Polyamorphism Mirrors Polymorphism in the Liquid–Liquid Transition of a Molecular Liquid
Liquid–liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid–liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored str...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 16; pp. 7591 - 7597 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid–liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid–liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid–liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid–liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid–liquid transitions and allow the systematic discovery of other examples. |
---|---|
AbstractList | Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid-liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid-liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid-liquid transitions and allow the systematic discovery of other examples. Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid-liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid-liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid-liquid transitions and allow the systematic discovery of other examples.Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid-liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid-liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid-liquid transitions and allow the systematic discovery of other examples. Liquid–liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid–liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid–liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid–liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid–liquid transitions and allow the systematic discovery of other examples. |
Author | MacEwen, Jamie Bolling, John Jiménez, Mario González Cinque, Gianfelice Syme, Christopher D Wilson, Claire Senn, Hans M Farrell, Andrew Wynne, Klaas Walton, Finlay |
AuthorAffiliation | School of Chemistry Diamond Light Source, Harwell Science and Innovation Campus |
AuthorAffiliation_xml | – name: Diamond Light Source, Harwell Science and Innovation Campus – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Finlay orcidid: 0000-0002-4739-1649 surname: Walton fullname: Walton, Finlay organization: School of Chemistry – sequence: 2 givenname: John surname: Bolling fullname: Bolling, John organization: School of Chemistry – sequence: 3 givenname: Andrew surname: Farrell fullname: Farrell, Andrew organization: School of Chemistry – sequence: 4 givenname: Jamie surname: MacEwen fullname: MacEwen, Jamie organization: School of Chemistry – sequence: 5 givenname: Christopher D surname: Syme fullname: Syme, Christopher D organization: School of Chemistry – sequence: 6 givenname: Mario González orcidid: 0000-0002-8853-0588 surname: Jiménez fullname: Jiménez, Mario González organization: School of Chemistry – sequence: 7 givenname: Hans M orcidid: 0000-0001-8232-5957 surname: Senn fullname: Senn, Hans M organization: School of Chemistry – sequence: 8 givenname: Claire orcidid: 0000-0002-0090-5374 surname: Wilson fullname: Wilson, Claire organization: School of Chemistry – sequence: 9 givenname: Gianfelice orcidid: 0000-0001-6801-8010 surname: Cinque fullname: Cinque, Gianfelice organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 10 givenname: Klaas orcidid: 0000-0002-5305-5940 surname: Wynne fullname: Wynne, Klaas email: klaas.wynne@glasgow.ac.uk organization: School of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32249557$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAYhYMoOl52rqVLF1ZzbdKNIOINRnShGzchTTNOhjYZk1Zw5zv4hj6JLVMHFcVVkpMvh5P_bIJV550BYBfBQwQxOpopHQ-hhogjvAJGiGGYMoSzVTCCEOKUi4xsgM0YZ92RYoHWwQbBmOaM8RF4uPXVi6p9mE9trJNrG4IPMenVpWhd0kxNMrZPrS3fX98Wm-QuKBdtY71L_CRRybWvjG4rFQZyG6xNVBXNzrBugfvzs7vTy3R8c3F1ejJOFUNZkxaGCSh0keUUQsERZ3nOKCEGlQJnJRQTQUWpGVQK5owwjSAjvMB5WXChGCNb4HjhO2-L2pTauCaoSs6DrVV4kV5Z-f3G2al89M-SI4EwE53B_mAQ_FNrYiNrG7WpKuWMb6PEucio4ILQ_1HSoTRjlHfo3tdYyzyfs--AgwWgg48xmMkSQVD21cq-WjlU2-H4B65to_rxd5-y1V-Phry9OPNtcF0Tv6MfI3610Q |
CitedBy_id | crossref_primary_10_1016_j_molliq_2023_122423 crossref_primary_10_1021_acs_chemmater_4c01379 crossref_primary_10_1039_D4SC00452C crossref_primary_10_1021_acsami_4c22374 crossref_primary_10_1021_acs_jpcb_4c00939 crossref_primary_10_1038_s41467_023_43457_y crossref_primary_10_1063_5_0038917 crossref_primary_10_1063_5_0080373 crossref_primary_10_1038_s41467_023_35878_6 crossref_primary_10_1063_5_0021045 crossref_primary_10_3390_solids2020016 crossref_primary_10_1039_D3CC04313D crossref_primary_10_1063_5_0107799 crossref_primary_10_1063_5_0215601 crossref_primary_10_1063_5_0123159 crossref_primary_10_1080_08940886_2023_2207456 crossref_primary_10_1021_acsomega_3c06717 crossref_primary_10_1021_jacs_3c07110 crossref_primary_10_1063_10_0026269 crossref_primary_10_1002_anie_202301564 crossref_primary_10_1039_D3SC02802J crossref_primary_10_1002_ange_202301564 crossref_primary_10_1063_5_0019872 |
Cites_doi | 10.1039/B401262C 10.1016/j.molstruc.2004.03.033 10.1016/0378-4371(95)00140-3 10.1016/j.pmatsci.2013.12.002 10.1126/science.aaf4382 10.1016/S0167-7322(96)90018-5 10.1103/PhysRevE.72.011605 10.1016/j.jnoncrysol.2005.09.010 10.1021/acs.chemrev.5b00750 10.1038/ncomms13438 10.1021/jp970848i 10.1021/acs.jpcb.5b05402 10.1038/s41557-019-0210-4 10.1038/24540 10.1098/rspa.1952.0194 10.1021/jp000765t 10.1021/acs.jpcc.7b05336 10.1021/acs.jpcb.8b04112 10.1021/jp983926q 10.1038/nature06044 10.1038/35003143 10.1021/jp046762o 10.1021/jacs.7b03036 10.1038/369633a0 10.1038/nmat1458 10.1039/b505052a 10.1021/jacs.8b13231 10.1021/jp953785h 10.1126/sciadv.1602209 10.1021/ja903315v 10.1088/0953-8984/22/19/195102 10.1038/srep42439 10.1063/1.5041757 10.1039/b401308p 10.1016/j.jnoncrysol.2006.02.155 10.1073/pnas.1909660116 10.1002/anie.201204824 10.1021/jacs.9b03083 10.1126/science.1103073 10.1073/pnas.1822016116 10.1021/ja046602q 10.1088/0953-8984/17/27/L01 10.1038/nmat2897 10.1063/1.4989961 10.1088/0953-8984/15/11/329 10.1021/jz5022763 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.0c01712 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 7597 |
ExternalDocumentID | PMC7181258 32249557 10_1021_jacs_0c01712 b014517311 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 AAYWT L.6 5PM |
ID | FETCH-LOGICAL-a516t-be5808cb6940087175995433e1d826d08f848dc50aa09535c10537b29db78a553 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:11:15 EDT 2025 Mon Jul 21 11:11:35 EDT 2025 Fri Jul 11 01:26:58 EDT 2025 Wed Feb 19 02:30:08 EST 2025 Thu Apr 24 23:09:55 EDT 2025 Tue Jul 01 03:22:04 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a516t-be5808cb6940087175995433e1d826d08f848dc50aa09535c10537b29db78a553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8853-0588 0000-0002-5305-5940 0000-0001-6801-8010 0000-0002-4739-1649 0000-0002-0090-5374 0000-0001-8232-5957 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7181258 |
PMID | 32249557 |
PQID | 2386446547 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7181258 proquest_miscellaneous_2986487834 proquest_miscellaneous_2386446547 pubmed_primary_32249557 crossref_primary_10_1021_jacs_0c01712 crossref_citationtrail_10_1021_jacs_0c01712 acs_journals_10_1021_jacs_0c01712 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-22 |
PublicationDateYYYYMMDD | 2020-04-22 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1039/B401262C – ident: ref26/cit26 doi: 10.1016/j.molstruc.2004.03.033 – ident: ref19/cit19 doi: 10.1016/0378-4371(95)00140-3 – ident: ref20/cit20 doi: 10.1016/j.pmatsci.2013.12.002 – ident: ref44/cit44 doi: 10.1126/science.aaf4382 – ident: ref25/cit25 doi: 10.1016/S0167-7322(96)90018-5 – ident: ref30/cit30 doi: 10.1103/PhysRevE.72.011605 – ident: ref42/cit42 doi: 10.1016/j.jnoncrysol.2005.09.010 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.5b00750 – ident: ref33/cit33 doi: 10.1038/ncomms13438 – ident: ref37/cit37 doi: 10.1021/jp970848i – ident: ref24/cit24 doi: 10.1021/acs.jpcb.5b05402 – ident: ref45/cit45 doi: 10.1038/s41557-019-0210-4 – ident: ref5/cit5 doi: 10.1038/24540 – ident: ref21/cit21 doi: 10.1098/rspa.1952.0194 – ident: ref16/cit16 doi: 10.1021/jp000765t – ident: ref15/cit15 doi: 10.1021/acs.jpcc.7b05336 – ident: ref28/cit28 doi: 10.1021/acs.jpcb.8b04112 – ident: ref38/cit38 doi: 10.1021/jp983926q – ident: ref2/cit2 doi: 10.1038/nature06044 – ident: ref4/cit4 doi: 10.1038/35003143 – ident: ref31/cit31 doi: 10.1021/jp046762o – ident: ref29/cit29 doi: 10.1021/jacs.7b03036 – ident: ref1/cit1 doi: 10.1038/369633a0 – ident: ref3/cit3 doi: 10.1038/nmat1458 – ident: ref27/cit27 doi: 10.1039/b505052a – ident: ref39/cit39 doi: 10.1021/jacs.8b13231 – ident: ref11/cit11 doi: 10.1021/jp953785h – ident: ref34/cit34 doi: 10.1126/sciadv.1602209 – ident: ref41/cit41 doi: 10.1021/ja903315v – ident: ref36/cit36 doi: 10.1088/0953-8984/22/19/195102 – ident: ref8/cit8 doi: 10.1038/srep42439 – ident: ref9/cit9 doi: 10.1063/1.5041757 – ident: ref18/cit18 doi: 10.1039/b401308p – ident: ref35/cit35 doi: 10.1016/j.jnoncrysol.2006.02.155 – ident: ref43/cit43 doi: 10.1073/pnas.1909660116 – ident: ref40/cit40 doi: 10.1002/anie.201204824 – ident: ref46/cit46 doi: 10.1021/jacs.9b03083 – ident: ref12/cit12 doi: 10.1126/science.1103073 – ident: ref23/cit23 doi: 10.1073/pnas.1822016116 – ident: ref32/cit32 doi: 10.1021/ja046602q – ident: ref7/cit7 doi: 10.1088/0953-8984/17/27/L01 – ident: ref22/cit22 doi: 10.1038/nmat2897 – ident: ref10/cit10 doi: 10.1063/1.4989961 – ident: ref17/cit17 doi: 10.1088/0953-8984/15/11/329 – ident: ref13/cit13 doi: 10.1021/jz5022763 |
SSID | ssj0004281 |
Score | 2.4334557 |
Snippet | Liquid–liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid–liquid transitions... Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions... Liquid–liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid–liquid transitions... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7591 |
SubjectTerms | crystallization glass liquids vitrification |
Title | Polyamorphism Mirrors Polymorphism in the Liquid–Liquid Transition of a Molecular Liquid |
URI | http://dx.doi.org/10.1021/jacs.0c01712 https://www.ncbi.nlm.nih.gov/pubmed/32249557 https://www.proquest.com/docview/2386446547 https://www.proquest.com/docview/2986487834 https://pubmed.ncbi.nlm.nih.gov/PMC7181258 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5V4UAv0AKlobTaSuWEHDlr73pyrCJCVDUIqUSKuFjrXVu12tgQJwc48Q68IU_SGf-kJFHa3qz1rCzPzu58o5n9hrEzVyQJmq11pB8kDnoIcCIPYgd9s2sTbaVx6Tby6Isajv2LiZzcF8iuZ_AF8QOZouMa4nXBo_aZULh_CQL1r-7vPwroNjA3AOXVBe7rs8kBmWLVAW2gyvXiyP-8zeAl-9zc2amKTG46i3nUMb83KRwf-ZE99qIGnPy8spB9thNnr9jzftPn7TX7_jW__aWnOSo8LaZ8lM5m-azgNLocTDOOQJFfpj8Xqf3352_1wEtHV9Z88Tzhmo-aXru15Bs2Hnz61h86dccFR8uumjtRLMEFEylql46hVEB0ZL7nxV2LYYh1IQEfrJGu1sRTJ02X6GAi0bNRAFpK74C1sjyLDxkXtmdB9UBqqRAUxhgX9cBKBeBbQOE2O0V9hPWOKcIyGS4wGKHRWktt9rFZqtDUlOXUOeN2i_SHpfSPiqpji9xps-ohqpoSJDqL80URInxRJcFc8IAM8dkDtSdps7eVpSy_hocjxpsSZwcrNrQUIC7v1TdZel1yegeEtCS8e4JWjtiuoKDf9R0h3rPWfLaIjxEZzaOTclvcAXQnCMo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEG6MHvTi-7E-a6Ing2ELhdmj2WhW3d2YqInxQgqFSFTQZfegJ_-D_9Bf4gwL6K7ReCNlCmU67XxD228Y2zNFFKHZakPabmSghwDDtyA00DebOlJaBiadRu50nda1fXYjb4rD6nQWBhuR4ZOyfBH_i12AaIKw0AyI3gVn3CnEIYIM-qh5-XUMUkC9RLsuOFaxz328NvmhIBv1Qz_A5fgeyW9O52SOdavm5ntN7g8Hff8weB1jcvz398yz2QJ-8qOhvSywiTBZZNPNMuvbEru9SB9e1GOK6o-zR96Je720l3EqrQrjhCNs5O34eRDrj7f34QXP3V6-A4ynEVe8U2beLSSX2fXJ8VWzZRT5Fwwl607f8EMJJgS-Q8nTMbByiZzMtqywrjEo0SZEYIMOpKkUsdbJoE7kML5oaN8FJaW1wiaTNAnXGBe6ocFpgFTSQYgYYpTUAC0dAFsDCtfYLurDK8ZP5uVL4wJDEyottFRjB2WPeUFBYE55NB5-kd6vpJ-GxB2_yO2Wne-hqmm5RCVhOsg8BDNOTjfn_iFD7PZAyUpqbHVoMNXbcKrE6FNibXfElCoBYvYevZPEdznDt0u4S8L6P7Syw6ZbV5221z7tnm-wGUG_A0zbEGKTTfZ7g3ALMVPf385HyidiIxEr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLYQSJQLlJbHUh6DVE4oKK9JvEe0ZQWURagtEuolmmQSEQEJbHYPcOp_4B_yS7CzSWC3ArW3aOJJJh7P2I49nwG-mnaSkNhqQ7p-YpCGQCN0MDZIN5s6UVpGJp9G7p16h-fu8YW8mAKrPgtDgyjoSUUZxOdVfauTCmGAoYLohhkxxAvtujMcsWOh3u_8fDkKaaNVW7w-ek6V6z7Zm3VRVIzror8MzMk8yVeKp7sAP5ohl_kmV3vDQbgXPUygOf7XN32E-coMFfsjuVmEqTj7BB86dfW3z_D7LL--Vzc5TUNa3Ihe2u_n_UJwa9OYZoLMR3GS3g1T_fTncXQhSvVXZoKJPBFK9OoKvBXlEpx3D351Do2qDoOhpOUNjDCWaGIUelxEnRwsn0HKXMeJLU3OiTYxQRd1JE2lGL1ORhaDxIR2W4c-KimdZZjO8ixeBWHrtkavjVJJj0zFmLylNmrpIboaibgF28SPoFpHRVCGyG1yUbi14lILdutZC6IKyJzraVy_Qb3TUN-OADzeoNuuBSAgVnPYRGVxPiwCMmq8EnbOf4eGUe6Ri5a0YGUkNM3baMskL1RSb39MnBoCRvgev5OllyXSt8_2l8S1f-DKFsyefesGJ0en37_AnM1_BUzXsO11mB70h_EGmU6DcLNcLM8v4xOu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamorphism+Mirrors+Polymorphism+in+the+Liquid%E2%80%93Liquid+Transition+of+a+Molecular+Liquid&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Walton%2C+Finlay&rft.au=Bolling%2C+John&rft.au=Farrell%2C+Andrew&rft.au=MacEwen%2C+Jamie&rft.date=2020-04-22&rft.issn=1520-5126&rft.volume=142&rft.issue=16+p.7591-7597&rft.spage=7591&rft.epage=7597&rft_id=info:doi/10.1021%2Fjacs.0c01712&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |