Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts
Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highl...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 15; pp. 5088 - 5101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
18.04.2018
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.7b12074 |
Cover
Loading…
Abstract | Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. |
---|---|
AbstractList | Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N -aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N , N -diaryl dihydrophenazines, characterization of noncore modified N -aryl phenoxazines in the excited state demonstrated that the nature of the N -aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses. |
Author | Damrauer, Niels H Miyake, Garret M McCarthy, Blaine G Lim, Chern-Hooi Sartor, Steven M Pearson, Ryan M |
AuthorAffiliation | Department of Chemistry Department of Chemistry and Biochemistry Materials Science and Engineering University of Colorado |
AuthorAffiliation_xml | – name: University of Colorado – name: Materials Science and Engineering – name: Department of Chemistry – name: Department of Chemistry and Biochemistry – name: Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States – name: Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States – name: Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309-0215, United States |
Author_xml | – sequence: 1 givenname: Blaine G surname: McCarthy fullname: McCarthy, Blaine G organization: Department of Chemistry – sequence: 2 givenname: Ryan M surname: Pearson fullname: Pearson, Ryan M organization: Department of Chemistry – sequence: 3 givenname: Chern-Hooi orcidid: 0000-0003-1823-6305 surname: Lim fullname: Lim, Chern-Hooi organization: Department of Chemistry – sequence: 4 givenname: Steven M surname: Sartor fullname: Sartor, Steven M – sequence: 5 givenname: Niels H orcidid: 0000-0001-8337-9375 surname: Damrauer fullname: Damrauer, Niels H – sequence: 6 givenname: Garret M orcidid: 0000-0003-2451-7090 surname: Miyake fullname: Miyake, Garret M email: garret.miyake@colostate.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29513533$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS3Uik4LO9YoSyRI8U_sOBskFAFFqtQKyhbLceyORxl7sB3osOIdeEOepA4TRoBAsLKu73eOru65x-DAeacBeIDgKYIYPV1JFU_rDmFYV3fAAlEMS4owOwALCCEua87IETiOcZXLCnN0FxzhhiJCCVmA929TGFUag_725etl8Bsd0rZ4oweZrHdxaTexMD4UV9IOPlh3XVwutfM38rN1OhYyZrYf1a7hkw-69zdFK5MctjHFe-DQyCHq-_N7At69fHHVnpXnF69et8_PS0kRS2WvDMUGUWV62BusiEJNV3NZo9p0FdOYNhBVUHLGmKHGMCr7XmIEDeGyYoScgGc7383YrXWvtEtBDmIT7FqGrfDSil87zi7Ftf8oaIMh43U2eDQbBP9h1DGJtY1KD4N02o9RYIQYZxXE9N8oRJkmnOOMPvx5rP08P_afgcc74JPuvInKaqf0HpsCI5BVGE5JNpnm_0-3Nn3PsPWjS1n6ZCdVwccYtNnLEBTTHYnpjsR8RxnHv-Fqtsvbs8PfRPNips-VH4PLkf8ZvQU9cdpT |
CitedBy_id | crossref_primary_10_1002_pi_6336 crossref_primary_10_1039_C8QO00445E crossref_primary_10_1021_acs_joc_1c02827 crossref_primary_10_1002_pola_29167 crossref_primary_10_1021_acs_macromol_4c02612 crossref_primary_10_1142_S1088424619300131 crossref_primary_10_1021_jacs_2c11364 crossref_primary_10_1039_D0PY00643B crossref_primary_10_1038_s41467_021_23170_4 crossref_primary_10_1021_acs_jpca_9b10400 crossref_primary_10_1039_D1CP03137F crossref_primary_10_1002_adma_201903850 crossref_primary_10_1039_D3CP04904C crossref_primary_10_1021_jacs_1c11700 crossref_primary_10_1002_marc_202100221 crossref_primary_10_1016_j_matt_2023_06_040 crossref_primary_10_1039_D0TA09812D crossref_primary_10_1039_D2CC05250D crossref_primary_10_1016_j_mtchem_2022_100959 crossref_primary_10_1021_acs_joc_3c01801 crossref_primary_10_1016_j_trechm_2021_02_006 crossref_primary_10_1021_acsmacrolett_9b00933 crossref_primary_10_1021_acsmaterialslett_2c00050 crossref_primary_10_1002_ange_202307550 crossref_primary_10_1021_jacs_8b01001 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1021_acs_jpcb_3c05879 crossref_primary_10_1021_jacs_3c08503 crossref_primary_10_1002_ange_201805473 crossref_primary_10_1021_acsmacrolett_8b00497 crossref_primary_10_1039_d0pp00127a crossref_primary_10_1002_anie_202304608 crossref_primary_10_1021_acs_macromol_0c02032 crossref_primary_10_1039_D1SC05098B crossref_primary_10_1039_D1SC02150H crossref_primary_10_1073_pnas_2119267119 crossref_primary_10_1039_D1OB00396H crossref_primary_10_1016_j_cej_2019_01_087 crossref_primary_10_1002_ange_202304608 crossref_primary_10_1002_anie_202107915 crossref_primary_10_1002_ange_202110491 crossref_primary_10_1002_macp_202300428 crossref_primary_10_1002_ange_201808642 crossref_primary_10_1038_s41467_020_20645_8 crossref_primary_10_1021_acs_orglett_2c03600 crossref_primary_10_1039_D4PY01369G crossref_primary_10_1515_zpch_2020_1624 crossref_primary_10_1002_anie_201910828 crossref_primary_10_1039_C9QO00536F crossref_primary_10_1021_acsaem_8b02098 crossref_primary_10_1021_acscatal_1c05318 crossref_primary_10_1021_jacs_8b09740 crossref_primary_10_1021_jacs_9b12335 crossref_primary_10_1002_anie_201805473 crossref_primary_10_1039_D2TC02263J crossref_primary_10_1002_anie_201912455 crossref_primary_10_1021_acsmacrolett_1c00055 crossref_primary_10_1021_acs_macromol_8b02688 crossref_primary_10_1039_D0PY01413C crossref_primary_10_1002_anie_202110491 crossref_primary_10_1002_chem_202303497 crossref_primary_10_3390_molecules27175364 crossref_primary_10_1039_C9CC07040K crossref_primary_10_1021_acscatal_0c00200 crossref_primary_10_1140_epjd_s10053_022_00577_2 crossref_primary_10_1002_pol_20210534 crossref_primary_10_1021_jacs_0c12805 crossref_primary_10_1021_acs_jctc_0c00850 crossref_primary_10_1002_cptc_202200289 crossref_primary_10_1038_s41557_024_01546_5 crossref_primary_10_1002_ange_201912455 crossref_primary_10_1039_C9PY00393B crossref_primary_10_1002_chem_202000052 crossref_primary_10_1038_s41467_022_31359_4 crossref_primary_10_1134_S1811238222700035 crossref_primary_10_1039_C9NR04664J crossref_primary_10_1039_C8SC02038H crossref_primary_10_1002_bkcs_12711 crossref_primary_10_1016_j_ccr_2019_213129 crossref_primary_10_1021_acs_jpclett_4c00895 crossref_primary_10_1002_pol_20220320 crossref_primary_10_1021_jacs_0c07347 crossref_primary_10_1002_ange_201910828 crossref_primary_10_1002_cctc_202001690 crossref_primary_10_1070_RCR4964 crossref_primary_10_1002_anie_201808642 crossref_primary_10_1039_D2QO01316A crossref_primary_10_1016_j_progpolymsci_2022_101555 crossref_primary_10_1021_acs_macromol_1c00501 crossref_primary_10_1002_macp_202100340 crossref_primary_10_1021_acs_jpcb_1c05069 crossref_primary_10_1002_ange_202312534 crossref_primary_10_1039_C9PY01884K crossref_primary_10_1039_D0NR00402B crossref_primary_10_1002_chem_201804603 crossref_primary_10_1016_j_cej_2021_130395 crossref_primary_10_1039_D0SC01194K crossref_primary_10_1021_jacs_1c00279 crossref_primary_10_1039_C9CC01332F crossref_primary_10_1063_1_5082620 crossref_primary_10_1021_jacs_9b01096 crossref_primary_10_1021_acs_joc_1c01883 crossref_primary_10_1021_acs_macromol_0c02245 crossref_primary_10_1002_anie_202214055 crossref_primary_10_1002_ejoc_202300279 crossref_primary_10_1021_acs_chemrev_1c00603 crossref_primary_10_1038_s41467_019_10441_4 crossref_primary_10_1038_s41467_020_20640_z crossref_primary_10_1021_acs_inorgchem_2c03735 crossref_primary_10_1021_acs_macromol_3c00501 crossref_primary_10_1002_anie_202312534 crossref_primary_10_1039_C9PY01370A crossref_primary_10_1002_cjoc_202300206 crossref_primary_10_1021_acscatal_0c03802 crossref_primary_10_1021_acs_jpclett_9b01970 crossref_primary_10_1002_ange_202006416 crossref_primary_10_1002_ange_202214055 crossref_primary_10_1021_acs_jpca_0c03065 crossref_primary_10_1002_cptc_202300090 crossref_primary_10_1021_acs_jpclett_1c00759 crossref_primary_10_1002_ange_202107915 crossref_primary_10_1002_slct_202001932 crossref_primary_10_1002_aic_18155 crossref_primary_10_3390_molecules29112453 crossref_primary_10_1039_D1PY01060C crossref_primary_10_1063_5_0084554 crossref_primary_10_1002_cssc_202000465 crossref_primary_10_1002_marc_201800616 crossref_primary_10_1021_jacs_0c10707 crossref_primary_10_1021_acs_jpca_9b03286 crossref_primary_10_1021_acs_jpclett_4c02670 crossref_primary_10_1038_s41467_022_30395_4 crossref_primary_10_1021_acs_macromol_8b02517 crossref_primary_10_1002_cptc_202200009 crossref_primary_10_1002_tcr_202200267 crossref_primary_10_1002_ajoc_202300067 crossref_primary_10_1016_j_eurpolymj_2019_05_023 crossref_primary_10_1021_acs_macromol_0c00377 crossref_primary_10_1080_00397911_2020_1849723 crossref_primary_10_1021_acscatal_4c04920 crossref_primary_10_1002_aic_18372 crossref_primary_10_1021_acs_jpcc_2c04920 crossref_primary_10_1021_acs_macromol_1c00090 crossref_primary_10_1002_advs_201902451 crossref_primary_10_1016_j_progpolymsci_2019_101186 crossref_primary_10_1002_cctc_202200485 crossref_primary_10_1002_ajoc_202100162 crossref_primary_10_1021_acs_chemrev_1c00409 crossref_primary_10_1021_acs_orglett_8b02420 crossref_primary_10_3390_molecules28062450 crossref_primary_10_1016_j_dyepig_2020_108992 crossref_primary_10_1590_0104_1428_10119 