Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect

The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 35; pp. 15127 - 15136
Main Authors Zhu, Feng, Walczak, Maciej A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
AbstractList The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C-X) orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*(C-X) orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ* orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ*₍C–X₎ orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ * (C–X) orbital or the minimization of the dipole–dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ * acceptor orbitals of the C–M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.
Author Walczak, Maciej A
Zhu, Feng
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Feng
  surname: Zhu
  fullname: Zhu, Feng
– sequence: 2
  givenname: Maciej A
  orcidid: 0000-0002-8049-0817
  surname: Walczak
  fullname: Walczak, Maciej A
  email: maciej.walczak@colorado.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32786781$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuPFCEUhYkZ4_SM7lybWrqwRh5FFWxMJp3xkYxx4RiXhKIuNh0KWqCN_e-l0j1GjcYVcPnuyck5F-gsxAAIPSX4imBKXm61yVfY4F4I-gCtCKe45YT2Z2iFMabtIHp2ji5y3tZnRwV5hM4ZrdNBkBX6_LFAgmg2MLtc0qGJtrlLOmRXXAzNeyjaN-s47zx8h1xvoaToPUzNeGjKBo6Ej-11iDMkZ5oba8GUx-ih1T7Dk9N5iT69vrlbv21vP7x5t76-bTUnfWkFGTopLTFkghGMYVpyPo5kYnaSpB8klwIby8TEjaWaAeaMSQpC44511rBL9Oqou9uPM0wGqj_t1S65WaeDitqp33-C26gv8ZuSPaV0YFXg-Ukgxa97yEXVIAx4rwPEfVaU045hzgX9P1otYS45XtBnv9r66ec--ArQI2BSzDmBVcYVvWReXTqvCFZLu2ppV53arUsv_li61_0HfvK7DLdxn0Jt4u_oD86_tRk
CitedBy_id crossref_primary_10_1016_j_mcat_2022_112154
crossref_primary_10_1126_sciadv_adu7747
crossref_primary_10_1021_acs_orglett_1c01035
crossref_primary_10_1039_D1CS00386K
crossref_primary_10_1021_acscatal_1c02088
crossref_primary_10_1016_j_checat_2022_10_019
crossref_primary_10_1002_anie_202301081
crossref_primary_10_1016_j_cclet_2024_109674
crossref_primary_10_3390_molecules27134011
crossref_primary_10_1002_anie_202423631
crossref_primary_10_1134_S1990793122050062
crossref_primary_10_1002_anie_202014991
crossref_primary_10_1016_j_cbpa_2022_102184
crossref_primary_10_1016_j_chempr_2021_09_008
crossref_primary_10_1126_sciadv_adk0531
crossref_primary_10_1021_acs_orglett_4c01664
crossref_primary_10_1002_chem_202403822
crossref_primary_10_1002_ejic_202200386
crossref_primary_10_1038_s41598_024_66539_3
crossref_primary_10_1038_s44160_022_00024_5
crossref_primary_10_1039_D1CS00564B
crossref_primary_10_1021_jacs_4c05485
crossref_primary_10_1021_acs_orglett_4c02019
crossref_primary_10_1002_anie_202305138
crossref_primary_10_1021_acs_orglett_3c02601
crossref_primary_10_1038_s41467_024_47711_9
crossref_primary_10_1021_acs_orglett_1c00551
crossref_primary_10_1021_jacs_1c11842
crossref_primary_10_1002_ange_202301081
crossref_primary_10_1002_ange_202423631
crossref_primary_10_1016_j_scp_2024_101855
crossref_primary_10_1021_jacs_4c04587
crossref_primary_10_1038_s44160_022_00214_1
crossref_primary_10_1002_ange_202014991
crossref_primary_10_3390_molecules26175258
crossref_primary_10_1021_acs_joc_2c02426
crossref_primary_10_1002_cjoc_202400224
crossref_primary_10_1002_adsc_202400695
crossref_primary_10_1039_D3RA03438K
crossref_primary_10_1002_ange_202305138
crossref_primary_10_1080_07328303_2022_2031207
crossref_primary_10_1039_D3SC01995K
crossref_primary_10_1055_a_1787_1429
crossref_primary_10_1038_s44160_024_00496_7
Cites_doi 10.1007/978-3-642-68676-4
10.1021/jacs.5b13211
10.1021/ja510653n
10.1021/ar50051a003
10.1021/jacs.6b04818
10.1021/jo01274a015
10.1021/acscatal.7b01973
10.1002/anie.201914061
10.1039/C6QO00014B
10.1021/acscatal.8b02928
10.1021/jacs.0c03298
10.1021/ja00195a038
10.1021/jacs.7b05367
10.1016/S0008-6215(96)00297-2
10.1126/science.aaf6123
10.1002/anie.201702079
10.1021/acs.orglett.6b00911
10.1126/science.aam7355
10.1126/science.aaf6635
10.1021/cr940472u
10.1021/jo102097n
10.1021/acs.orglett.8b03567
10.1021/jacs.8b09191
10.1021/ja8041564
10.1039/C5SC02402A
10.1021/jacs.6b08397
10.1021/cr00088a005
10.1021/jacs.6b00250
10.1002/jcc.20585
10.1021/jacs.8b02834
10.1002/adsc.201701615
10.1021/acs.joc.7b02589
10.1016/0040-4020(95)00560-U
10.1021/jacs.9b03982
10.1038/nature19056
10.1021/ol8028737
10.1038/s41929-019-0324-5
10.1021/ar00166a003
10.1021/bk-1993-0539
10.1021/acs.orglett.6b03448
10.1016/S0040-4020(01)90118-8
10.1021/acscatal.6b02786
10.1021/jacs.7b08158
10.1351/pac197125030527
10.1021/acs.orglett.7b01588
10.1038/nature22813
10.1021/acs.orglett.7b00989
10.1021/acs.orglett.9b04587
10.1021/jo00087a035
10.1021/jacs.7b03867
10.1002/anie.201800749
10.1002/anie.201802282
10.1002/anie.201204786
10.1021/ja511913h
10.1021/ja012633z
10.1038/nchem.721
10.1039/c3ob40187a
10.1002/anie.201605463
10.1021/acs.accounts.8b00192
10.1016/j.tet.2004.05.006
10.1021/acs.orglett.5b03705
10.1039/C6SC02815B
10.1002/9781118906378
10.3987/REV-90-414
10.1021/jacs.7b08707
10.1021/jacs.6b07172
10.1002/anie.199310911
10.1038/nature09693
10.1002/anie.201506147
10.1021/jacs.6b04789
10.1039/c003880f
10.1021/jacs.5b12920
10.1002/anie.201504963
10.1139/v65-298
10.1002/anie.201800701
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.0c06882
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 15136
ExternalDocumentID PMC9622273
32786781
10_1021_jacs_0c06882
c709743858
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U01 GM125284
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
7S9
L.6
5PM
AAYWT
ID FETCH-LOGICAL-a516t-817499f1c1debecc3a955bb1d3fd916795980cf38d5cf2a3e053392e8a0434fc3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:38:36 EDT 2025
Fri Jul 11 07:25:29 EDT 2025
Fri Jul 11 10:30:20 EDT 2025
Wed Feb 19 02:28:43 EST 2025
Tue Jul 01 02:08:54 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Sep 04 11:27:43 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a516t-817499f1c1debecc3a955bb1d3fd916795980cf38d5cf2a3e053392e8a0434fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8049-0817
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9622273
PMID 32786781
PQID 2434059502
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9622273
proquest_miscellaneous_2524305582
proquest_miscellaneous_2434059502
pubmed_primary_32786781
crossref_citationtrail_10_1021_jacs_0c06882
crossref_primary_10_1021_jacs_0c06882
acs_journals_10_1021_jacs_0c06882
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-02
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
Eliel E. L. (ref65/cit65) 1994
ref6/cit6
ref36/cit36
ref18/cit18
Kirby A. J. (ref5/cit5) 1983
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
Alabugin I. V. (ref2/cit2) 2016
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
Deslongchamps P. (ref1/cit1) 1983
ref69/cit69
Thatcher G. R. J. (ref8/cit8) 1993
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – volume-title: The Anomeric Effect and Related Stereoelectronic Effects at Oxygen
  year: 1983
  ident: ref5/cit5
  doi: 10.1007/978-3-642-68676-4
– ident: ref39/cit39
  doi: 10.1021/jacs.5b13211
– ident: ref21/cit21
  doi: 10.1021/ja510653n
– ident: ref15/cit15
  doi: 10.1021/ar50051a003
– ident: ref45/cit45
  doi: 10.1021/jacs.6b04818
– ident: ref3/cit3
  doi: 10.1021/jo01274a015
– ident: ref37/cit37
  doi: 10.1021/acscatal.7b01973
– ident: ref43/cit43
  doi: 10.1002/anie.201914061
– ident: ref36/cit36
  doi: 10.1039/C6QO00014B
– ident: ref61/cit61
  doi: 10.1021/acscatal.8b02928
– ident: ref75/cit75
  doi: 10.1021/jacs.0c03298
– ident: ref16/cit16
  doi: 10.1021/ja00195a038
– ident: ref73/cit73
  doi: 10.1021/jacs.7b05367
– volume-title: Stereochemistry of Organic Compounds
  year: 1994
  ident: ref65/cit65
– ident: ref12/cit12
  doi: 10.1016/S0008-6215(96)00297-2
– ident: ref59/cit59
  doi: 10.1126/science.aaf6123
– ident: ref52/cit52
  doi: 10.1002/anie.201702079
– ident: ref29/cit29
  doi: 10.1021/acs.orglett.6b00911
– ident: ref60/cit60
  doi: 10.1126/science.aam7355
– ident: ref46/cit46
  doi: 10.1126/science.aaf6635
– ident: ref74/cit74
  doi: 10.1021/cr940472u
– ident: ref27/cit27
  doi: 10.1021/jo102097n
– ident: ref22/cit22
  doi: 10.1021/acs.orglett.8b03567
– ident: ref54/cit54
  doi: 10.1021/jacs.8b09191
– ident: ref19/cit19
  doi: 10.1021/ja8041564
– ident: ref69/cit69
  doi: 10.1039/C5SC02402A
– ident: ref49/cit49
  doi: 10.1021/jacs.6b08397
– ident: ref70/cit70
  doi: 10.1021/cr00088a005
– ident: ref57/cit57
  doi: 10.1021/jacs.6b00250
– ident: ref17/cit17
  doi: 10.1002/jcc.20585
– ident: ref41/cit41
  doi: 10.1021/jacs.8b02834
– ident: ref55/cit55
  doi: 10.1002/adsc.201701615
– ident: ref34/cit34
  doi: 10.1021/acs.joc.7b02589
– ident: ref14/cit14
  doi: 10.1016/0040-4020(95)00560-U
– volume-title: Stereoelectronic Effects in Organic Chemistry
  year: 1983
  ident: ref1/cit1
– ident: ref64/cit64
  doi: 10.1021/jacs.9b03982
– ident: ref40/cit40
  doi: 10.1038/nature19056
– ident: ref20/cit20
  doi: 10.1021/ol8028737
– ident: ref66/cit66
  doi: 10.1038/s41929-019-0324-5
– ident: ref68/cit68
  doi: 10.1021/ar00166a003
– volume-title: The Anomeric Effect and Associated Stereoelectronic Effects
  year: 1993
  ident: ref8/cit8
  doi: 10.1021/bk-1993-0539
– ident: ref33/cit33
  doi: 10.1021/acs.orglett.6b03448
– ident: ref7/cit7
  doi: 10.1016/S0040-4020(01)90118-8
– ident: ref44/cit44
  doi: 10.1021/acscatal.6b02786
– ident: ref51/cit51
  doi: 10.1021/jacs.7b08158
– ident: ref4/cit4
  doi: 10.1351/pac197125030527
– ident: ref32/cit32
  doi: 10.1021/acs.orglett.7b01588
– ident: ref50/cit50
  doi: 10.1038/nature22813
– ident: ref31/cit31
  doi: 10.1021/acs.orglett.7b00989
– ident: ref42/cit42
  doi: 10.1021/acs.orglett.9b04587
– ident: ref9/cit9
  doi: 10.1021/jo00087a035
– ident: ref25/cit25
  doi: 10.1021/jacs.7b03867
– ident: ref53/cit53
  doi: 10.1002/anie.201800749
– ident: ref24/cit24
  doi: 10.1002/anie.201802282
– ident: ref18/cit18
  doi: 10.1002/anie.201204786
– ident: ref38/cit38
  doi: 10.1021/ja511913h
– ident: ref67/cit67
  doi: 10.1021/ja012633z
– ident: ref11/cit11
  doi: 10.1038/nchem.721
– ident: ref71/cit71
  doi: 10.1039/c3ob40187a
– ident: ref58/cit58
  doi: 10.1002/anie.201605463
– ident: ref76/cit76
  doi: 10.1021/acs.accounts.8b00192
– ident: ref72/cit72
  doi: 10.1016/j.tet.2004.05.006
– ident: ref28/cit28
  doi: 10.1021/acs.orglett.5b03705
– ident: ref48/cit48
  doi: 10.1039/C6SC02815B
– volume-title: Stereoelectronic Effects: A Bridge Between Structure and Reactivity
  year: 2016
  ident: ref2/cit2
  doi: 10.1002/9781118906378
– ident: ref6/cit6
  doi: 10.3987/REV-90-414
– ident: ref63/cit63
  doi: 10.1021/jacs.7b08707
– ident: ref56/cit56
  doi: 10.1021/jacs.6b07172
– ident: ref62/cit62
  doi: 10.1002/anie.199310911
– ident: ref10/cit10
  doi: 10.1038/nature09693
– ident: ref30/cit30
  doi: 10.1002/anie.201506147
– ident: ref47/cit47
  doi: 10.1021/jacs.6b04789
– ident: ref26/cit26
  doi: 10.1039/c003880f
– ident: ref77/cit77
  doi: 10.1021/jacs.5b12920
– ident: ref35/cit35
  doi: 10.1002/anie.201504963
– ident: ref13/cit13
  doi: 10.1139/v65-298
– ident: ref23/cit23
  doi: 10.1002/anie.201800701
SSID ssj0004281
Score 2.5153477
Snippet The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15127
SubjectTerms carbon
catalytic activity
Coordination Complexes - chemistry
enantioselectivity
geometry
glycosides
glycosylation
halogens
heterocyclic compounds
Molecular Conformation
organic chemistry
oxidation
oxygen
stereochemistry
Stereoisomerism
stereoselective synthesis
Transition Elements - chemistry
Title Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect
URI http://dx.doi.org/10.1021/jacs.0c06882
https://www.ncbi.nlm.nih.gov/pubmed/32786781
https://www.proquest.com/docview/2434059502
https://www.proquest.com/docview/2524305582
https://pubmed.ncbi.nlm.nih.gov/PMC9622273
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHODC-zFeyiQ4oU5t0rTpcZqACWlcAMGtSvMQiKlFdJOAX0-ctoMNDbi2bqo4TvxZdj4jdGI9RkZ8nnhay9gLTcQ8TiNjbZlxX4mQGEcpNLiO-nfh1QN7-CqQnc3gE-AHkmXHl9AcxR61SyTiMQRZ3d7N1_1HwoMG5sY8onWB--zX4IBkOe2AfqDK2eLIb97mYg1dNnd2qiKT5854lHXkx08Kxz8mso5Wa8CJu5WFbKAFnW-i5V7T520L3d9Y1WponFU9wYXBzoO5Yi480BaeYzg2hvpNl7hX1bYPtcLZO7bwsZIYFl43L1z6B1eMyNvo7uL8ttf36nYLnmBBNPK4DU6SxAQyUG5lqUgYy7JAUaMSyNawhPvSUK6YNERQaCph0ZXmwg9paCTdQYt5kes9hImKaSwIk3acUBmWCU0zJUNfA2DzRQu1rTLSeruUqcuEExuJwNNaRS101qxTKmu-cmibMZwjfTqRfql4OubItZslT61WITsicl2My5TYSVisyfzfZBhxFGkwzm5lJpO_UWJNL-ZBC8VTBjQRACLv6Tf506Mj9E4iuJFM9_-hlQO0QiDih5QWOUSLo9exPrKwaJQduz3xCQFPCSw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5RONBLW_pDt7TUSOVUBSV2nDiHHlbboqWwXACVW-r4R626SiqyK0rfhVfps3XsJAu7CNQLUq_OyHHGY8_nzPgbgHfoMQoaiiwwRqVBbBMeCJZYtGUuQi1jaj2l0OgwGZ7En0_56RJcdndhcBA19lT7IP4Vu4CjCcLGULkaKbTNodw3F-d4Qqs_7H3E6dymdPfT8WAYtEUEAsmjZBIIhNxZZiMVaT9eJjPOiyLSzOrMxSB4JkJlmdBcWSqZK5WAmMEIGcYstophvw9gBXEPdWe7_uDo6tolFVGHrlORsDavfnG0zu-pet7v3QCzizmZ15zc7mP4M1OPz235sTOdFDvq9wJz5H-rvyfwqIXXpN-shzVYMuVTWB10Ve2ewZcjNCTjyoQ1LaSyxPtrn7pGRgYPI8RtkmPzy9Rk0GTyj40mxQVBsNxIjKugX1Y-2EUa_ufncHIv3_UClsuqNC-BUJ2yVFKusJ9YW15Iwwqt4tA4eBrKHmyh8vN2c6hzH_eneO5yre2U9OB9Zx65atnZXZGQ8S3S2zPpnw0ryS1yW52l5ahVFwuSpammdU7xIxBZ8_AuGU49IZzrZ72xztnbGEWLT0XUg3TObmcCjrZ8_kn5_ZunL88Sd_-avfoHrbyF1eHx6CA_2Dvc34CH1P3rcME8-hqWJ2dT8wYB4aTY9MuSwNf7tuO_7QRsIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIgEX3oXl6Ur0hFIldpw4hx5WW1YtpRVSqegtJH4IxCqpyK6g_Jv-lf6yzjjJwi4q4lKJazJy7PHY8zkz_gbgFXqMkocqC6zVaRC7RAZKJA5tWarQFDF3nlJo_yDZOYrfHsvjFTjr78JgJxpsqfFBfFrVJ8Z1DANEFYQvQk11UniXR7lnT7_jKa3Z2t3GKd3gfPzmw2gn6AoJBIWMkmmgEHZnmYt0ZHyfRZFJWZaREc5kFIeQmQq1E8pI7XghqFwC4garijAWsdMC270G1ylCSOe74ejw19VLrqIeYacqEV1u_XJvyffpZtH3_QFol_Myf3N04ztwPleRz2_5ujmblpv65xJ75H-tw7twu4PZbNiui3uwYqv7cHPUV7d7AB8P0aAslQtrn7DaMe-3fQob27d4KGG0WU7sD9uwUZvRP7GGlacMQXMrMamDYVX7oBdreaAfwtGVjGsNVqu6so-BcZOKtOBSYzuxcbIsrCiNjkNLMDUsBrCOys-7TaLJffyf4_mLnnZTMoDXvYnkumNpp2Ihk0ukN-bSJy07ySVy67215ahVigkVla1nTc5xEIiwZfg3Gck9MRy186i10PnXBEerT1U0gHTBducCRF---Kb68tnTmGcJ3cMWT_5BKy_hxvvtcf5u92DvKdzi9MuDYnr8GaxOv83sc8SF0_KFX5kMPl21GV8AzJRupQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereochemistry+of+Transition+Metal+Complexes+Controlled+by+the+Metallo-Anomeric+Effect&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhu%2C+Feng&rft.au=Walczak%2C+Maciej+A&rft.date=2020-09-02&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=35&rft.spage=15127&rft.epage=15136&rft_id=info:doi/10.1021%2Fjacs.0c06882&rft.externalDocID=c709743858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon