Integral cohomology of rational projection method patterns

We study the cohomology and hence \(K\)-theory of the aperiodic tilings formed by the so called 'cut and project' method, i.e., patterns in \(d\) dimensional Euclidean space which arise as sections of higher dimensional, periodic structures. They form one of the key families of patterns us...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gaehler, Franz, Hunton, John, Kellendonk, Johannes
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the cohomology and hence \(K\)-theory of the aperiodic tilings formed by the so called 'cut and project' method, i.e., patterns in \(d\) dimensional Euclidean space which arise as sections of higher dimensional, periodic structures. They form one of the key families of patterns used in quasicrystal physics, where their topological invariants carry quantum mechanical information. Our work develops both a theoretical framework and a practical toolkit for the discussion and calculation of their integral cohomology, and extends previous work that only successfully addressed rational cohomological invariants. Our framework unifies the several previous methods used to study the cohomology of these patterns. We discuss explicit calculations for the main examples of icosahedral patterns in \(R^3\) -- the Danzer tiling, the Ammann-Kramer tiling and the Canonical and Dual Canonical \(D_6\) tilings, including complete computations for the first of these, as well as results for many of the better known 2 dimensional examples.
AbstractList Algebr. Geom. Topol. 13 (2013) 1661-1708 We study the cohomology and hence $K$-theory of the aperiodic tilings formed by the so called 'cut and project' method, i.e., patterns in $d$ dimensional Euclidean space which arise as sections of higher dimensional, periodic structures. They form one of the key families of patterns used in quasicrystal physics, where their topological invariants carry quantum mechanical information. Our work develops both a theoretical framework and a practical toolkit for the discussion and calculation of their integral cohomology, and extends previous work that only successfully addressed rational cohomological invariants. Our framework unifies the several previous methods used to study the cohomology of these patterns. We discuss explicit calculations for the main examples of icosahedral patterns in $R^3$ -- the Danzer tiling, the Ammann-Kramer tiling and the Canonical and Dual Canonical $D_6$ tilings, including complete computations for the first of these, as well as results for many of the better known 2 dimensional examples.
We study the cohomology and hence \(K\)-theory of the aperiodic tilings formed by the so called 'cut and project' method, i.e., patterns in \(d\) dimensional Euclidean space which arise as sections of higher dimensional, periodic structures. They form one of the key families of patterns used in quasicrystal physics, where their topological invariants carry quantum mechanical information. Our work develops both a theoretical framework and a practical toolkit for the discussion and calculation of their integral cohomology, and extends previous work that only successfully addressed rational cohomological invariants. Our framework unifies the several previous methods used to study the cohomology of these patterns. We discuss explicit calculations for the main examples of icosahedral patterns in \(R^3\) -- the Danzer tiling, the Ammann-Kramer tiling and the Canonical and Dual Canonical \(D_6\) tilings, including complete computations for the first of these, as well as results for many of the better known 2 dimensional examples.
Author Gaehler, Franz
Hunton, John
Kellendonk, Johannes
Author_xml – sequence: 1
  givenname: Franz
  surname: Gaehler
  fullname: Gaehler, Franz
– sequence: 2
  givenname: John
  surname: Hunton
  fullname: Hunton, John
– sequence: 3
  givenname: Johannes
  surname: Kellendonk
  fullname: Kellendonk, Johannes
BackLink https://doi.org/10.2140/agt.2013.13.1661$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1202.2240$$DView paper in arXiv
BookMark eNotj8FLwzAYxYMoOOfunqTgufXLl6RpvMlwOhh42b0kbbq1tE1NOnH_va3z9HiPx-P97sh173pLyAOFhGdCwLP2P_V3QhEwQeRwRRbIGI0zjnhLViE0AICpRCHYgrxs-9EevG6jwh1d51p3OEeuirwea9dP8eBdY4vZRJ0dj66MBj2O1vfhntxUug129a9Lst-87dcf8e7zfbt-3cVaUBlLBcwotAxLIyxXJeMoVUEzWilhRQU6EzA5mYIxNCsqo8pUG1kayyUFyZbk8TL7x5UPvu60P-czXz7zTYWnS2G6-nWyYcwbd_LT95AjyIxRQalkv2AzVBA
ContentType Paper
Journal Article
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1202.2240
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1202_2240
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a517-7903b92e32db5e49d34279c181f95e5f0a850181760bb18cfb9d6ab7dbe471073
IEDL.DBID BENPR
IngestDate Mon Jan 08 05:39:00 EST 2024
Thu Oct 10 17:52:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a517-7903b92e32db5e49d34279c181f95e5f0a850181760bb18cfb9d6ab7dbe471073
OpenAccessLink https://www.proquest.com/docview/2078315117?pq-origsite=%requestingapplication%
PQID 2078315117
PQPubID 2050157
ParticipantIDs arxiv_primary_1202_2240
proquest_journals_2078315117
PublicationCentury 2000
PublicationDate 20121026
PublicationDateYYYYMMDD 2012-10-26
PublicationDate_xml – month: 10
  year: 2012
  text: 20121026
  day: 26
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5297377
SecondaryResourceType preprint
Snippet We study the cohomology and hence \(K\)-theory of the aperiodic tilings formed by the so called 'cut and project' method, i.e., patterns in \(d\) dimensional...
Algebr. Geom. Topol. 13 (2013) 1661-1708 We study the cohomology and hence $K$-theory of the aperiodic tilings formed by the so called 'cut and project'...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Euclidean geometry
Euclidean space
Homology
Icosahedral phase
Integrals
Invariants
Mathematical analysis
Mathematics - Algebraic Topology
Mathematics - K-Theory and Homology
Mathematics - Mathematical Physics
Periodic structures
Physics - Mathematical Physics
Quantum mechanics
Quasicrystals
Tiling
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDLW2nbggEF-DATlwrWjdJm24IcQYSMBlSL1VcZtISDCmdSB-Pk7acUEcEyWHOImf7cTPABemQRfnto5il7CDoklGOnMuMs46SYWhJGTxPz6p2Uv2UMpyAOebXBiz-n796viBqb1M0CdLMegMYYjof2zdPZfdY2Ng4uqH_w5jCzP0_FGsAS2mO7Ddm3niutuXXRjYxR5c3XfcDG_Cl6V9DwFt8eHEqg_IiT4swg3RVXYWy0B_uWj3YT69nd_Mor52QWQk6_1cxylptCk2JG2mmzTDXNcMp05LK11sisCkl6uYKClqR7pRhvKGLKMFX7sDGLH7b49ApGmta5RNqjyzI1uZDhOFOqs1o3OhaAyHYc3VsqOnqLw0Ki-NMUw2Uqj6k9lW6N_tGOaT_PjfiSewxXYBehWNagKj9erTnjL2ruks7MAPdcSD0g
  priority: 102
  providerName: Cornell University
Title Integral cohomology of rational projection method patterns
URI https://www.proquest.com/docview/2078315117
https://arxiv.org/abs/1202.2240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwGP1wK4I3fzudowev1TZt0saLoGxOYXPIhN1KkiYgaFfbKZ78203STA-Cl0KaU78m3_vykrwHcMYKpMJUiiBUkV6gUI4DmigVMCUV5hnjkb3FP5mS8VNyv8ALR7g17ljlOifaRF0sheHIDROSxRqeovSqeguMa5TZXXUWGh3wkF4phF3wrofT2eMPy4JIqmvmuN2ftOJdF6z-fP44j5C5hoUM5-HZN39ysQWY0TZ4M1bJegc2ZLkLm_Zcpmj24PKulXN48Y2T7avlwP2l8mvH4fmOSdENvzWD9iurmFk2-zAfDec348DZHQQMa6hIaRhzimSMCo5lQos4QSkVGoEVxRKrkGVWfC8lIedRJhSnBWE8LbjUAKNn6gF0y2Upj8CPY0EFwkVMjBikLkwVigiiiaAa0DPCe3BovzmvWkWL3EQjN9HoQX8dhdwN5ib_Df3x_90nsKXrCWRSOyJ96K7qd3mqMXvFB9DJRrcD93t06_ZhoZ-Tr-E3GBOZag
link.rule.ids 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8MgGCW6xujN306n9uC12kKB4sVE47LptixmJrs1QCEx0a620_jnC5TpwcQj5dSv5XsfD773ALjgBdQxVTKKdWI2KEzgiKVaR1wrjUXGReK6-McTMnhOH-Z47gm3xl-rXOVEl6iLhbQcuWVCMmTgKaE31XtkXaPs6aq30FgHgZWqMpuv4PZ-Mn36YVkgoaZmRu35pBPvuuL118vnZQJtGxa0nEfgnvzJxQ5g-tsgmPJK1TtgTZW7YMPdy5TNHrgetnIOr6F1sn1zHHi40GHtObzQMylmELZm0GHlFDPLZh_M-vezu0Hk7Q4ijg1UUBYjwaBCsBBYpaxAKaRMGgTWDCusY5458T1KYiGSTGrBCsIFLYQyAGNW6gHolItSHYEQIckkxAUiVgzSFKYaJgSyVDID6BkRXXDo3jmvWkWL3EYjt9Hogt4qCrn_mZv8N_TH_0-fg83BbDzKR8PJ4wnYMrUFtGkekh7oLOsPdWrweynO_Ef6BrY0mT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integral+cohomology+of+rational+projection+method+patterns&rft.jtitle=arXiv.org&rft.au=Gaehler%2C+Franz&rft.au=Hunton%2C+John&rft.au=Kellendonk%2C+Johannes&rft.date=2012-10-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1202.2240