crossref_primary_10_1021_acs_macromol_8b01401 crossref_primary_10_1039_D1OB01133B crossref_primary_10_1038_s41467_021_23255_0 crossref_primary_10_1021_jacs_8b08933 crossref_primary_10_1002_macp_202200382 crossref_primary_10_1021_acs_energyfuels_1c02675 crossref_primary_10_1002_aoc_6746 crossref_primary_10_1039_C8CC04048F crossref_primary_10_1002_cptc_202000153 crossref_primary_10_1002_adsc_202401396 crossref_primary_10_1039_D4SC03438D crossref_primary_10_1021_acs_macromol_1c00482 crossref_primary_10_1039_D0TA03112G crossref_primary_10_1039_C9CC00282K crossref_primary_10_1002_anie_202307550 crossref_primary_10_1039_D1QO01914G crossref_primary_10_1039_D1CC05850A crossref_primary_10_1039_D2PY00470D crossref_primary_10_1016_j_checat_2022_08_013 crossref_primary_10_1039_D1SC02258J crossref_primary_10_1021_jacs_9b07373 crossref_primary_10_1039_C8CC02783H crossref_primary_10_3390_molecules24112122 crossref_primary_10_1002_cjoc_70019 crossref_primary_10_1021_acscatal_3c01474 crossref_primary_10_1021_acs_chemmater_8b01359 crossref_primary_10_1002_anie_202006416 crossref_primary_10_1039_D2QI00173J crossref_primary_10_1039_D3QM00394A crossref_primary_10_1021_acscatal_3c04060 crossref_primary_10_1016_j_eurpolymj_2024_112802 crossref_primary_10_1002_ejoc_202000720 crossref_primary_10_1021_acs_jpca_1c00855 crossref_primary_10_1021_jacs_8b06291 crossref_primary_10_1016_j_gresc_2022_12_001 crossref_primary_10_1021_acs_chemrev_9b00744 crossref_primary_10_1002_chem_202403543 crossref_primary_10_1039_D3SC02768F crossref_primary_10_1002_macp_201900022 crossref_primary_10_1002_cmtd_202200069 crossref_primary_10_1021_acscatal_8b02885 crossref_primary_10_1039_D4GC04293J crossref_primary_10_1002_slct_202004194 crossref_primary_10_1021_jacs_9b07230 crossref_primary_10_1038_s41557_022_01092_y crossref_primary_10_1038_s41929_018_0156_8 crossref_primary_10_1021_acs_macromol_0c00106 crossref_primary_10_1021_acscatal_9b03606 crossref_primary_10_1002_cssc_201900414 |
Cites_doi | 10.1126/science.1239176 10.1021/mz500242a 10.1021/cr940534g 10.1021/ma502044f 10.1021/cr00032a005 10.1021/acs.macromol.7b00502 10.1016/j.polymer.2004.12.061 10.1021/acs.chemrev.6b00057 10.1039/C4TC02530J 10.1021/acs.joc.6b01240 10.1002/pola.28574 10.1039/C7PY01833A 10.1016/S0040-4039(01)94515-0 10.1021/cr9901182 10.1021/ja510389m 10.1055/s-0035-1561297 10.1021/cr300503r 10.1126/science.aad8313 10.1126/science.aaf3935 10.1021/ja00511a007 10.1021/acs.macromol.8b00134 10.1021/ja038656q 10.1002/anie.201701425 10.1021/cm702212w 10.1002/marc.201700040 10.1021/jacs.5b03048 10.1016/S0079-6700(01)00003-X 10.1021/ma3001719 10.1002/adsc.201400871 10.1021/ja052967e 10.1021/jacs.6b02723 10.1021/jacs.5b13455 10.1021/cr900234b 10.1039/b000704h 10.1126/science.275.5296.54 10.1021/acs.joc.6b01449 10.1002/adma.201402532 10.1021/jp109613t 10.1021/ja506379s 10.1021/jo202538x 10.1021/jacs.6b08068 10.1021/cr00028a006 10.1039/C6CS00185H 10.1021/jo00394a044 10.1002/anie.201711053 10.1038/nature11687 10.1002/anie.201203639 10.1039/B913880N 10.1021/acs.macromol.6b02791 10.1021/jacs.6b11022 10.1021/ma0510993 10.1021/cm402428a 10.1002/chem.201702926 10.1021/acs.joc.6b01034 10.1021/acs.chemrev.5b00671 10.1039/C6CS00526H 10.1039/C5CC04677G 10.1016/j.progpolymsci.2012.06.002 10.1039/c6cs00185h 10.1039/c5cc04677g 10.1039/b913880n 10.1039/c4tc02530j 10.1039/c6cs00526h 10.1039/c7py01833a |
ContentType | Journal Article |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ HBEAY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.7b12074 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2018 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Web of Science MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 5101 |
ExternalDocumentID | PMC5920687 29513533 000430642000029 10_1021_jacs_7b12074 h47100953 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Advanced Research Projects Agency-Energy grantid: DE-AR0000683 – fundername: NSF; National Science Foundation (NSF) grantid: ACI-1053575 – fundername: Colorado State University – fundername: NSF GRFPs – fundername: National Institute of General Medical Sciences of the National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Institute of General Medical Sciences (NIGMS) grantid: R35GM119702 – fundername: NIH; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA grantid: F32GM122392 – fundername: University of Colorado Boulder – fundername: American Chemical Society Petroleum Research Fund; American Chemical Society grantid: 56501-DNI7 – fundername: NIGMS NIH HHS grantid: R35 GM119702 – fundername: NIGMS NIH HHS grantid: F32 GM122392 – fundername: NIH HHS grantid: S10 OD021814 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a516t-dcf52f15cfd0df2c3c19b78a717fb46e2590140a8666f5ff65adda210f38a4633 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 208 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000430642000029 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 14:15:17 EDT 2025 Fri Sep 05 02:57:50 EDT 2025 Thu Sep 04 21:36:58 EDT 2025 Mon Jul 21 05:53:30 EDT 2025 Sat Sep 06 05:33:42 EDT 2025 Wed Aug 06 11:17:54 EDT 2025 Tue Jul 01 03:21:28 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | HALIDES POLYMERS ENERGY MECHANISM LIGHT COMPLEXES STATE RADICAL POLYMERIZATION POTENTIALS ORGANIC SEMICONDUCTORS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a516t-dcf52f15cfd0df2c3c19b78a717fb46e2590140a8666f5ff65adda210f38a4633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2451-7090 0000-0001-8337-9375 0000-0003-1823-6305 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5920687 |
PMID | 29513533 |
PQID | 2012113882 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1021_jacs_7b12074 proquest_miscellaneous_2012113882 webofscience_primary_000430642000029 crossref_citationtrail_10_1021_jacs_7b12074 pubmed_primary_29513533 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920687 webofscience_primary_000430642000029CitationCount acs_journals_10_1021_jacs_7b12074 proquest_miscellaneous_2116864025 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-18 |
PublicationDateYYYYMMDD | 2018-04-18 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | (ref13/cit13b) 2007; 281 ref1/cit1h ref1/cit1e ref1/cit1d ref1/cit1g ref1/cit1f ref23/cit23a ref23/cit23b ref13/cit13a ref23/cit23c ref13/cit13c ref2/cit2c ref23/cit23d ref2/cit2b ref2/cit2a ref1/cit1a ref1/cit1c ref1/cit1b ref5/cit5b ref17/cit17 ref5/cit5c ref10/cit10 ref5/cit5a ref16/cit16b ref16/cit16a ref19/cit19 ref21/cit21 ref3/cit3b ref22/cit22a ref3/cit3a ref11/cit11a ref22/cit22c ref22/cit22b ref7/cit7b ref7/cit7a ref5/cit5f ref5/cit5g ref5/cit5d ref5/cit5e ref15/cit15a ref9/cit9b ref9/cit9a ref11/cit11 ref15/cit15b ref15/cit15c ref8/cit8a ref8/cit8b ref14/cit14 ref18/cit18b ref4/cit4a ref18/cit18c ref4/cit4b ref4/cit4c ref18/cit18a ref12/cit12 ref20/cit20a ref20/cit20b ref4/cit4d ref6/cit6a ref6/cit6b Prier, CK (WOS:000321810600018) 2013; 113 (000430642000029.1) 2007; 281 Miyake, G. M. (000430642000029.28) 2014; 47 Isse, AA (WOS:000286639500010) 2011; 115 Treat, NJ (WOS:000337644500018) 2014; 3 Kainz, QM (WOS:000369810000033) 2016; 351 Zhu, Y (WOS:000231897900018) 2005; 38 Tao, Y (WOS:000346263100001) 2014; 26 Frick, E (WOS:000355890600023) 2015; 137 SAUVAGE, JP (WOS:A1994NT84800006) 1994; 94 Chen, M (WOS:000383410100012) 2016; 116 Yoon, TP (WOS:000342905600001) 2014; 356 Dixon, IM (WOS:000089938800002) 2000; 29 Discekici, EH (WOS:000357618200040) 2015; 51 Romero, NA (WOS:000383410100011) 2016; 116 HEDSTRAND, DM (WOS:A1978ES87400025) 1978 Ryan, MD (WOS:000404492800003) 2017; 50 Moad, G (WOS:000231573100075) 2005; 46 Theriot, JC (WOS:000404894600015) 2017; 38 Fors, BP (WOS:000307785700035) 2012; 51 Pearson, RM (WOS:000382901800054) 2016; 138 Shaw, MH (WOS:000381847600002) 2016; 81 Kamigaito, M (WOS:000172874900005) 2001; 101 Ramsey, BL (WOS:000399263900007) 2017; 50 Poelma, SO (WOS:000381847600032) 2016; 81 Schultz, DM (WOS:000332309600033) 2014; 343 Michaudel, Q (WOS:000406798700003) 2017; 56 Zhu, Y (WOS:000257279200011) 2008; 20 Treat, NJ (WOS:000344906100049) 2014; 136 Pan, XC (WOS:000371103900054) 2016; 138 Zhao, YC (WOS:000425473600030) 2018; 51 Uoyama, H (WOS:000312259300038) 2012; 492 Ouchi, M (WOS:000271856900002) 2009; 109 Ryan, MD (WOS:000406937100017) 2017; 55 Fukuzumi, S (WOS:000188926600006) 2004; 126 Damrauer, N. H. (INSPEC:5494985) 1997; 275 Higgins, RF (WOS:000375244700043) 2016; 138 REICHARDT, C (WOS:A1994PY50400005) 1994; 94 Corrigan, N (WOS:000387978000007) 2016; 45 Matyjaszewski, K (WOS:000304224700001) 2012; 45 Matyjaszewski, K (WOS:000171047000008) 2001; 101 VANBERGEN, TJ (WOS:A1979HY82300044) 1979; 44 Gong, HH (WOS:000418798600048) 2018; 57 Roth, HG (WOS:000371688400009) 2016; 27 Buss, BL (WOS:000428671100021) 2018; 9 Lee, J (WOS:000350693200003) 2015; 3 Joshi-Pangu, A (WOS:000381847600042) 2016; 81 Benniston, AC (WOS:000233445900029) 2005; 127 Nicolas, J (WOS:000314740300003) 2013; 38 BOCK, CR (WOS:A1979HG43300007) 1979; 101 Tucker, JW (WOS:000300340000001) 2012; 77 Narayanam, JMR (WOS:000285390900008) 2011; 40 Coessens, V (WOS:000168951100001) 2001; 26 Arias-Rotondo, DM (WOS:000386342500001) 2016; 45 Lim, CH (WOS:000392036900053) 2017; 139 Ribelli, TG (WOS:000342328200045) 2014; 136 Du, Y (WOS:000407803400003) 2017; 23 |
References_xml | – ident: ref1/cit1c doi: 10.1126/science.1239176 – ident: ref6/cit6b doi: 10.1021/mz500242a – ident: ref22/cit22a doi: 10.1021/cr940534g – ident: ref5/cit5e doi: 10.1021/ma502044f – ident: ref17/cit17 doi: 10.1021/cr00032a005 – ident: ref11/cit11 doi: 10.1021/acs.macromol.7b00502 – ident: ref23/cit23c doi: 10.1016/j.polymer.2004.12.061 – ident: ref4/cit4c doi: 10.1021/acs.chemrev.6b00057 – ident: ref18/cit18a doi: 10.1039/C4TC02530J – ident: ref4/cit4d doi: 10.1021/acs.joc.6b01240 – ident: ref7/cit7b doi: 10.1002/pola.28574 – ident: ref11/cit11a doi: 10.1039/C7PY01833A – ident: ref2/cit2a doi: 10.1016/S0040-4039(01)94515-0 – ident: ref23/cit23d doi: 10.1021/cr9901182 – ident: ref5/cit5b doi: 10.1021/ja510389m – ident: ref19/cit19 doi: 10.1055/s-0035-1561297 – ident: ref1/cit1b doi: 10.1021/cr300503r – ident: ref4/cit4b doi: 10.1126/science.aad8313 – ident: ref5/cit5f doi: 10.1126/science.aaf3935 – ident: ref13/cit13a doi: 10.1021/ja00511a007 – ident: ref16/cit16a doi: 10.1021/acs.macromol.8b00134 – ident: ref15/cit15c doi: 10.1021/ja038656q – ident: ref1/cit1h doi: 10.1002/anie.201701425 – ident: ref9/cit9b doi: 10.1021/cm702212w – ident: ref20/cit20a doi: 10.1002/marc.201700040 – ident: ref8/cit8a doi: 10.1021/jacs.5b03048 – ident: ref22/cit22b doi: 10.1016/S0079-6700(01)00003-X – ident: ref23/cit23a doi: 10.1021/ma3001719 – ident: ref1/cit1d doi: 10.1002/adsc.201400871 – ident: ref15/cit15a doi: 10.1021/ja052967e – ident: ref4/cit4a doi: 10.1021/jacs.6b02723 – ident: ref20/cit20b doi: 10.1021/jacs.5b13455 – ident: ref22/cit22c doi: 10.1021/cr900234b – ident: ref13/cit13c doi: 10.1039/b000704h – ident: ref3/cit3b doi: 10.1126/science.275.5296.54 – ident: ref1/cit1g doi: 10.1021/acs.joc.6b01449 – ident: ref18/cit18c doi: 10.1002/adma.201402532 – ident: ref21/cit21 doi: 10.1021/jp109613t – ident: ref8/cit8b doi: 10.1021/ja506379s – ident: ref5/cit5d doi: 10.1021/jacs.5b13455 – ident: ref1/cit1a doi: 10.1021/jo202538x – ident: ref5/cit5g doi: 10.1021/jacs.6b08068 – ident: ref3/cit3a doi: 10.1021/cr00028a006 – ident: ref1/cit1e doi: 10.1039/C6CS00185H – ident: ref2/cit2b doi: 10.1021/jo00394a044 – ident: ref16/cit16b doi: 10.1002/anie.201711053 – ident: ref18/cit18b doi: 10.1038/nature11687 – ident: ref6/cit6a doi: 10.1002/anie.201203639 – ident: ref2/cit2c doi: 10.1039/B913880N – ident: ref10/cit10 doi: 10.1021/acs.macromol.6b02791 – ident: ref7/cit7a doi: 10.1021/jacs.6b11022 – ident: ref9/cit9a doi: 10.1021/ma0510993 – ident: ref15/cit15b doi: 10.1021/cm402428a – ident: ref12/cit12 doi: 10.1002/chem.201702926 – ident: ref5/cit5a doi: 10.1021/acs.joc.6b01034 – ident: ref1/cit1f doi: 10.1021/acs.chemrev.5b00671 – ident: ref14/cit14 doi: 10.1039/C6CS00526H – ident: ref5/cit5c doi: 10.1039/C5CC04677G – volume: 281 volume-title: Top. Curr. Chem. year: 2007 ident: ref13/cit13b – ident: ref23/cit23b doi: 10.1016/j.progpolymsci.2012.06.002 – volume: 136 start-page: 13303 year: 2014 ident: WOS:000342328200045 article-title: How are Radicals (Re)Generated in Photochemical ATRP? publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja506379s – volume: 45 start-page: 6165 year: 2016 ident: WOS:000387978000007 article-title: Photocatalysis in organic and polymer synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00185h – volume: 138 start-page: 11399 year: 2016 ident: WOS:000382901800054 article-title: Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b08068 – volume: 81 start-page: 6898 year: 2016 ident: WOS:000381847600002 article-title: Photoredox Catalysis in Organic Chemistry publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.6b01449 – volume: 77 start-page: 1617 year: 2012 ident: WOS:000300340000001 article-title: Shining Light on Photoredox Catalysis: Theory and Synthetic Applications publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo202538x – volume: 139 start-page: 348 year: 2017 ident: WOS:000392036900053 article-title: Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b11022 – volume: 356 start-page: 2739 year: 2014 ident: WOS:000342905600001 article-title: Opportunities in Photocatalytic Synthesis publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201400871 – volume: 126 start-page: 1600 year: 2004 ident: WOS:000188926600006 article-title: Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja038656q – start-page: 1255 year: 1978 ident: WOS:A1978ES87400025 article-title: LIGHT-INDUCED AND DYE ACCELERATED REDUCTIONS OF PHENACYL ONIUM SALTS BY 1,4-DIHYDROPYRIDINES publication-title: TETRAHEDRON LETTERS – volume: 275 start-page: 54 year: 1997 ident: INSPEC:5494985 article-title: Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+ publication-title: Science – volume: 26 start-page: 337 year: 2001 ident: WOS:000168951100001 article-title: Functional polymers by atom transfer radical polymerization publication-title: PROGRESS IN POLYMER SCIENCE – volume: 51 start-page: 8850 year: 2012 ident: WOS:000307785700035 article-title: Control of a Living Radical Polymerization of Methacrylates by Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201203639 – volume: 3 start-page: 580 year: 2014 ident: WOS:000337644500018 article-title: Controlled Radical Polymerization of Acrylates Regulated by Visible Light publication-title: ACS MACRO LETTERS doi: 10.1021/mz500242a – volume: 38 start-page: 7983 year: 2005 ident: WOS:000231897900018 article-title: Phenoxazine-based conjugated polymers: A new class of organic semiconductors for field-effect transistors publication-title: MACROMOLECULES doi: 10.1021/ma0510993 – volume: 44 start-page: 4953 year: 1979 ident: WOS:A1979HY82300044 article-title: CHEMISTRY OF DIHYDROPYRIDINES .9. HYDRIDE TRANSFER FROM 1,4-DIHYDROPYRIDINES TO SP3-HYBRIDIZED CARBON IN SULFONIUM SALTS AND ACTIVATED HALIDES - STUDIES WITH NAD(P)H MODELS publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 26 start-page: 7931 year: 2014 ident: WOS:000346263100001 article-title: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201402532 – volume: 115 start-page: 678 year: 2011 ident: WOS:000286639500010 article-title: Estimation of Standard Reduction Potentials of Halogen Atoms and Alkyl Halides publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp109613t – volume: 50 start-page: 2668 year: 2017 ident: WOS:000399263900007 article-title: Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow publication-title: MACROMOLECULES doi: 10.1021/acs.macromol.6b02791 – volume: 281 year: 2007 ident: 000430642000029.1 publication-title: Top. Curr. Chem. – volume: 55 start-page: 3017 year: 2017 ident: WOS:000406937100017 article-title: Solvent Effects on the Intramolecular Charge Transfer Character of N,N-Diaryl Dihydrophenazine Catalysts for Organocatalyzed Atom Transfer Radical Polymerization publication-title: JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY doi: 10.1002/pola.28574 – volume: 94 start-page: 993 year: 1994 ident: WOS:A1994NT84800006 article-title: RUTHENIUM(II) AND OSMIUM(II) BIS(TERPYRIDINE) COMPLEXES IN COVALENTLY-LINKED MULTICOMPONENT SYSTEMS - SYNTHESIS, ELECTROCHEMICAL-BEHAVIOR, ABSORPTION-SPECTRA, AND PHOTOCHEMICAL AND PHOTOPHYSICAL PROPERTIES publication-title: CHEMICAL REVIEWS – volume: 51 start-page: 11705 year: 2015 ident: WOS:000357618200040 article-title: A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c5cc04677g – volume: 116 start-page: 10167 year: 2016 ident: WOS:000383410100012 article-title: Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00671 – volume: 27 start-page: 714 year: 2016 ident: WOS:000371688400009 article-title: Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry publication-title: SYNLETT doi: 10.1055/s-0035-1561297 – volume: 81 start-page: 7244 year: 2016 ident: WOS:000381847600042 article-title: Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.6b01240 – volume: 492 start-page: 234 year: 2012 ident: WOS:000312259300038 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: NATURE doi: 10.1038/nature11687 – volume: 101 start-page: 2921 year: 2001 ident: WOS:000171047000008 article-title: Atom transfer radical polymerization publication-title: CHEMICAL REVIEWS doi: 10.1021/cr940534g – volume: 351 start-page: 681 year: 2016 ident: WOS:000369810000033 article-title: Asymmetric copper-catalyzed C-N cross-couplings induced by visible light publication-title: SCIENCE doi: 10.1126/science.aad8313 – volume: 101 start-page: 4815 year: 1979 ident: WOS:A1979HG43300007 article-title: ESTIMATION OF EXCITED-STATE REDOX POTENTIALS BY ELECTRON-TRANSFER QUENCHING - APPLICATION OF ELECTRON-TRANSFER THEORY TO EXCITED-STATE REDOX PROCESSES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 51 start-page: 938 year: 2018 ident: WOS:000425473600030 article-title: Organocatalyzed Photoredox Polymerization from Aromatic Sulfonyl Halides: Facilitating Graft from Aromatic C-H Bonds publication-title: MACROMOLECULES doi: 10.1021/acs.macromol.8b00134 – volume: 20 start-page: 4200 year: 2008 ident: WOS:000257279200011 article-title: New ambipolar organic semiconductors. 1. Synthesis, single-crystal structures, redox properties, and photophysics of phenoxazine-based donor-acceptor molecules publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/cm702212w – volume: 45 start-page: 4015 year: 2012 ident: WOS:000304224700001 article-title: Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives publication-title: MACROMOLECULES doi: 10.1021/ma3001719 – volume: 50 start-page: 4616 year: 2017 ident: WOS:000404492800003 article-title: Impact of Light Intensity on Control in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization publication-title: MACROMOLECULES doi: 10.1021/acs.macromol.7b00502 – volume: 47 start-page: 8255 year: 2014 ident: 000430642000029.28 publication-title: Macromolecules – volume: 94 start-page: 2319 year: 1994 ident: WOS:A1994PY50400005 article-title: SOLVATOCHROMIC DYES AS SOLVENT POLARITY INDICATORS publication-title: CHEMICAL REVIEWS – volume: 113 start-page: 5322 year: 2013 ident: WOS:000321810600018 article-title: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300503r – volume: 38 start-page: 63 year: 2013 ident: WOS:000314740300003 article-title: Nitroxide-mediated polymerization publication-title: PROGRESS IN POLYMER SCIENCE doi: 10.1016/j.progpolymsci.2012.06.002 – volume: 136 start-page: 16096 year: 2014 ident: WOS:000344906100049 article-title: Metal-Free Atom Transfer Radical Polymerization publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja510389m – volume: 38 year: 2017 ident: WOS:000404894600015 article-title: Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.201700040 – volume: 138 start-page: 2411 year: 2016 ident: WOS:000371103900054 article-title: Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b13455 – volume: 40 start-page: 102 year: 2011 ident: WOS:000285390900008 article-title: Visible light photoredox catalysis: applications in organic synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b913880n – volume: 46 start-page: 8458 year: 2005 ident: WOS:000231573100075 article-title: Advances in RAFT polymerization: the synthesis of polymers with defined end-groups publication-title: POLYMER doi: 10.1016/j.polymer.2004.12.061 – volume: 3 start-page: 2175 year: 2015 ident: WOS:000350693200003 article-title: Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c4tc02530j – volume: 109 start-page: 4963 year: 2009 ident: WOS:000271856900002 article-title: Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr900234b – volume: 343 start-page: 985 year: 2014 ident: WOS:000332309600033 article-title: Solar Synthesis: Prospects in Visible Light Photocatalysis publication-title: SCIENCE doi: 10.1126/science.1239176 – volume: 45 start-page: 5803 year: 2016 ident: WOS:000386342500001 article-title: The photophysics of photoredox catalysis: a roadmap for catalyst design publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00526h – volume: 9 start-page: 1658 year: 2018 ident: WOS:000428671100021 article-title: Synthesis of star polymers using organocatalyzed atom transfer radical polymerization through a core-first approach publication-title: POLYMER CHEMISTRY doi: 10.1039/c7py01833a – volume: 116 start-page: 10075 year: 2016 ident: WOS:000383410100011 article-title: Organic Photoredox Catalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00057 – volume: 57 start-page: 333 year: 2018 ident: WOS:000418798600048 article-title: Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201711053 – volume: 23 start-page: 10962 year: 2017 ident: WOS:000407803400003 article-title: Strongly Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201702926 – volume: 127 start-page: 16054 year: 2005 ident: WOS:000233445900029 article-title: Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja052967e – volume: 81 start-page: 7155 year: 2016 ident: WOS:000381847600032 article-title: Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.6b01034 – volume: 138 start-page: 5451 year: 2016 ident: WOS:000375244700043 article-title: Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b02723 – volume: 101 start-page: 3689 year: 2001 ident: WOS:000172874900005 article-title: Metal-catalyzed living radical polymerization publication-title: CHEMICAL REVIEWS doi: 10.1021/cr9901182 – volume: 56 start-page: 9670 year: 2017 ident: WOS:000406798700003 article-title: Cationic Polymerization: From Photoinitiation to Photocontrol publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201701425 – volume: 29 start-page: 385 year: 2000 ident: WOS:000089938800002 article-title: A family of luminescent coordination compounds: iridium(III) polyimine complexes publication-title: CHEMICAL SOCIETY REVIEWS – volume: 137 start-page: 6889 year: 2015 ident: WOS:000355890600023 article-title: Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b03048 |
SSID | ssj0004281 |
Score | 2.625321 |
Snippet | Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have... Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5088 |
SubjectTerms | Catalysis catalysts catalytic activity Chemistry Chemistry, Multidisciplinary density functional theory irradiation Molecular Structure molecular weight Oxazines - chemistry oxidation Oxidation-Reduction Photochemical Processes photochemical reactions Physical Sciences polymerization Polymethyl Methacrylate - chemical synthesis Polymethyl Methacrylate - chemistry polymethylmethacrylate Quantum Theory Science & Technology Structure-Activity Relationship white light |
Title | Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts |
URI | http://dx.doi.org/10.1021/jacs.7b12074 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000430642000029 https://www.ncbi.nlm.nih.gov/pubmed/29513533 https://www.proquest.com/docview/2012113882 https://www.proquest.com/docview/2116864025 https://pubmed.ncbi.nlm.nih.gov/PMC5920687 |
Volume | 140 |
WOS | 000430642000029 |
WOSCitedRecordID | wos000430642000029 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NatwwEB7a9NBemv7XSVscSE_Fy0qyZPkYTNNQaAkkgZxqZFlilxQ7RF5Icso79A37JBn5L91N0-ZksEYYjUeabzSjTwDbnkS8kDqNLI89qbbFOUe0iBSzpVFJYq32WwPfvou9o_jrMT--KZBdzeBTzw-k3SQpCEVn9xAeUSETz5G_kx3cnH-kkgwwN5GC9QXuq729A9Ju2QHdQpV_L45ccUit89ldhy_DEZ6u5uRksmiKib68zej4n3E9g6c9_gx3OoN5Dg9M9QIeZ8O1by_hx0HLKLs4M7-vfu37rfqz5iIca-Zm81MXItAND9W8K94L92emqs9bmmoXKoey5UJ3DTVG9Kasz8PM7xJduMa9gqPdz4fZXtRfwhApTkQTldpyagnXtpyWlmqmSVokUmEYaItYGOoPr8ZTJTEOstxawXHFVBhIWiZVLBh7DWtVXZm3EMq4FFIowvERWxsXttRTlRpcNJhFIBfAFuok7yeRy9v8OMX4xL_tNRXAp-Hv5bpnMfeXafy8Q_rjKH3asXfcIbc1GEKO6vY5E1WZeuFy2nLgMYxD_iFDCI4LA3EewJvOeMavUUSwDCF1AMmSWY0Cnt57uaWaz1qab57SKRp7ANt_GuDYsU3i-vDRQw6aBkDuI5b1OvOMB83GPRS-CU9QB9In0Ih8B2tog-Y94rCm-NBOwmth3TAL |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQL70d4plI5oVRrJ3acYxVRLdCuKnUr9UTkOLZ2BUqqOiu1nPgP_EN-CWMnm7ILRXuK5IzzmIwz33jGnwF2HYl4KVQWGZY4Um2DY44oHsnYVFqmqTHKTQ0cTfj4NPl0xs76xepuLQw-hMUrWZ_Ev2YXcDRB2JiWhKLPuw13EIdQR5W_n59cL4OkgizRbip43Ne5r_d2fkjZVT_0F7j8d43kml_yPujgPkyGp_elJ1_3Fm25p76vETtu_HoP4F6PRsP9znwewi1dP4LtfLkJ3GP4cuL5ZRcX-tePn8du4v6ivQqHCrrZ_NyGCHvDqZx3pXzh8UzXzaUnrbahtChbLVR3osH4XlfNZZi7OaMr29oncHrwYZqPo35LhkgywtuoUoZRQ5gy1agyVMWKZGUqJAaFpky4pm4pazKSAqMiw4zhDP-fEsNKEwuZ8Dh-Clt1U-vnEIqk4oJLwvCQGJOUplIjmWn8hcQGYV0AO6iToh9StvDZcorRimvtNRXA--VHLFTPae621vh2g_S7Qfq84_K4QW5naQ8FqttlUGStm4UtqGfEizEq-Y8MIfheGJazAJ51NjTcjSKejRFgB5CuWNcg4Mi-V8_U85kn_WYZHXGRBrD7px0OHX1K1wWTDoDQLACyiVje68zxH7QvNlD4W9geT48Oi8OPk88v4S7qQ7jUGhGvYAvtUb9GhNaWb_y4_A19nThs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXwTKVyQlutndhxjlVgVV7VirZST0SOY2tXoGRVZ6WWE_-Bf8gvYew8YBeKyilSPHl4Ms584xl_BthxJOKFUOnIsNiRahscc0TxkYxMqWWSGKPc1MCHA75_HL89YScbQPq1MPgSFu9kfRLfjepFaTqGAUcVhA1JQSj6vStw1WXsHF3-Xnb4aykkFaRHvIngUVfrvn6180XKrvqiPwDm3-sk13yT90OTW_Bx6IEvP_m8u2yKXfV1jdzxv7p4G252qDTca83oDmzo6i5cz_rN4O7Bp0PPM7s81T--fZ-6CfzT5jwcKulm84UNEf6GR3LelvSF05mu6jNPXm1DaVG2XKq2ocY4X5f1WZi5uaNz29j7cDx5fZTtj7qtGUaSEd6MSmUYNYQpU45LQ1WkSFokQmJwaIqYa-qWtMZjKTA6MswYzvA_KjG8NJGQMY-iLdis6ko_hFDEJRdcEoaH2Ji4MKUay1TjryQyCO8C2Ead5N3QsrnPmlOMWtzZTlMBvOw_ZK46bnO3xcaXC6RfDNKLltPjArnt3iZyVLfLpMhK10ubU8-MF2F08g8ZQrBfGJ6zAB60djQ8jSKujRBoB5CsWNgg4Ei_V1uq-cyTf7OUjrlIAtj53RaHC31q1wWVDojQNAByGbGs05njQWgeXULhz-Ha9NUkf__m4N1juIHqEC7DRsQT2ERz1E8RqDXFMz80fwJg9jrv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Property+Relationships+for+Tailoring+Phenoxazines+as+Reducing+Photoredox+Catalysts&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=McCarthy%2C+Blaine+G&rft.au=Pearson%2C+Ryan+M&rft.au=Lim%2C+Chern-Hooi&rft.au=Sartor%2C+Steven+M&rft.date=2018-04-18&rft.eissn=1520-5126&rft.volume=140&rft.issue=15&rft.spage=5088&rft_id=info:doi/10.1021%2Fjacs.7b12074&rft_id=info%3Apmid%2F29513533&rft.externalDocID=29513533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |