Sharp asymptotics of the Lp approximation error for interpolation on block partitions

Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Babenko, Yuliya, Leskevich, Tatyana, Jean-Marie Mirebeau
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.01.2011
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1101.1776

Cover

Abstract Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases.
AbstractList Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases.
Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it, and hence yields the smaller error of approximation. The question of constructing optimal approximating spline for each function proved to be very hard. In fact, no polynomial time algorithm of adaptive spline approximation can be designed and no exact formula for the optimal error of approximation can be given. Therefore, the next natural question would be to study the asymptotic behavior of the error and construct asymptotically optimal sequences of partitions. In this paper we provide sharp asymptotic estimates for the error of interpolation by splines on block partitions in IRd. We consider various projection operators to define the interpolant and provide the analysis of the exact constant in the asymptotics as well as its explicit form in certain cases.
Author Leskevich, Tatyana
Jean-Marie Mirebeau
Babenko, Yuliya
Author_xml – sequence: 1
  givenname: Yuliya
  surname: Babenko
  fullname: Babenko, Yuliya
– sequence: 2
  givenname: Tatyana
  surname: Leskevich
  fullname: Leskevich, Tatyana
– sequence: 3
  fullname: Jean-Marie Mirebeau
BackLink https://doi.org/10.1007/s00211-010-0355-y$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1101.1776$$DView paper in arXiv
BookMark eNotj8FLwzAUh4MoOOfuniTguTMvaZr0KEOnUPDgPJe0TVhn18Qkk-2_N3XCezz4-PH4fTfocrSjRugOyDKXnJNH5Y_9zxKAwBKEKC7QjDIGmcwpvUaLEHaEEFoIyjmboc-PrfIOq3Dau2hj3wZsDY5bjatEnfP22O9V7O2ItffWY5O2H6P2zg5nnqYZbPuFnfKxn1C4RVdGDUEv_u8cbV6eN6vXrHpfv62eqkxxEBmFjpSMtrxpoMx5pwhIKhvdUN5yUhBlRMGEkboQJaddS3mujJR5ITrTKgVsju7Pb_-Ua-dTVX-qJ_V6Uk-Bh3MgeXwfdIj1zh78mCrVlEhgvAQm2C-ubF5_
ContentType Paper
Journal Article
Copyright 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1101.1776
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1101_1776
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a517-21d0932c5bb1945da01828beb25c5060af7637f8e67952dc254af88467dfcaa13
IEDL.DBID 8FG
IngestDate Wed Jul 23 01:57:19 EDT 2025
Mon Jun 30 09:23:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a517-21d0932c5bb1945da01828beb25c5060af7637f8e67952dc254af88467dfcaa13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2081359137?pq-origsite=%requestingapplication%
PQID 2081359137
PQPubID 2050157
ParticipantIDs arxiv_primary_1101_1776
proquest_journals_2081359137
PublicationCentury 2000
PublicationDate 20110110
2011-01-10
PublicationDateYYYYMMDD 2011-01-10
PublicationDate_xml – month: 01
  year: 2011
  text: 20110110
  day: 10
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2011
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4520496
SecondaryResourceType preprint
Snippet Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it,...
Adaptive approximation (or interpolation) takes into account local variations in the behavior of the given function, adjusts the approximant depending on it,...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Adaptive algorithms
Approximation
Asymptotic properties
Interpolation
Mathematical analysis
Mathematics - Numerical Analysis
Operators (mathematics)
Partitions
Polynomials
Splines
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21nVgQiK9CAQ-sgdqN42REiFIhPpZW6hb5U6oQTZSWqvx7znbKgpAyWfbyzvZ75_ieAW5yi5pW4_ouUmGT1DiaSCl1IphSWaYYc9LXDr--ZZNZ-jzn8w5c72phZLNdbKI_sFrdITfRWypE1oUuYz63enqfx5-NwYmr7f7bDRVmaPmzsQa2GB_AfivzyH2MyyF07PIIZt4duSZy9f1Zryvvj0wqR1CBkRds9ebe20WsJCS2aaqGoKAki_gQVryyRvBTSD8fpPYhD3PmGKbjx-nDJGmfNUgkR0pg1AxRNGmuFC1SbuQQJX6uMMPl2rv9SYdLXrjcZqLgzGjM4KTLvUwwTktJRyfQW1ZLewZEWYNblZaF0TSlmufOWoSYDk1w8tJ9OA1wlHV0rig9UKUHqg-DHUBlO2lXJUN5MOIFHYnzfwdewF48VfUX4QbQWzdf9hJpea2uQnB-ADpnj3M
  priority: 102
  providerName: Cornell University
Title Sharp asymptotics of the Lp approximation error for interpolation on block partitions
URI https://www.proquest.com/docview/2081359137
https://arxiv.org/abs/1101.1776
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60QfDm22ote_Aa7eadk6C0FbG1SAu9hX1CEZuYVKkXf7szm1QPghAC2dxmZme-mZ39hpDLRAOmlbC_0yDWbqAMcznn0o09IaJIeJ7heHd4NI7uZ8HDPJw3Bbeqaavc-ETrqFUusUYOSXrC_DBlfnxTvLk4NQpPV5sRGtvEYRBp0M6TwfCnxuJFMSBmvz6dtNRd17xcLz6w951dsRiJRhy78scT2_Ay2CPOhBe63CdbenlAdmxXpqwOyQzplAvKq8_XYpUjoTLNDQXIRh9hFdnA14v66iHVZZmXFBAoXdSTs-oeNwqPgHj1Qgu0EWtkR2Q66E_v7t1mDoLLQ4ghHlM9QFkyFIKlQah4D3KCREBKHEqkB-QGfERsEh3FaegpCSkfNwniCmUk58w_Jq1lvtSnhAqtwLdJnirJAibDxGgNOmE9Zam_ZJucWHFkRU11kaGgMhRUm3Q2AsoaK6-yX52c_f_7nOzWtVhsn-uQ1qp81xcQzFeiazXWJc5tfzx5hq_h0xzeo6_-NyGcpFU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60RfTm2_rcgx6j3W2eBxHUlqq1FKngLewrUMQmplXbH-V_dCZp9SB4E3LawB5mv3ntznwDcBxajGk16nfkBtZxTcIdKaV2AqGU7yshEkm9w_ddv_3o3j55TwvwOe-FobLKuU0sDLVJNd2RY5Ie8oYX8UZwkb06NDWKXlfnIzRKWNzZ6QembKPzm2s83xMhWs3-VduZTRVwpIcWWXCDSbzQnlKYv3tG1jHCDhUmmJ4msj2ZoMYFSWj9IPKE0ZhAySQkL20SLSVv4LaLUHWpobUC1ctmt_fwfakj_ABD9Eb5HFpwhZ3JfDJ4p2J7fsoDYjapFiu_TH_hz1qrUO3JzOZrsGCH67BUlIHq0QY8En9zxuRo-pKNU2JwZmnCMEZkHVwl-vHJoOx1ZDbP05xhyMsG5aiusqiO4afQQT6zjEBZoHoT-v8hoi2oDNOh3QGmrEFjqmVkNHe59sLEWgQBr5uCa0zXYLsQR5yV3BoxCSomQdVgfy6geKZWo_gHBLt__z6C5Xb_vhN3brp3e7BSXgRT7d4-VMb5mz3ASGKsDmfnxyD-Z8R8ASoe3UI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+asymptotics+of+the+Lp+approximation+error+for+interpolation+on+block+partitions&rft.jtitle=arXiv.org&rft.au=Babenko%2C+Yuliya&rft.au=Leskevich%2C+Tatyana&rft.au=Jean-Marie+Mirebeau&rft.date=2011-01-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1101.1776