Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect
The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 35; pp. 15127 - 15136 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. |
---|---|
AbstractList | The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C-X) orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C-X) orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ* orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*₍C–X₎ orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ * (C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ * acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis. |
Author | Walczak, Maciej A Zhu, Feng |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Feng surname: Zhu fullname: Zhu, Feng – sequence: 2 givenname: Maciej A orcidid: 0000-0002-8049-0817 surname: Walczak fullname: Walczak, Maciej A email: maciej.walczak@colorado.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32786781$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuPFCEUhYkZ4_SM7lybWrqwRh5FFWxMJp3xkYxx4RiXhKIuNh0KWqCN_e-l0j1GjcYVcPnuyck5F-gsxAAIPSX4imBKXm61yVfY4F4I-gCtCKe45YT2Z2iFMabtIHp2ji5y3tZnRwV5hM4ZrdNBkBX6_LFAgmg2MLtc0qGJtrlLOmRXXAzNeyjaN-s47zx8h1xvoaToPUzNeGjKBo6Ej-11iDMkZ5oba8GUx-ih1T7Dk9N5iT69vrlbv21vP7x5t76-bTUnfWkFGTopLTFkghGMYVpyPo5kYnaSpB8klwIby8TEjaWaAeaMSQpC44511rBL9Oqou9uPM0wGqj_t1S65WaeDitqp33-C26gv8ZuSPaV0YFXg-Ukgxa97yEXVIAx4rwPEfVaU045hzgX9P1otYS45XtBnv9r66ec--ArQI2BSzDmBVcYVvWReXTqvCFZLu2ppV53arUsv_li61_0HfvK7DLdxn0Jt4u_oD86_tRk |
CitedBy_id | crossref_primary_10_1016_j_mcat_2022_112154 crossref_primary_10_1126_sciadv_adu7747 crossref_primary_10_1021_acs_orglett_1c01035 crossref_primary_10_1039_D1CS00386K crossref_primary_10_1021_acscatal_1c02088 crossref_primary_10_1016_j_checat_2022_10_019 crossref_primary_10_1002_anie_202301081 crossref_primary_10_1016_j_cclet_2024_109674 crossref_primary_10_3390_molecules27134011 crossref_primary_10_1002_anie_202423631 crossref_primary_10_1134_S1990793122050062 crossref_primary_10_1002_anie_202014991 crossref_primary_10_1016_j_cbpa_2022_102184 crossref_primary_10_1016_j_chempr_2021_09_008 crossref_primary_10_1126_sciadv_adk0531 crossref_primary_10_1021_acs_orglett_4c01664 crossref_primary_10_1002_chem_202403822 crossref_primary_10_1002_ejic_202200386 crossref_primary_10_1038_s41598_024_66539_3 crossref_primary_10_1038_s44160_022_00024_5 crossref_primary_10_1039_D1CS00564B crossref_primary_10_1021_jacs_4c05485 crossref_primary_10_1021_acs_orglett_4c02019 crossref_primary_10_1002_anie_202305138 crossref_primary_10_1021_acs_orglett_3c02601 crossref_primary_10_1038_s41467_024_47711_9 crossref_primary_10_1021_acs_orglett_1c00551 crossref_primary_10_1021_jacs_1c11842 crossref_primary_10_1002_ange_202301081 crossref_primary_10_1002_ange_202423631 crossref_primary_10_1016_j_scp_2024_101855 crossref_primary_10_1021_jacs_4c04587 crossref_primary_10_1038_s44160_022_00214_1 crossref_primary_10_1002_ange_202014991 crossref_primary_10_3390_molecules26175258 crossref_primary_10_1021_acs_joc_2c02426 crossref_primary_10_1002_cjoc_202400224 crossref_primary_10_1002_adsc_202400695 crossref_primary_10_1039_D3RA03438K crossref_primary_10_1002_ange_202305138 crossref_primary_10_1080_07328303_2022_2031207 crossref_primary_10_1039_D3SC01995K crossref_primary_10_1055_a_1787_1429 crossref_primary_10_1038_s44160_024_00496_7 |
Cites_doi | 10.1007/978-3-642-68676-4 10.1021/jacs.5b13211 10.1021/ja510653n 10.1021/ar50051a003 10.1021/jacs.6b04818 10.1021/jo01274a015 10.1021/acscatal.7b01973 10.1002/anie.201914061 10.1039/C6QO00014B 10.1021/acscatal.8b02928 10.1021/jacs.0c03298 10.1021/ja00195a038 10.1021/jacs.7b05367 10.1016/S0008-6215(96)00297-2 10.1126/science.aaf6123 10.1002/anie.201702079 10.1021/acs.orglett.6b00911 10.1126/science.aam7355 10.1126/science.aaf6635 10.1021/cr940472u 10.1021/jo102097n 10.1021/acs.orglett.8b03567 10.1021/jacs.8b09191 10.1021/ja8041564 10.1039/C5SC02402A 10.1021/jacs.6b08397 10.1021/cr00088a005 10.1021/jacs.6b00250 10.1002/jcc.20585 10.1021/jacs.8b02834 10.1002/adsc.201701615 10.1021/acs.joc.7b02589 10.1016/0040-4020(95)00560-U 10.1021/jacs.9b03982 10.1038/nature19056 10.1021/ol8028737 10.1038/s41929-019-0324-5 10.1021/ar00166a003 10.1021/bk-1993-0539 10.1021/acs.orglett.6b03448 10.1016/S0040-4020(01)90118-8 10.1021/acscatal.6b02786 10.1021/jacs.7b08158 10.1351/pac197125030527 10.1021/acs.orglett.7b01588 10.1038/nature22813 10.1021/acs.orglett.7b00989 10.1021/acs.orglett.9b04587 10.1021/jo00087a035 10.1021/jacs.7b03867 10.1002/anie.201800749 10.1002/anie.201802282 10.1002/anie.201204786 10.1021/ja511913h 10.1021/ja012633z 10.1038/nchem.721 10.1039/c3ob40187a 10.1002/anie.201605463 10.1021/acs.accounts.8b00192 10.1016/j.tet.2004.05.006 10.1021/acs.orglett.5b03705 10.1039/C6SC02815B 10.1002/9781118906378 10.3987/REV-90-414 10.1021/jacs.7b08707 10.1021/jacs.6b07172 10.1002/anie.199310911 10.1038/nature09693 10.1002/anie.201506147 10.1021/jacs.6b04789 10.1039/c003880f 10.1021/jacs.5b12920 10.1002/anie.201504963 10.1139/v65-298 10.1002/anie.201800701 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.0c06882 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 15136 |
ExternalDocumentID | PMC9622273 32786781 10_1021_jacs_0c06882 c709743858 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM125284 |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 5PM AAYWT |
ID | FETCH-LOGICAL-a516t-817499f1c1debecc3a955bb1d3fd916795980cf38d5cf2a3e053392e8a0434fc3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:38:36 EDT 2025 Fri Jul 11 07:25:29 EDT 2025 Fri Jul 11 10:30:20 EDT 2025 Wed Feb 19 02:28:43 EST 2025 Tue Jul 01 02:08:54 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Sep 04 11:27:43 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a516t-817499f1c1debecc3a955bb1d3fd916795980cf38d5cf2a3e053392e8a0434fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8049-0817 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9622273 |
PMID | 32786781 |
PQID | 2434059502 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9622273 proquest_miscellaneous_2524305582 proquest_miscellaneous_2434059502 pubmed_primary_32786781 crossref_citationtrail_10_1021_jacs_0c06882 crossref_primary_10_1021_jacs_0c06882 acs_journals_10_1021_jacs_0c06882 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-02 |
PublicationDateYYYYMMDD | 2020-09-02 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 Eliel E. L. (ref65/cit65) 1994 ref6/cit6 ref36/cit36 ref18/cit18 Kirby A. J. (ref5/cit5) 1983 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 Alabugin I. V. (ref2/cit2) 2016 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 Deslongchamps P. (ref1/cit1) 1983 ref69/cit69 Thatcher G. R. J. (ref8/cit8) 1993 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – volume-title: The Anomeric Effect and Related Stereoelectronic Effects at Oxygen year: 1983 ident: ref5/cit5 doi: 10.1007/978-3-642-68676-4 – ident: ref39/cit39 doi: 10.1021/jacs.5b13211 – ident: ref21/cit21 doi: 10.1021/ja510653n – ident: ref15/cit15 doi: 10.1021/ar50051a003 – ident: ref45/cit45 doi: 10.1021/jacs.6b04818 – ident: ref3/cit3 doi: 10.1021/jo01274a015 – ident: ref37/cit37 doi: 10.1021/acscatal.7b01973 – ident: ref43/cit43 doi: 10.1002/anie.201914061 – ident: ref36/cit36 doi: 10.1039/C6QO00014B – ident: ref61/cit61 doi: 10.1021/acscatal.8b02928 – ident: ref75/cit75 doi: 10.1021/jacs.0c03298 – ident: ref16/cit16 doi: 10.1021/ja00195a038 – ident: ref73/cit73 doi: 10.1021/jacs.7b05367 – volume-title: Stereochemistry of Organic Compounds year: 1994 ident: ref65/cit65 – ident: ref12/cit12 doi: 10.1016/S0008-6215(96)00297-2 – ident: ref59/cit59 doi: 10.1126/science.aaf6123 – ident: ref52/cit52 doi: 10.1002/anie.201702079 – ident: ref29/cit29 doi: 10.1021/acs.orglett.6b00911 – ident: ref60/cit60 doi: 10.1126/science.aam7355 – ident: ref46/cit46 doi: 10.1126/science.aaf6635 – ident: ref74/cit74 doi: 10.1021/cr940472u – ident: ref27/cit27 doi: 10.1021/jo102097n – ident: ref22/cit22 doi: 10.1021/acs.orglett.8b03567 – ident: ref54/cit54 doi: 10.1021/jacs.8b09191 – ident: ref19/cit19 doi: 10.1021/ja8041564 – ident: ref69/cit69 doi: 10.1039/C5SC02402A – ident: ref49/cit49 doi: 10.1021/jacs.6b08397 – ident: ref70/cit70 doi: 10.1021/cr00088a005 – ident: ref57/cit57 doi: 10.1021/jacs.6b00250 – ident: ref17/cit17 doi: 10.1002/jcc.20585 – ident: ref41/cit41 doi: 10.1021/jacs.8b02834 – ident: ref55/cit55 doi: 10.1002/adsc.201701615 – ident: ref34/cit34 doi: 10.1021/acs.joc.7b02589 – ident: ref14/cit14 doi: 10.1016/0040-4020(95)00560-U – volume-title: Stereoelectronic Effects in Organic Chemistry year: 1983 ident: ref1/cit1 – ident: ref64/cit64 doi: 10.1021/jacs.9b03982 – ident: ref40/cit40 doi: 10.1038/nature19056 – ident: ref20/cit20 doi: 10.1021/ol8028737 – ident: ref66/cit66 doi: 10.1038/s41929-019-0324-5 – ident: ref68/cit68 doi: 10.1021/ar00166a003 – volume-title: The Anomeric Effect and Associated Stereoelectronic Effects year: 1993 ident: ref8/cit8 doi: 10.1021/bk-1993-0539 – ident: ref33/cit33 doi: 10.1021/acs.orglett.6b03448 – ident: ref7/cit7 doi: 10.1016/S0040-4020(01)90118-8 – ident: ref44/cit44 doi: 10.1021/acscatal.6b02786 – ident: ref51/cit51 doi: 10.1021/jacs.7b08158 – ident: ref4/cit4 doi: 10.1351/pac197125030527 – ident: ref32/cit32 doi: 10.1021/acs.orglett.7b01588 – ident: ref50/cit50 doi: 10.1038/nature22813 – ident: ref31/cit31 doi: 10.1021/acs.orglett.7b00989 – ident: ref42/cit42 doi: 10.1021/acs.orglett.9b04587 – ident: ref9/cit9 doi: 10.1021/jo00087a035 – ident: ref25/cit25 doi: 10.1021/jacs.7b03867 – ident: ref53/cit53 doi: 10.1002/anie.201800749 – ident: ref24/cit24 doi: 10.1002/anie.201802282 – ident: ref18/cit18 doi: 10.1002/anie.201204786 – ident: ref38/cit38 doi: 10.1021/ja511913h – ident: ref67/cit67 doi: 10.1021/ja012633z – ident: ref11/cit11 doi: 10.1038/nchem.721 – ident: ref71/cit71 doi: 10.1039/c3ob40187a – ident: ref58/cit58 doi: 10.1002/anie.201605463 – ident: ref76/cit76 doi: 10.1021/acs.accounts.8b00192 – ident: ref72/cit72 doi: 10.1016/j.tet.2004.05.006 – ident: ref28/cit28 doi: 10.1021/acs.orglett.5b03705 – ident: ref48/cit48 doi: 10.1039/C6SC02815B – volume-title: Stereoelectronic Effects: A Bridge Between Structure and Reactivity year: 2016 ident: ref2/cit2 doi: 10.1002/9781118906378 – ident: ref6/cit6 doi: 10.3987/REV-90-414 – ident: ref63/cit63 doi: 10.1021/jacs.7b08707 – ident: ref56/cit56 doi: 10.1021/jacs.6b07172 – ident: ref62/cit62 doi: 10.1002/anie.199310911 – ident: ref10/cit10 doi: 10.1038/nature09693 – ident: ref30/cit30 doi: 10.1002/anie.201506147 – ident: ref47/cit47 doi: 10.1021/jacs.6b04789 – ident: ref26/cit26 doi: 10.1039/c003880f – ident: ref77/cit77 doi: 10.1021/jacs.5b12920 – ident: ref35/cit35 doi: 10.1002/anie.201504963 – ident: ref13/cit13 doi: 10.1139/v65-298 – ident: ref23/cit23 doi: 10.1002/anie.201800701 |
SSID | ssj0004281 |
Score | 2.5153477 |
Snippet | The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15127 |
SubjectTerms | carbon catalytic activity Coordination Complexes - chemistry enantioselectivity geometry glycosides glycosylation halogens heterocyclic compounds Molecular Conformation organic chemistry oxidation oxygen stereochemistry Stereoisomerism stereoselective synthesis Transition Elements - chemistry |
Title | Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect |
URI | http://dx.doi.org/10.1021/jacs.0c06882 https://www.ncbi.nlm.nih.gov/pubmed/32786781 https://www.proquest.com/docview/2434059502 https://www.proquest.com/docview/2524305582 https://pubmed.ncbi.nlm.nih.gov/PMC9622273 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHODC-zFeyiQ4oU5t0rTpcZqACWlcAMGtSvMQiKlFdJOAX0-ctoMNDbi2bqo4TvxZdj4jdGI9RkZ8nnhay9gLTcQ8TiNjbZlxX4mQGEcpNLiO-nfh1QN7-CqQnc3gE-AHkmXHl9AcxR61SyTiMQRZ3d7N1_1HwoMG5sY8onWB--zX4IBkOe2AfqDK2eLIb97mYg1dNnd2qiKT5854lHXkx08Kxz8mso5Wa8CJu5WFbKAFnW-i5V7T520L3d9Y1WponFU9wYXBzoO5Yi480BaeYzg2hvpNl7hX1bYPtcLZO7bwsZIYFl43L1z6B1eMyNvo7uL8ttf36nYLnmBBNPK4DU6SxAQyUG5lqUgYy7JAUaMSyNawhPvSUK6YNERQaCph0ZXmwg9paCTdQYt5kes9hImKaSwIk3acUBmWCU0zJUNfA2DzRQu1rTLSeruUqcuEExuJwNNaRS101qxTKmu-cmibMZwjfTqRfql4OubItZslT61WITsicl2My5TYSVisyfzfZBhxFGkwzm5lJpO_UWJNL-ZBC8VTBjQRACLv6Tf506Mj9E4iuJFM9_-hlQO0QiDih5QWOUSLo9exPrKwaJQduz3xCQFPCSw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5RONBLW_pDt7TUSOVUBSV2nDiHHlbboqWwXACVW-r4R626SiqyK0rfhVfps3XsJAu7CNQLUq_OyHHGY8_nzPgbgHfoMQoaiiwwRqVBbBMeCJZYtGUuQi1jaj2l0OgwGZ7En0_56RJcdndhcBA19lT7IP4Vu4CjCcLGULkaKbTNodw3F-d4Qqs_7H3E6dymdPfT8WAYtEUEAsmjZBIIhNxZZiMVaT9eJjPOiyLSzOrMxSB4JkJlmdBcWSqZK5WAmMEIGcYstophvw9gBXEPdWe7_uDo6tolFVGHrlORsDavfnG0zu-pet7v3QCzizmZ15zc7mP4M1OPz235sTOdFDvq9wJz5H-rvyfwqIXXpN-shzVYMuVTWB10Ve2ewZcjNCTjyoQ1LaSyxPtrn7pGRgYPI8RtkmPzy9Rk0GTyj40mxQVBsNxIjKugX1Y-2EUa_ufncHIv3_UClsuqNC-BUJ2yVFKusJ9YW15Iwwqt4tA4eBrKHmyh8vN2c6hzH_eneO5yre2U9OB9Zx65atnZXZGQ8S3S2zPpnw0ryS1yW52l5ahVFwuSpammdU7xIxBZ8_AuGU49IZzrZ72xztnbGEWLT0XUg3TObmcCjrZ8_kn5_ZunL88Sd_-avfoHrbyF1eHx6CA_2Dvc34CH1P3rcME8-hqWJ2dT8wYB4aTY9MuSwNf7tuO_7QRsIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIgEX3oXl6Ur0hFIldpw4hx5WW1YtpRVSqegtJH4IxCqpyK6g_Jv-lf6yzjjJwi4q4lKJazJy7PHY8zkz_gbgFXqMkocqC6zVaRC7RAZKJA5tWarQFDF3nlJo_yDZOYrfHsvjFTjr78JgJxpsqfFBfFrVJ8Z1DANEFYQvQk11UniXR7lnT7_jKa3Z2t3GKd3gfPzmw2gn6AoJBIWMkmmgEHZnmYt0ZHyfRZFJWZaREc5kFIeQmQq1E8pI7XghqFwC4garijAWsdMC270G1ylCSOe74ejw19VLrqIeYacqEV1u_XJvyffpZtH3_QFol_Myf3N04ztwPleRz2_5ujmblpv65xJ75H-tw7twu4PZbNiui3uwYqv7cHPUV7d7AB8P0aAslQtrn7DaMe-3fQob27d4KGG0WU7sD9uwUZvRP7GGlacMQXMrMamDYVX7oBdreaAfwtGVjGsNVqu6so-BcZOKtOBSYzuxcbIsrCiNjkNLMDUsBrCOys-7TaLJffyf4_mLnnZTMoDXvYnkumNpp2Ihk0ukN-bSJy07ySVy67215ahVigkVla1nTc5xEIiwZfg3Gck9MRy186i10PnXBEerT1U0gHTBducCRF---Kb68tnTmGcJ3cMWT_5BKy_hxvvtcf5u92DvKdzi9MuDYnr8GaxOv83sc8SF0_KFX5kMPl21GV8AzJRupQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereochemistry+of+Transition+Metal+Complexes+Controlled+by+the+Metallo-Anomeric+Effect&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhu%2C+Feng&rft.au=Walczak%2C+Maciej+A&rft.date=2020-09-02&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=35&rft.spage=15127&rft.epage=15136&rft_id=info:doi/10.1021%2Fjacs.0c06882&rft.externalDocID=c709743858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |