gVi8KcAsNIyMzyRGakH2ciwijiiYligXkemEy04cT9fVpWQhUp2SUlu7Shs7VHWvfRVUrVOW30aIfs2b8fnsOuJYTQparwDrTWy425sKvwWnWhmQxHXdi5HUyeX7rOM_b5-D34AdHXi_k
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqKgQbbwoFPMAY2sSxEw8IIUoftFQMReoWXRwHVarS0AfQH8V_xOe2MCCxdcngTL47n797-DtCLqUIXMT1Tshl7BijUI7EkWHSRXzvpynElu2zK5ov_mOf9wvka_UWBtsqVz7ROupkpDBHXsFZkibWMQZ2m785ODUKq6urERoLs2jr-YcJ2SY3rZrR75Xn1R96901nOVXAAe6GDrAYQQ_XiVSyChJMwBEY0KY97fNYQaDMrpByRpnAwE9UVaU85iAgjEMQGrmXjMcv-oxJPFBhvfGT0vFEYAA6WxRDLVNYBcafg_dr16v65oMEDkW78sfx29usvkOKz5Dr8S4p6GyPbNomUDXZJ7W7BHJ0f7QBswm-rqSDDNs2NB3r10XDbEYxc0tztDgYDud0lmFaLqOjXNuK_QHprUMeh2QjG2X6mFBgQiYG7yRaVv1EMGCMh5r5AtLU1YkokSO7-yhfEGlEKJcI5VIi5ZU8ouUZmkS_Gj_5__cF2Wr2njpRp9Vtn5JtA2k821vDy2RjOp7pMwMbpvG5VRYl0ZqN4xtdGta_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Gaussian+inverse+regression+with+partially+unknown+operator&rft.jtitle=arXiv.org&rft.au=Johannes%2C+Jan&rft.au=Schwarz%2C+Maik&rft.date=2012-04-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1204.1226