Sharp asymptotics of the Lp approximation error for interpolation on block partitions
Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.01.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1101.1776 |
Cover
Abstract | Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases. |
---|---|
AbstractList | Adaptive approximation (or interpolation) takes into account local variations
in the behavior of the given function, adjusts the approximant depending on it,
and hence yields the smaller error of approximation. The question of
constructing optimal approximating spline for each function proved to be very
hard. In fact, no polynomial time algorithm of adaptive spline approximation
can be designed and no exact formula for the optimal error of approximation can
be given. Therefore, the next natural question would be to study the asymptotic
behavior of the error and construct asymptotically optimal sequences of
partitions. In this paper we provide sharp asymptotic estimates for the error
of interpolation by splines on block partitions in IRd. We consider various
projection operators to define the interpolant and provide the analysis of the
exact constant in the asymptotics as well as its explicit form in certain
cases. Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases. |
Author | Leskevich, Tatyana Jean-Marie Mirebeau Babenko, Yuliya |
Author_xml | – sequence: 1 givenname: Yuliya surname: Babenko fullname: Babenko, Yuliya – sequence: 2 givenname: Tatyana surname: Leskevich fullname: Leskevich, Tatyana – sequence: 3 fullname: Jean-Marie Mirebeau |
BackLink | https://doi.org/10.1007/s00211-010-0355-y$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1101.1776$$DView paper in arXiv |
BookMark | eNotj8FLwzAUh4MoOOfuniTguTMvaZr0KEOnUPDgPJe0TVhn18Qkk-2_N3XCezz4-PH4fTfocrSjRugOyDKXnJNH5Y_9zxKAwBKEKC7QjDIGmcwpvUaLEHaEEFoIyjmboc-PrfIOq3Dau2hj3wZsDY5bjatEnfP22O9V7O2ItffWY5O2H6P2zg5nnqYZbPuFnfKxn1C4RVdGDUEv_u8cbV6eN6vXrHpfv62eqkxxEBmFjpSMtrxpoMx5pwhIKhvdUN5yUhBlRMGEkboQJaddS3mujJR5ITrTKgVsju7Pb_-Ua-dTVX-qJ_V6Uk-Bh3MgeXwfdIj1zh78mCrVlEhgvAQm2C-ubF5_ |
ContentType | Paper Journal Article |
Copyright | 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1101.1776 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1101_1776 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a517-21d0932c5bb1945da01828beb25c5060af7637f8e67952dc254af88467dfcaa13 |
IEDL.DBID | 8FG |
IngestDate | Wed Jul 23 01:57:19 EDT 2025 Mon Jun 30 09:23:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a517-21d0932c5bb1945da01828beb25c5060af7637f8e67952dc254af88467dfcaa13 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.proquest.com/docview/2081359137?pq-origsite=%requestingapplication% |
PQID | 2081359137 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1101_1776 proquest_journals_2081359137 |
PublicationCentury | 2000 |
PublicationDate | 20110110 2011-01-10 |
PublicationDateYYYYMMDD | 2011-01-10 |
PublicationDate_xml | – month: 01 year: 2011 text: 20110110 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2011 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.4520496 |
SecondaryResourceType | preprint |
Snippet | Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it,... Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it,... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Adaptive algorithms Approximation Asymptotic properties Interpolation Mathematical analysis Mathematics - Numerical Analysis Operators (mathematics) Partitions Polynomials Splines |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQiK9CAQ-sgdqN42REiFIhPpZW6hb5U6oQTZSWqvx7znbKgpAyWfbyzvZ75_ieAW5yi5pW4_ouUmGT1DiaSCl1IphSWaYYc9LXDr--ZZNZ-jzn8w5c72phZLNdbKI_sFrdITfRWypE1oUuYz63enqfx5-NwYmr7f7bDRVmaPmzsQa2GB_AfivzyH2MyyF07PIIZt4duSZy9f1Zryvvj0wqR1CBkRds9ebe20WsJCS2aaqGoKAki_gQVryyRvBTSD8fpPYhD3PmGKbjx-nDJGmfNUgkR0pg1AxRNGmuFC1SbuQQJX6uMMPl2rv9SYdLXrjcZqLgzGjM4KTLvUwwTktJRyfQW1ZLewZEWYNblZaF0TSlmufOWoSYDk1w8tJ9OA1wlHV0rig9UKUHqg-DHUBlO2lXJUN5MOIFHYnzfwdewF48VfUX4QbQWzdf9hJpea2uQnB-ADpnj3M priority: 102 providerName: Cornell University |
Title | Sharp asymptotics of the Lp approximation error for interpolation on block partitions |
URI | https://www.proquest.com/docview/2081359137 https://arxiv.org/abs/1101.1776 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60QfDm22ote_Aa7eadk6C0FbG1SAu9hX1CEZuYVKkXf7szm1QPghAC2dxmZme-mZ39hpDLRAOmlbC_0yDWbqAMcznn0o09IaJIeJ7heHd4NI7uZ8HDPJw3Bbeqaavc-ETrqFUusUYOSXrC_DBlfnxTvLk4NQpPV5sRGtvEYRBp0M6TwfCnxuJFMSBmvz6dtNRd17xcLz6w951dsRiJRhy78scT2_Ay2CPOhBe63CdbenlAdmxXpqwOyQzplAvKq8_XYpUjoTLNDQXIRh9hFdnA14v66iHVZZmXFBAoXdSTs-oeNwqPgHj1Qgu0EWtkR2Q66E_v7t1mDoLLQ4ghHlM9QFkyFIKlQah4D3KCREBKHEqkB-QGfERsEh3FaegpCSkfNwniCmUk58w_Jq1lvtSnhAqtwLdJnirJAibDxGgNOmE9Zam_ZJucWHFkRU11kaGgMhRUm3Q2AsoaK6-yX52c_f_7nOzWtVhsn-uQ1qp81xcQzFeiazXWJc5tfzx5hq_h0xzeo6_-NyGcpFU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60RfTm2_rcgx6j3W2eBxHUlqq1FKngLewrUMQmplXbH-V_dCZp9SB4E3LawB5mv3ntznwDcBxajGk16nfkBtZxTcIdKaV2AqGU7yshEkm9w_ddv_3o3j55TwvwOe-FobLKuU0sDLVJNd2RY5Ie8oYX8UZwkb06NDWKXlfnIzRKWNzZ6QembKPzm2s83xMhWs3-VduZTRVwpIcWWXCDSbzQnlKYv3tG1jHCDhUmmJ4msj2ZoMYFSWj9IPKE0ZhAySQkL20SLSVv4LaLUHWpobUC1ctmt_fwfakj_ABD9Eb5HFpwhZ3JfDJ4p2J7fsoDYjapFiu_TH_hz1qrUO3JzOZrsGCH67BUlIHq0QY8En9zxuRo-pKNU2JwZmnCMEZkHVwl-vHJoOx1ZDbP05xhyMsG5aiusqiO4afQQT6zjEBZoHoT-v8hoi2oDNOh3QGmrEFjqmVkNHe59sLEWgQBr5uCa0zXYLsQR5yV3BoxCSomQdVgfy6geKZWo_gHBLt__z6C5Xb_vhN3brp3e7BSXgRT7d4-VMb5mz3ASGKsDmfnxyD-Z8R8ASoe3UI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+asymptotics+of+the+Lp+approximation+error+for+interpolation+on+block+partitions&rft.jtitle=arXiv.org&rft.au=Babenko%2C+Yuliya&rft.au=Leskevich%2C+Tatyana&rft.au=Jean-Marie+Mirebeau&rft.date=2011-01-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1101.1776 |