Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts

Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 15; pp. 5088 - 5101
Main Authors McCarthy, Blaine G, Pearson, Ryan M, Lim, Chern-Hooi, Sartor, Steven M, Damrauer, Niels H, Miyake, Garret M
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 18.04.2018
Amer Chemical Soc
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.7b12074

Cover

Loading…
Abstract Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly­(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
AbstractList Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N,N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly­(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N -aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N , N -diaryl dihydrophenazines, characterization of noncore modified N -aryl phenoxazines in the excited state demonstrated that the nature of the N -aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure–property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.
Author Damrauer, Niels H
Miyake, Garret M
McCarthy, Blaine G
Lim, Chern-Hooi
Sartor, Steven M
Pearson, Ryan M
AuthorAffiliation Department of Chemistry
Department of Chemistry and Biochemistry
Materials Science and Engineering
University of Colorado
AuthorAffiliation_xml – name: University of Colorado
– name: Materials Science and Engineering
– name: Department of Chemistry
– name: Department of Chemistry and Biochemistry
– name: Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
– name: Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
– name: Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309-0215, United States
Author_xml – sequence: 1
  givenname: Blaine G
  surname: McCarthy
  fullname: McCarthy, Blaine G
  organization: Department of Chemistry
– sequence: 2
  givenname: Ryan M
  surname: Pearson
  fullname: Pearson, Ryan M
  organization: Department of Chemistry
– sequence: 3
  givenname: Chern-Hooi
  orcidid: 0000-0003-1823-6305
  surname: Lim
  fullname: Lim, Chern-Hooi
  organization: Department of Chemistry
– sequence: 4
  givenname: Steven M
  surname: Sartor
  fullname: Sartor, Steven M
– sequence: 5
  givenname: Niels H
  orcidid: 0000-0001-8337-9375
  surname: Damrauer
  fullname: Damrauer, Niels H
– sequence: 6
  givenname: Garret M
  orcidid: 0000-0003-2451-7090
  surname: Miyake
  fullname: Miyake, Garret M
  email: garret.miyake@colostate.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29513533$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS3Uik4LO9YoSyRI8U_sOBskFAFFqtQKyhbLceyORxl7sB3osOIdeEOepA4TRoBAsLKu73eOru65x-DAeacBeIDgKYIYPV1JFU_rDmFYV3fAAlEMS4owOwALCCEua87IETiOcZXLCnN0FxzhhiJCCVmA929TGFUag_725etl8Bsd0rZ4oweZrHdxaTexMD4UV9IOPlh3XVwutfM38rN1OhYyZrYf1a7hkw-69zdFK5MctjHFe-DQyCHq-_N7At69fHHVnpXnF69et8_PS0kRS2WvDMUGUWV62BusiEJNV3NZo9p0FdOYNhBVUHLGmKHGMCr7XmIEDeGyYoScgGc7383YrXWvtEtBDmIT7FqGrfDSil87zi7Ftf8oaIMh43U2eDQbBP9h1DGJtY1KD4N02o9RYIQYZxXE9N8oRJkmnOOMPvx5rP08P_afgcc74JPuvInKaqf0HpsCI5BVGE5JNpnm_0-3Nn3PsPWjS1n6ZCdVwccYtNnLEBTTHYnpjsR8RxnHv-Fqtsvbs8PfRPNips-VH4PLkf8ZvQU9cdpT
CitedBy_id crossref_primary_10_1002_pi_6336
crossref_primary_10_1039_C8QO00445E
crossref_primary_10_1021_acs_joc_1c02827
crossref_primary_10_1002_pola_29167
crossref_primary_10_1021_acs_macromol_4c02612
crossref_primary_10_1142_S1088424619300131
crossref_primary_10_1021_jacs_2c11364
crossref_primary_10_1039_D0PY00643B
crossref_primary_10_1038_s41467_021_23170_4
crossref_primary_10_1021_acs_jpca_9b10400
crossref_primary_10_1039_D1CP03137F
crossref_primary_10_1002_adma_201903850
crossref_primary_10_1039_D3CP04904C
crossref_primary_10_1021_jacs_1c11700
crossref_primary_10_1002_marc_202100221
crossref_primary_10_1016_j_matt_2023_06_040
crossref_primary_10_1039_D0TA09812D
crossref_primary_10_1039_D2CC05250D
crossref_primary_10_1016_j_mtchem_2022_100959
crossref_primary_10_1021_acs_joc_3c01801
crossref_primary_10_1016_j_trechm_2021_02_006
crossref_primary_10_1021_acsmacrolett_9b00933
crossref_primary_10_1021_acsmaterialslett_2c00050
crossref_primary_10_1002_ange_202307550
crossref_primary_10_1021_jacs_8b01001
crossref_primary_10_1021_acs_chemrev_1c00384
crossref_primary_10_1021_acs_jpcb_3c05879
crossref_primary_10_1021_jacs_3c08503
crossref_primary_10_1002_ange_201805473
crossref_primary_10_1021_acsmacrolett_8b00497
crossref_primary_10_1039_d0pp00127a
crossref_primary_10_1002_anie_202304608
crossref_primary_10_1021_acs_macromol_0c02032
crossref_primary_10_1039_D1SC05098B
crossref_primary_10_1039_D1SC02150H
crossref_primary_10_1073_pnas_2119267119
crossref_primary_10_1039_D1OB00396H
crossref_primary_10_1016_j_cej_2019_01_087
crossref_primary_10_1002_ange_202304608
crossref_primary_10_1002_anie_202107915
crossref_primary_10_1002_ange_202110491
crossref_primary_10_1002_macp_202300428
crossref_primary_10_1002_ange_201808642
crossref_primary_10_1038_s41467_020_20645_8
crossref_primary_10_1021_acs_orglett_2c03600
crossref_primary_10_1039_D4PY01369G
crossref_primary_10_1515_zpch_2020_1624
crossref_primary_10_1002_anie_201910828
crossref_primary_10_1039_C9QO00536F
crossref_primary_10_1021_acsaem_8b02098
crossref_primary_10_1021_acscatal_1c05318
crossref_primary_10_1021_jacs_8b09740
crossref_primary_10_1021_jacs_9b12335
crossref_primary_10_1002_anie_201805473
crossref_primary_10_1039_D2TC02263J
crossref_primary_10_1002_anie_201912455
crossref_primary_10_1021_acsmacrolett_1c00055
crossref_primary_10_1021_acs_macromol_8b02688
crossref_primary_10_1039_D0PY01413C
crossref_primary_10_1002_anie_202110491
crossref_primary_10_1002_chem_202303497
crossref_primary_10_3390_molecules27175364
crossref_primary_10_1039_C9CC07040K
crossref_primary_10_1021_acscatal_0c00200
crossref_primary_10_1140_epjd_s10053_022_00577_2
crossref_primary_10_1002_pol_20210534
crossref_primary_10_1021_jacs_0c12805
crossref_primary_10_1021_acs_jctc_0c00850
crossref_primary_10_1002_cptc_202200289
crossref_primary_10_1038_s41557_024_01546_5
crossref_primary_10_1002_ange_201912455
crossref_primary_10_1039_C9PY00393B
crossref_primary_10_1002_chem_202000052
crossref_primary_10_1038_s41467_022_31359_4
crossref_primary_10_1134_S1811238222700035
crossref_primary_10_1039_C9NR04664J
crossref_primary_10_1039_C8SC02038H
crossref_primary_10_1002_bkcs_12711
crossref_primary_10_1016_j_ccr_2019_213129
crossref_primary_10_1021_acs_jpclett_4c00895
crossref_primary_10_1002_pol_20220320
crossref_primary_10_1021_jacs_0c07347
crossref_primary_10_1002_ange_201910828
crossref_primary_10_1002_cctc_202001690
crossref_primary_10_1070_RCR4964
crossref_primary_10_1002_anie_201808642
crossref_primary_10_1039_D2QO01316A
crossref_primary_10_1016_j_progpolymsci_2022_101555
crossref_primary_10_1021_acs_macromol_1c00501
crossref_primary_10_1002_macp_202100340
crossref_primary_10_1021_acs_jpcb_1c05069
crossref_primary_10_1002_ange_202312534
crossref_primary_10_1039_C9PY01884K
crossref_primary_10_1039_D0NR00402B
crossref_primary_10_1002_chem_201804603
crossref_primary_10_1016_j_cej_2021_130395
crossref_primary_10_1039_D0SC01194K
crossref_primary_10_1021_jacs_1c00279
crossref_primary_10_1039_C9CC01332F
crossref_primary_10_1063_1_5082620
crossref_primary_10_1021_jacs_9b01096
crossref_primary_10_1021_acs_joc_1c01883
crossref_primary_10_1021_acs_macromol_0c02245
crossref_primary_10_1002_anie_202214055
crossref_primary_10_1002_ejoc_202300279
crossref_primary_10_1021_acs_chemrev_1c00603
crossref_primary_10_1038_s41467_019_10441_4
crossref_primary_10_1038_s41467_020_20640_z
crossref_primary_10_1021_acs_inorgchem_2c03735
crossref_primary_10_1021_acs_macromol_3c00501
crossref_primary_10_1002_anie_202312534
crossref_primary_10_1039_C9PY01370A
crossref_primary_10_1002_cjoc_202300206
crossref_primary_10_1021_acscatal_0c03802
crossref_primary_10_1021_acs_jpclett_9b01970
crossref_primary_10_1002_ange_202006416
crossref_primary_10_1002_ange_202214055
crossref_primary_10_1021_acs_jpca_0c03065
crossref_primary_10_1002_cptc_202300090
crossref_primary_10_1021_acs_jpclett_1c00759
crossref_primary_10_1002_ange_202107915
crossref_primary_10_1002_slct_202001932
crossref_primary_10_1002_aic_18155
crossref_primary_10_3390_molecules29112453
crossref_primary_10_1039_D1PY01060C
crossref_primary_10_1063_5_0084554
crossref_primary_10_1002_cssc_202000465
crossref_primary_10_1002_marc_201800616
crossref_primary_10_1021_jacs_0c10707
crossref_primary_10_1021_acs_jpca_9b03286
crossref_primary_10_1021_acs_jpclett_4c02670
crossref_primary_10_1038_s41467_022_30395_4
crossref_primary_10_1021_acs_macromol_8b02517
crossref_primary_10_1002_cptc_202200009
crossref_primary_10_1002_tcr_202200267
crossref_primary_10_1002_ajoc_202300067
crossref_primary_10_1016_j_eurpolymj_2019_05_023
crossref_primary_10_1021_acs_macromol_0c00377
crossref_primary_10_1080_00397911_2020_1849723
crossref_primary_10_1021_acscatal_4c04920
crossref_primary_10_1002_aic_18372
crossref_primary_10_1021_acs_jpcc_2c04920
crossref_primary_10_1021_acs_macromol_1c00090
crossref_primary_10_1002_advs_201902451
crossref_primary_10_1016_j_progpolymsci_2019_101186
crossref_primary_10_1002_cctc_202200485
crossref_primary_10_1002_ajoc_202100162
crossref_primary_10_1021_acs_chemrev_1c00409
crossref_primary_10_1021_acs_orglett_8b02420
crossref_primary_10_3390_molecules28062450
crossref_primary_10_1016_j_dyepig_2020_108992
crossref_primary_10_1590_0104_1428_10119
crossref_primary_10_1021_acs_macromol_8b01401
crossref_primary_10_1039_D1OB01133B
crossref_primary_10_1038_s41467_021_23255_0
crossref_primary_10_1021_jacs_8b08933
crossref_primary_10_1002_macp_202200382
crossref_primary_10_1021_acs_energyfuels_1c02675
crossref_primary_10_1002_aoc_6746
crossref_primary_10_1039_C8CC04048F
crossref_primary_10_1002_cptc_202000153
crossref_primary_10_1002_adsc_202401396
crossref_primary_10_1039_D4SC03438D
crossref_primary_10_1021_acs_macromol_1c00482
crossref_primary_10_1039_D0TA03112G
crossref_primary_10_1039_C9CC00282K
crossref_primary_10_1002_anie_202307550
crossref_primary_10_1039_D1QO01914G
crossref_primary_10_1039_D1CC05850A
crossref_primary_10_1039_D2PY00470D
crossref_primary_10_1016_j_checat_2022_08_013
crossref_primary_10_1039_D1SC02258J
crossref_primary_10_1021_jacs_9b07373
crossref_primary_10_1039_C8CC02783H
crossref_primary_10_3390_molecules24112122
crossref_primary_10_1002_cjoc_70019
crossref_primary_10_1021_acscatal_3c01474
crossref_primary_10_1021_acs_chemmater_8b01359
crossref_primary_10_1002_anie_202006416
crossref_primary_10_1039_D2QI00173J
crossref_primary_10_1039_D3QM00394A
crossref_primary_10_1021_acscatal_3c04060
crossref_primary_10_1016_j_eurpolymj_2024_112802
crossref_primary_10_1002_ejoc_202000720
crossref_primary_10_1021_acs_jpca_1c00855
crossref_primary_10_1021_jacs_8b06291
crossref_primary_10_1016_j_gresc_2022_12_001
crossref_primary_10_1021_acs_chemrev_9b00744
crossref_primary_10_1002_chem_202403543
crossref_primary_10_1039_D3SC02768F
crossref_primary_10_1002_macp_201900022
crossref_primary_10_1002_cmtd_202200069
crossref_primary_10_1021_acscatal_8b02885
crossref_primary_10_1039_D4GC04293J
crossref_primary_10_1002_slct_202004194
crossref_primary_10_1021_jacs_9b07230
crossref_primary_10_1038_s41557_022_01092_y
crossref_primary_10_1038_s41929_018_0156_8
crossref_primary_10_1021_acs_macromol_0c00106
crossref_primary_10_1021_acscatal_9b03606
crossref_primary_10_1002_cssc_201900414
Cites_doi 10.1126/science.1239176
10.1021/mz500242a
10.1021/cr940534g
10.1021/ma502044f
10.1021/cr00032a005
10.1021/acs.macromol.7b00502
10.1016/j.polymer.2004.12.061
10.1021/acs.chemrev.6b00057
10.1039/C4TC02530J
10.1021/acs.joc.6b01240
10.1002/pola.28574
10.1039/C7PY01833A
10.1016/S0040-4039(01)94515-0
10.1021/cr9901182
10.1021/ja510389m
10.1055/s-0035-1561297
10.1021/cr300503r
10.1126/science.aad8313
10.1126/science.aaf3935
10.1021/ja00511a007
10.1021/acs.macromol.8b00134
10.1021/ja038656q
10.1002/anie.201701425
10.1021/cm702212w
10.1002/marc.201700040
10.1021/jacs.5b03048
10.1016/S0079-6700(01)00003-X
10.1021/ma3001719
10.1002/adsc.201400871
10.1021/ja052967e
10.1021/jacs.6b02723
10.1021/jacs.5b13455
10.1021/cr900234b
10.1039/b000704h
10.1126/science.275.5296.54
10.1021/acs.joc.6b01449
10.1002/adma.201402532
10.1021/jp109613t
10.1021/ja506379s
10.1021/jo202538x
10.1021/jacs.6b08068
10.1021/cr00028a006
10.1039/C6CS00185H
10.1021/jo00394a044
10.1002/anie.201711053
10.1038/nature11687
10.1002/anie.201203639
10.1039/B913880N
10.1021/acs.macromol.6b02791
10.1021/jacs.6b11022
10.1021/ma0510993
10.1021/cm402428a
10.1002/chem.201702926
10.1021/acs.joc.6b01034
10.1021/acs.chemrev.5b00671
10.1039/C6CS00526H
10.1039/C5CC04677G
10.1016/j.progpolymsci.2012.06.002
10.1039/c6cs00185h
10.1039/c5cc04677g
10.1039/b913880n
10.1039/c4tc02530j
10.1039/c6cs00526h
10.1039/c7py01833a
ContentType Journal Article
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HBEAY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.7b12074
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2018
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Web of Science
MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 5101
ExternalDocumentID PMC5920687
29513533
000430642000029
10_1021_jacs_7b12074
h47100953
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Advanced Research Projects Agency-Energy
  grantid: DE-AR0000683
– fundername: NSF; National Science Foundation (NSF)
  grantid: ACI-1053575
– fundername: Colorado State University
– fundername: NSF GRFPs
– fundername: National Institute of General Medical Sciences of the National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM119702
– fundername: NIH; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA
  grantid: F32GM122392
– fundername: University of Colorado Boulder
– fundername: American Chemical Society Petroleum Research Fund; American Chemical Society
  grantid: 56501-DNI7
– fundername: NIGMS NIH HHS
  grantid: R35 GM119702
– fundername: NIGMS NIH HHS
  grantid: F32 GM122392
– fundername: NIH HHS
  grantid: S10 OD021814
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a516t-dcf52f15cfd0df2c3c19b78a717fb46e2590140a8666f5ff65adda210f38a4633
IEDL.DBID ACS
ISICitedReferencesCount 208
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000430642000029
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 14:15:17 EDT 2025
Fri Sep 05 02:57:50 EDT 2025
Thu Sep 04 21:36:58 EDT 2025
Mon Jul 21 05:53:30 EDT 2025
Sat Sep 06 05:33:42 EDT 2025
Wed Aug 06 11:17:54 EDT 2025
Tue Jul 01 03:21:28 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords HALIDES
POLYMERS
ENERGY
MECHANISM
LIGHT
COMPLEXES
STATE
RADICAL POLYMERIZATION
POTENTIALS
ORGANIC SEMICONDUCTORS
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a516t-dcf52f15cfd0df2c3c19b78a717fb46e2590140a8666f5ff65adda210f38a4633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2451-7090
0000-0001-8337-9375
0000-0003-1823-6305
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5920687
PMID 29513533
PQID 2012113882
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1021_jacs_7b12074
proquest_miscellaneous_2012113882
webofscience_primary_000430642000029
crossref_citationtrail_10_1021_jacs_7b12074
pubmed_primary_29513533
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5920687
webofscience_primary_000430642000029CitationCount
acs_journals_10_1021_jacs_7b12074
proquest_miscellaneous_2116864025
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References (ref13/cit13b) 2007; 281
ref1/cit1h
ref1/cit1e
ref1/cit1d
ref1/cit1g
ref1/cit1f
ref23/cit23a
ref23/cit23b
ref13/cit13a
ref23/cit23c
ref13/cit13c
ref2/cit2c
ref23/cit23d
ref2/cit2b
ref2/cit2a
ref1/cit1a
ref1/cit1c
ref1/cit1b
ref5/cit5b
ref17/cit17
ref5/cit5c
ref10/cit10
ref5/cit5a
ref16/cit16b
ref16/cit16a
ref19/cit19
ref21/cit21
ref3/cit3b
ref22/cit22a
ref3/cit3a
ref11/cit11a
ref22/cit22c
ref22/cit22b
ref7/cit7b
ref7/cit7a
ref5/cit5f
ref5/cit5g
ref5/cit5d
ref5/cit5e
ref15/cit15a
ref9/cit9b
ref9/cit9a
ref11/cit11
ref15/cit15b
ref15/cit15c
ref8/cit8a
ref8/cit8b
ref14/cit14
ref18/cit18b
ref4/cit4a
ref18/cit18c
ref4/cit4b
ref4/cit4c
ref18/cit18a
ref12/cit12
ref20/cit20a
ref20/cit20b
ref4/cit4d
ref6/cit6a
ref6/cit6b
Prier, CK (WOS:000321810600018) 2013; 113
(000430642000029.1) 2007; 281
Miyake, G. M. (000430642000029.28) 2014; 47
Isse, AA (WOS:000286639500010) 2011; 115
Treat, NJ (WOS:000337644500018) 2014; 3
Kainz, QM (WOS:000369810000033) 2016; 351
Zhu, Y (WOS:000231897900018) 2005; 38
Tao, Y (WOS:000346263100001) 2014; 26
Frick, E (WOS:000355890600023) 2015; 137
SAUVAGE, JP (WOS:A1994NT84800006) 1994; 94
Chen, M (WOS:000383410100012) 2016; 116
Yoon, TP (WOS:000342905600001) 2014; 356
Dixon, IM (WOS:000089938800002) 2000; 29
Discekici, EH (WOS:000357618200040) 2015; 51
Romero, NA (WOS:000383410100011) 2016; 116
HEDSTRAND, DM (WOS:A1978ES87400025) 1978
Ryan, MD (WOS:000404492800003) 2017; 50
Moad, G (WOS:000231573100075) 2005; 46
Theriot, JC (WOS:000404894600015) 2017; 38
Fors, BP (WOS:000307785700035) 2012; 51
Pearson, RM (WOS:000382901800054) 2016; 138
Shaw, MH (WOS:000381847600002) 2016; 81
Kamigaito, M (WOS:000172874900005) 2001; 101
Ramsey, BL (WOS:000399263900007) 2017; 50
Poelma, SO (WOS:000381847600032) 2016; 81
Schultz, DM (WOS:000332309600033) 2014; 343
Michaudel, Q (WOS:000406798700003) 2017; 56
Zhu, Y (WOS:000257279200011) 2008; 20
Treat, NJ (WOS:000344906100049) 2014; 136
Pan, XC (WOS:000371103900054) 2016; 138
Zhao, YC (WOS:000425473600030) 2018; 51
Uoyama, H (WOS:000312259300038) 2012; 492
Ouchi, M (WOS:000271856900002) 2009; 109
Ryan, MD (WOS:000406937100017) 2017; 55
Fukuzumi, S (WOS:000188926600006) 2004; 126
Damrauer, N. H. (INSPEC:5494985) 1997; 275
Higgins, RF (WOS:000375244700043) 2016; 138
REICHARDT, C (WOS:A1994PY50400005) 1994; 94
Corrigan, N (WOS:000387978000007) 2016; 45
Matyjaszewski, K (WOS:000304224700001) 2012; 45
Matyjaszewski, K (WOS:000171047000008) 2001; 101
VANBERGEN, TJ (WOS:A1979HY82300044) 1979; 44
Gong, HH (WOS:000418798600048) 2018; 57
Roth, HG (WOS:000371688400009) 2016; 27
Buss, BL (WOS:000428671100021) 2018; 9
Lee, J (WOS:000350693200003) 2015; 3
Joshi-Pangu, A (WOS:000381847600042) 2016; 81
Benniston, AC (WOS:000233445900029) 2005; 127
Nicolas, J (WOS:000314740300003) 2013; 38
BOCK, CR (WOS:A1979HG43300007) 1979; 101
Tucker, JW (WOS:000300340000001) 2012; 77
Narayanam, JMR (WOS:000285390900008) 2011; 40
Coessens, V (WOS:000168951100001) 2001; 26
Arias-Rotondo, DM (WOS:000386342500001) 2016; 45
Lim, CH (WOS:000392036900053) 2017; 139
Ribelli, TG (WOS:000342328200045) 2014; 136
Du, Y (WOS:000407803400003) 2017; 23
References_xml – ident: ref1/cit1c
  doi: 10.1126/science.1239176
– ident: ref6/cit6b
  doi: 10.1021/mz500242a
– ident: ref22/cit22a
  doi: 10.1021/cr940534g
– ident: ref5/cit5e
  doi: 10.1021/ma502044f
– ident: ref17/cit17
  doi: 10.1021/cr00032a005
– ident: ref11/cit11
  doi: 10.1021/acs.macromol.7b00502
– ident: ref23/cit23c
  doi: 10.1016/j.polymer.2004.12.061
– ident: ref4/cit4c
  doi: 10.1021/acs.chemrev.6b00057
– ident: ref18/cit18a
  doi: 10.1039/C4TC02530J
– ident: ref4/cit4d
  doi: 10.1021/acs.joc.6b01240
– ident: ref7/cit7b
  doi: 10.1002/pola.28574
– ident: ref11/cit11a
  doi: 10.1039/C7PY01833A
– ident: ref2/cit2a
  doi: 10.1016/S0040-4039(01)94515-0
– ident: ref23/cit23d
  doi: 10.1021/cr9901182
– ident: ref5/cit5b
  doi: 10.1021/ja510389m
– ident: ref19/cit19
  doi: 10.1055/s-0035-1561297
– ident: ref1/cit1b
  doi: 10.1021/cr300503r
– ident: ref4/cit4b
  doi: 10.1126/science.aad8313
– ident: ref5/cit5f
  doi: 10.1126/science.aaf3935
– ident: ref13/cit13a
  doi: 10.1021/ja00511a007
– ident: ref16/cit16a
  doi: 10.1021/acs.macromol.8b00134
– ident: ref15/cit15c
  doi: 10.1021/ja038656q
– ident: ref1/cit1h
  doi: 10.1002/anie.201701425
– ident: ref9/cit9b
  doi: 10.1021/cm702212w
– ident: ref20/cit20a
  doi: 10.1002/marc.201700040
– ident: ref8/cit8a
  doi: 10.1021/jacs.5b03048
– ident: ref22/cit22b
  doi: 10.1016/S0079-6700(01)00003-X
– ident: ref23/cit23a
  doi: 10.1021/ma3001719
– ident: ref1/cit1d
  doi: 10.1002/adsc.201400871
– ident: ref15/cit15a
  doi: 10.1021/ja052967e
– ident: ref4/cit4a
  doi: 10.1021/jacs.6b02723
– ident: ref20/cit20b
  doi: 10.1021/jacs.5b13455
– ident: ref22/cit22c
  doi: 10.1021/cr900234b
– ident: ref13/cit13c
  doi: 10.1039/b000704h
– ident: ref3/cit3b
  doi: 10.1126/science.275.5296.54
– ident: ref1/cit1g
  doi: 10.1021/acs.joc.6b01449
– ident: ref18/cit18c
  doi: 10.1002/adma.201402532
– ident: ref21/cit21
  doi: 10.1021/jp109613t
– ident: ref8/cit8b
  doi: 10.1021/ja506379s
– ident: ref5/cit5d
  doi: 10.1021/jacs.5b13455
– ident: ref1/cit1a
  doi: 10.1021/jo202538x
– ident: ref5/cit5g
  doi: 10.1021/jacs.6b08068
– ident: ref3/cit3a
  doi: 10.1021/cr00028a006
– ident: ref1/cit1e
  doi: 10.1039/C6CS00185H
– ident: ref2/cit2b
  doi: 10.1021/jo00394a044
– ident: ref16/cit16b
  doi: 10.1002/anie.201711053
– ident: ref18/cit18b
  doi: 10.1038/nature11687
– ident: ref6/cit6a
  doi: 10.1002/anie.201203639
– ident: ref2/cit2c
  doi: 10.1039/B913880N
– ident: ref10/cit10
  doi: 10.1021/acs.macromol.6b02791
– ident: ref7/cit7a
  doi: 10.1021/jacs.6b11022
– ident: ref9/cit9a
  doi: 10.1021/ma0510993
– ident: ref15/cit15b
  doi: 10.1021/cm402428a
– ident: ref12/cit12
  doi: 10.1002/chem.201702926
– ident: ref5/cit5a
  doi: 10.1021/acs.joc.6b01034
– ident: ref1/cit1f
  doi: 10.1021/acs.chemrev.5b00671
– ident: ref14/cit14
  doi: 10.1039/C6CS00526H
– ident: ref5/cit5c
  doi: 10.1039/C5CC04677G
– volume: 281
  volume-title: Top. Curr. Chem.
  year: 2007
  ident: ref13/cit13b
– ident: ref23/cit23b
  doi: 10.1016/j.progpolymsci.2012.06.002
– volume: 136
  start-page: 13303
  year: 2014
  ident: WOS:000342328200045
  article-title: How are Radicals (Re)Generated in Photochemical ATRP?
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja506379s
– volume: 45
  start-page: 6165
  year: 2016
  ident: WOS:000387978000007
  article-title: Photocatalysis in organic and polymer synthesis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00185h
– volume: 138
  start-page: 11399
  year: 2016
  ident: WOS:000382901800054
  article-title: Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b08068
– volume: 81
  start-page: 6898
  year: 2016
  ident: WOS:000381847600002
  article-title: Photoredox Catalysis in Organic Chemistry
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.6b01449
– volume: 77
  start-page: 1617
  year: 2012
  ident: WOS:000300340000001
  article-title: Shining Light on Photoredox Catalysis: Theory and Synthetic Applications
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo202538x
– volume: 139
  start-page: 348
  year: 2017
  ident: WOS:000392036900053
  article-title: Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b11022
– volume: 356
  start-page: 2739
  year: 2014
  ident: WOS:000342905600001
  article-title: Opportunities in Photocatalytic Synthesis
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201400871
– volume: 126
  start-page: 1600
  year: 2004
  ident: WOS:000188926600006
  article-title: Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja038656q
– start-page: 1255
  year: 1978
  ident: WOS:A1978ES87400025
  article-title: LIGHT-INDUCED AND DYE ACCELERATED REDUCTIONS OF PHENACYL ONIUM SALTS BY 1,4-DIHYDROPYRIDINES
  publication-title: TETRAHEDRON LETTERS
– volume: 275
  start-page: 54
  year: 1997
  ident: INSPEC:5494985
  article-title: Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+
  publication-title: Science
– volume: 26
  start-page: 337
  year: 2001
  ident: WOS:000168951100001
  article-title: Functional polymers by atom transfer radical polymerization
  publication-title: PROGRESS IN POLYMER SCIENCE
– volume: 51
  start-page: 8850
  year: 2012
  ident: WOS:000307785700035
  article-title: Control of a Living Radical Polymerization of Methacrylates by Light
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201203639
– volume: 3
  start-page: 580
  year: 2014
  ident: WOS:000337644500018
  article-title: Controlled Radical Polymerization of Acrylates Regulated by Visible Light
  publication-title: ACS MACRO LETTERS
  doi: 10.1021/mz500242a
– volume: 38
  start-page: 7983
  year: 2005
  ident: WOS:000231897900018
  article-title: Phenoxazine-based conjugated polymers: A new class of organic semiconductors for field-effect transistors
  publication-title: MACROMOLECULES
  doi: 10.1021/ma0510993
– volume: 44
  start-page: 4953
  year: 1979
  ident: WOS:A1979HY82300044
  article-title: CHEMISTRY OF DIHYDROPYRIDINES .9. HYDRIDE TRANSFER FROM 1,4-DIHYDROPYRIDINES TO SP3-HYBRIDIZED CARBON IN SULFONIUM SALTS AND ACTIVATED HALIDES - STUDIES WITH NAD(P)H MODELS
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 26
  start-page: 7931
  year: 2014
  ident: WOS:000346263100001
  article-title: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201402532
– volume: 115
  start-page: 678
  year: 2011
  ident: WOS:000286639500010
  article-title: Estimation of Standard Reduction Potentials of Halogen Atoms and Alkyl Halides
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY B
  doi: 10.1021/jp109613t
– volume: 50
  start-page: 2668
  year: 2017
  ident: WOS:000399263900007
  article-title: Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow
  publication-title: MACROMOLECULES
  doi: 10.1021/acs.macromol.6b02791
– volume: 281
  year: 2007
  ident: 000430642000029.1
  publication-title: Top. Curr. Chem.
– volume: 55
  start-page: 3017
  year: 2017
  ident: WOS:000406937100017
  article-title: Solvent Effects on the Intramolecular Charge Transfer Character of N,N-Diaryl Dihydrophenazine Catalysts for Organocatalyzed Atom Transfer Radical Polymerization
  publication-title: JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY
  doi: 10.1002/pola.28574
– volume: 94
  start-page: 993
  year: 1994
  ident: WOS:A1994NT84800006
  article-title: RUTHENIUM(II) AND OSMIUM(II) BIS(TERPYRIDINE) COMPLEXES IN COVALENTLY-LINKED MULTICOMPONENT SYSTEMS - SYNTHESIS, ELECTROCHEMICAL-BEHAVIOR, ABSORPTION-SPECTRA, AND PHOTOCHEMICAL AND PHOTOPHYSICAL PROPERTIES
  publication-title: CHEMICAL REVIEWS
– volume: 51
  start-page: 11705
  year: 2015
  ident: WOS:000357618200040
  article-title: A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c5cc04677g
– volume: 116
  start-page: 10167
  year: 2016
  ident: WOS:000383410100012
  article-title: Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00671
– volume: 27
  start-page: 714
  year: 2016
  ident: WOS:000371688400009
  article-title: Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry
  publication-title: SYNLETT
  doi: 10.1055/s-0035-1561297
– volume: 81
  start-page: 7244
  year: 2016
  ident: WOS:000381847600042
  article-title: Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.6b01240
– volume: 492
  start-page: 234
  year: 2012
  ident: WOS:000312259300038
  article-title: Highly efficient organic light-emitting diodes from delayed fluorescence
  publication-title: NATURE
  doi: 10.1038/nature11687
– volume: 101
  start-page: 2921
  year: 2001
  ident: WOS:000171047000008
  article-title: Atom transfer radical polymerization
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr940534g
– volume: 351
  start-page: 681
  year: 2016
  ident: WOS:000369810000033
  article-title: Asymmetric copper-catalyzed C-N cross-couplings induced by visible light
  publication-title: SCIENCE
  doi: 10.1126/science.aad8313
– volume: 101
  start-page: 4815
  year: 1979
  ident: WOS:A1979HG43300007
  article-title: ESTIMATION OF EXCITED-STATE REDOX POTENTIALS BY ELECTRON-TRANSFER QUENCHING - APPLICATION OF ELECTRON-TRANSFER THEORY TO EXCITED-STATE REDOX PROCESSES
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 51
  start-page: 938
  year: 2018
  ident: WOS:000425473600030
  article-title: Organocatalyzed Photoredox Polymerization from Aromatic Sulfonyl Halides: Facilitating Graft from Aromatic C-H Bonds
  publication-title: MACROMOLECULES
  doi: 10.1021/acs.macromol.8b00134
– volume: 20
  start-page: 4200
  year: 2008
  ident: WOS:000257279200011
  article-title: New ambipolar organic semiconductors. 1. Synthesis, single-crystal structures, redox properties, and photophysics of phenoxazine-based donor-acceptor molecules
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/cm702212w
– volume: 45
  start-page: 4015
  year: 2012
  ident: WOS:000304224700001
  article-title: Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives
  publication-title: MACROMOLECULES
  doi: 10.1021/ma3001719
– volume: 50
  start-page: 4616
  year: 2017
  ident: WOS:000404492800003
  article-title: Impact of Light Intensity on Control in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization
  publication-title: MACROMOLECULES
  doi: 10.1021/acs.macromol.7b00502
– volume: 47
  start-page: 8255
  year: 2014
  ident: 000430642000029.28
  publication-title: Macromolecules
– volume: 94
  start-page: 2319
  year: 1994
  ident: WOS:A1994PY50400005
  article-title: SOLVATOCHROMIC DYES AS SOLVENT POLARITY INDICATORS
  publication-title: CHEMICAL REVIEWS
– volume: 113
  start-page: 5322
  year: 2013
  ident: WOS:000321810600018
  article-title: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr300503r
– volume: 38
  start-page: 63
  year: 2013
  ident: WOS:000314740300003
  article-title: Nitroxide-mediated polymerization
  publication-title: PROGRESS IN POLYMER SCIENCE
  doi: 10.1016/j.progpolymsci.2012.06.002
– volume: 136
  start-page: 16096
  year: 2014
  ident: WOS:000344906100049
  article-title: Metal-Free Atom Transfer Radical Polymerization
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja510389m
– volume: 38
  year: 2017
  ident: WOS:000404894600015
  article-title: Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance
  publication-title: MACROMOLECULAR RAPID COMMUNICATIONS
  doi: 10.1002/marc.201700040
– volume: 138
  start-page: 2411
  year: 2016
  ident: WOS:000371103900054
  article-title: Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b13455
– volume: 40
  start-page: 102
  year: 2011
  ident: WOS:000285390900008
  article-title: Visible light photoredox catalysis: applications in organic synthesis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b913880n
– volume: 46
  start-page: 8458
  year: 2005
  ident: WOS:000231573100075
  article-title: Advances in RAFT polymerization: the synthesis of polymers with defined end-groups
  publication-title: POLYMER
  doi: 10.1016/j.polymer.2004.12.061
– volume: 3
  start-page: 2175
  year: 2015
  ident: WOS:000350693200003
  article-title: Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c4tc02530j
– volume: 109
  start-page: 4963
  year: 2009
  ident: WOS:000271856900002
  article-title: Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr900234b
– volume: 343
  start-page: 985
  year: 2014
  ident: WOS:000332309600033
  article-title: Solar Synthesis: Prospects in Visible Light Photocatalysis
  publication-title: SCIENCE
  doi: 10.1126/science.1239176
– volume: 45
  start-page: 5803
  year: 2016
  ident: WOS:000386342500001
  article-title: The photophysics of photoredox catalysis: a roadmap for catalyst design
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00526h
– volume: 9
  start-page: 1658
  year: 2018
  ident: WOS:000428671100021
  article-title: Synthesis of star polymers using organocatalyzed atom transfer radical polymerization through a core-first approach
  publication-title: POLYMER CHEMISTRY
  doi: 10.1039/c7py01833a
– volume: 116
  start-page: 10075
  year: 2016
  ident: WOS:000383410100011
  article-title: Organic Photoredox Catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00057
– volume: 57
  start-page: 333
  year: 2018
  ident: WOS:000418798600048
  article-title: Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201711053
– volume: 23
  start-page: 10962
  year: 2017
  ident: WOS:000407803400003
  article-title: Strongly Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201702926
– volume: 127
  start-page: 16054
  year: 2005
  ident: WOS:000233445900029
  article-title: Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja052967e
– volume: 81
  start-page: 7155
  year: 2016
  ident: WOS:000381847600032
  article-title: Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.6b01034
– volume: 138
  start-page: 5451
  year: 2016
  ident: WOS:000375244700043
  article-title: Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b02723
– volume: 101
  start-page: 3689
  year: 2001
  ident: WOS:000172874900005
  article-title: Metal-catalyzed living radical polymerization
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr9901182
– volume: 56
  start-page: 9670
  year: 2017
  ident: WOS:000406798700003
  article-title: Cationic Polymerization: From Photoinitiation to Photocontrol
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201701425
– volume: 29
  start-page: 385
  year: 2000
  ident: WOS:000089938800002
  article-title: A family of luminescent coordination compounds: iridium(III) polyimine complexes
  publication-title: CHEMICAL SOCIETY REVIEWS
– volume: 137
  start-page: 6889
  year: 2015
  ident: WOS:000355890600023
  article-title: Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b03048
SSID ssj0004281
Score 2.625321
Snippet Through the study of structure–property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have...
Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5088
SubjectTerms Catalysis
catalysts
catalytic activity
Chemistry
Chemistry, Multidisciplinary
density functional theory
irradiation
Molecular Structure
molecular weight
Oxazines - chemistry
oxidation
Oxidation-Reduction
Photochemical Processes
photochemical reactions
Physical Sciences
polymerization
Polymethyl Methacrylate - chemical synthesis
Polymethyl Methacrylate - chemistry
polymethylmethacrylate
Quantum Theory
Science & Technology
Structure-Activity Relationship
white light
Title Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts
URI http://dx.doi.org/10.1021/jacs.7b12074
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000430642000029
https://www.ncbi.nlm.nih.gov/pubmed/29513533
https://www.proquest.com/docview/2012113882
https://www.proquest.com/docview/2116864025
https://pubmed.ncbi.nlm.nih.gov/PMC5920687
Volume 140
WOS 000430642000029
WOSCitedRecordID wos000430642000029
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NatwwEB7a9NBemv7XSVscSE_Fy0qyZPkYTNNQaAkkgZxqZFlilxQ7RF5Icso79A37JBn5L91N0-ZksEYYjUeabzSjTwDbnkS8kDqNLI89qbbFOUe0iBSzpVFJYq32WwPfvou9o_jrMT--KZBdzeBTzw-k3SQpCEVn9xAeUSETz5G_kx3cnH-kkgwwN5GC9QXuq729A9Ju2QHdQpV_L45ccUit89ldhy_DEZ6u5uRksmiKib68zej4n3E9g6c9_gx3OoN5Dg9M9QIeZ8O1by_hx0HLKLs4M7-vfu37rfqz5iIca-Zm81MXItAND9W8K94L92emqs9bmmoXKoey5UJ3DTVG9Kasz8PM7xJduMa9gqPdz4fZXtRfwhApTkQTldpyagnXtpyWlmqmSVokUmEYaItYGOoPr8ZTJTEOstxawXHFVBhIWiZVLBh7DWtVXZm3EMq4FFIowvERWxsXttRTlRpcNJhFIBfAFuok7yeRy9v8OMX4xL_tNRXAp-Hv5bpnMfeXafy8Q_rjKH3asXfcIbc1GEKO6vY5E1WZeuFy2nLgMYxD_iFDCI4LA3EewJvOeMavUUSwDCF1AMmSWY0Cnt57uaWaz1qab57SKRp7ANt_GuDYsU3i-vDRQw6aBkDuI5b1OvOMB83GPRS-CU9QB9In0Ih8B2tog-Y94rCm-NBOwmth3TAL
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQL70d4plI5oVRrJ3acYxVRLdCuKnUr9UTkOLZ2BUqqOiu1nPgP_EN-CWMnm7ILRXuK5IzzmIwz33jGnwF2HYl4KVQWGZY4Um2DY44oHsnYVFqmqTHKTQ0cTfj4NPl0xs76xepuLQw-hMUrWZ_Ev2YXcDRB2JiWhKLPuw13EIdQR5W_n59cL4OkgizRbip43Ne5r_d2fkjZVT_0F7j8d43kml_yPujgPkyGp_elJ1_3Fm25p76vETtu_HoP4F6PRsP9znwewi1dP4LtfLkJ3GP4cuL5ZRcX-tePn8du4v6ivQqHCrrZ_NyGCHvDqZx3pXzh8UzXzaUnrbahtChbLVR3osH4XlfNZZi7OaMr29oncHrwYZqPo35LhkgywtuoUoZRQ5gy1agyVMWKZGUqJAaFpky4pm4pazKSAqMiw4zhDP-fEsNKEwuZ8Dh-Clt1U-vnEIqk4oJLwvCQGJOUplIjmWn8hcQGYV0AO6iToh9StvDZcorRimvtNRXA--VHLFTPae621vh2g_S7Qfq84_K4QW5naQ8FqttlUGStm4UtqGfEizEq-Y8MIfheGJazAJ51NjTcjSKejRFgB5CuWNcg4Mi-V8_U85kn_WYZHXGRBrD7px0OHX1K1wWTDoDQLACyiVje68zxH7QvNlD4W9geT48Oi8OPk88v4S7qQ7jUGhGvYAvtUb9GhNaWb_y4_A19nThs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3oXwTKVyQlutndhxjlVgVV7VirZST0SOY2tXoGRVZ6WWE_-Bf8gvYew8YBeKyilSPHl4Ms584xl_BthxJOKFUOnIsNiRahscc0TxkYxMqWWSGKPc1MCHA75_HL89YScbQPq1MPgSFu9kfRLfjepFaTqGAUcVhA1JQSj6vStw1WXsHF3-Xnb4aykkFaRHvIngUVfrvn6180XKrvqiPwDm3-sk13yT90OTW_Bx6IEvP_m8u2yKXfV1jdzxv7p4G252qDTca83oDmzo6i5cz_rN4O7Bp0PPM7s81T--fZ-6CfzT5jwcKulm84UNEf6GR3LelvSF05mu6jNPXm1DaVG2XKq2ocY4X5f1WZi5uaNz29j7cDx5fZTtj7qtGUaSEd6MSmUYNYQpU45LQ1WkSFokQmJwaIqYa-qWtMZjKTA6MswYzvA_KjG8NJGQMY-iLdis6ko_hFDEJRdcEoaH2Ji4MKUay1TjryQyCO8C2Ead5N3QsrnPmlOMWtzZTlMBvOw_ZK46bnO3xcaXC6RfDNKLltPjArnt3iZyVLfLpMhK10ubU8-MF2F08g8ZQrBfGJ6zAB60djQ8jSKujRBoB5CsWNgg4Ei_V1uq-cyTf7OUjrlIAtj53RaHC31q1wWVDojQNAByGbGs05njQWgeXULhz-Ha9NUkf__m4N1juIHqEC7DRsQT2ERz1E8RqDXFMz80fwJg9jrv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Property+Relationships+for+Tailoring+Phenoxazines+as+Reducing+Photoredox+Catalysts&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=McCarthy%2C+Blaine+G&rft.au=Pearson%2C+Ryan+M&rft.au=Lim%2C+Chern-Hooi&rft.au=Sartor%2C+Steven+M&rft.date=2018-04-18&rft.eissn=1520-5126&rft.volume=140&rft.issue=15&rft.spage=5088&rft_id=info:doi/10.1021%2Fjacs.7b12074&rft_id=info%3Apmid%2F29513533&rft.externalDocID=29513533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon