Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis

Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photored...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 15; pp. 6385 - 6391
Main Authors Farney, Elliot P, Chapman, Steven J, Swords, Wesley B, Torelli, Marco D, Hamers, Robert J, Yoon, Tehshik P
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.
AbstractList Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.
Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels-Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels-Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.
Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more non-coordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pair interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.
Author Hamers, Robert J
Swords, Wesley B
Torelli, Marco D
Yoon, Tehshik P
Farney, Elliot P
Chapman, Steven J
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Elliot P
  surname: Farney
  fullname: Farney, Elliot P
– sequence: 2
  givenname: Steven J
  orcidid: 0000-0003-1570-4580
  surname: Chapman
  fullname: Chapman, Steven J
– sequence: 3
  givenname: Wesley B
  orcidid: 0000-0002-2986-326X
  surname: Swords
  fullname: Swords, Wesley B
– sequence: 4
  givenname: Marco D
  orcidid: 0000-0002-7691-6491
  surname: Torelli
  fullname: Torelli, Marco D
– sequence: 5
  givenname: Robert J
  orcidid: 0000-0003-3821-9625
  surname: Hamers
  fullname: Hamers, Robert J
– sequence: 6
  givenname: Tehshik P
  orcidid: 0000-0002-3934-4973
  surname: Yoon
  fullname: Yoon, Tehshik P
  email: tyoon@chem.wisc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30897327$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS3Uim4LN84oRw6keOw4sS9IaPsB0krtoZytiTOhXmXtxU4q9r8nS5cKEIiTNZ7fPL2Zd8qOQgzE2Cvg58AFvFujy-em5aC1esYWoAQvFYj6iC0456JsdC1P2GnO67mshIbn7ERybRopmgVbXfjs4gOlXYGhKy6HyfkORx9DEftiGacwUsKwry9oS6Gj4Kjwobi9j2NM1MVvxRJHHHbZ5xfsuMch08vDe8Y-X13eLT-Wq5vrT8sPqxIV1GPZuFYh1YiAQpsKeOOqvjEcSIta96p3grB3UDuuWmy0MZ2ouk4CtaClNPKMvX_U3U7thjpHYUw42G3yG0w7G9Hb3zvB39sv8cHWCgwAzAJvDgIpfp0oj3Yzn4GGAQPFKVshZKOkFMr8HwVTKyGais_o619tPfn5ee0ZePsIuBRzTtQ_IcDtPky7D9Mewpxx8Qfu_Pgjm3kpP_xr6OB3_7mOUwpzEn9HvwPdRrEj
CitedBy_id crossref_primary_10_1039_D3CP03255H
crossref_primary_10_1039_D1CC02604F
crossref_primary_10_1039_D2AN01719A
crossref_primary_10_3390_molecules27134047
crossref_primary_10_1021_jacs_2c05805
crossref_primary_10_1039_D1DT03353K
crossref_primary_10_1016_j_ccr_2024_215819
crossref_primary_10_1055_s_0043_1773499
crossref_primary_10_1002_chem_202004519
crossref_primary_10_1016_j_ijms_2021_116754
crossref_primary_10_1002_ajoc_202100473
crossref_primary_10_1021_acs_inorgchem_3c03831
crossref_primary_10_1021_acscatal_4c01678
crossref_primary_10_1021_acs_inorgchem_2c01387
crossref_primary_10_3762_bjoc_18_112
crossref_primary_10_1021_acscatal_1c04314
crossref_primary_10_1002_tcr_202100029
crossref_primary_10_1016_j_checat_2023_100854
crossref_primary_10_1016_j_carbpol_2021_118446
crossref_primary_10_1002_ajoc_201900749
crossref_primary_10_1021_jacsau_3c00542
crossref_primary_10_1021_acscatal_4c01288
crossref_primary_10_1021_acs_orglett_3c00299
crossref_primary_10_1038_s41557_022_00911_6
crossref_primary_10_1016_j_ccr_2023_215522
crossref_primary_10_1021_acs_chemrev_1c00384
crossref_primary_10_1021_jacs_2c08173
crossref_primary_10_1002_ejoc_201901576
crossref_primary_10_1002_anie_202405868
crossref_primary_10_1002_adsc_202100260
crossref_primary_10_1021_jacs_4c08551
crossref_primary_10_1021_jacsau_1c00137
crossref_primary_10_1002_ange_202013419
crossref_primary_10_1021_jacs_2c06831
crossref_primary_10_1002_anie_202417025
crossref_primary_10_1021_acscatal_3c02515
crossref_primary_10_1002_adsc_202200199
crossref_primary_10_1038_s41586_023_05804_3
crossref_primary_10_1002_anie_202013419
crossref_primary_10_1016_j_ccr_2020_213371
crossref_primary_10_1021_acs_orglett_2c01779
crossref_primary_10_1021_acs_orglett_1c00173
crossref_primary_10_1039_D5QO00241A
crossref_primary_10_1002_anie_202411567
crossref_primary_10_1021_acscatal_1c03919
crossref_primary_10_1002_ange_202405868
crossref_primary_10_1002_cptc_202400134
crossref_primary_10_1055_a_2161_9607
crossref_primary_10_1002_anie_202213207
crossref_primary_10_1007_s40242_024_4134_1
crossref_primary_10_1039_D0SE01454K
crossref_primary_10_1016_j_jinorgbio_2021_111448
crossref_primary_10_1039_D3NJ01131C
crossref_primary_10_1021_acscatal_1c05318
crossref_primary_10_1021_jacs_0c09468
crossref_primary_10_1002_ajoc_202000268
crossref_primary_10_1021_jacs_0c03197
crossref_primary_10_1021_jacs_2c04759
crossref_primary_10_1002_ange_202213207
crossref_primary_10_1088_1361_6528_ab494f
crossref_primary_10_1021_jacs_4c10422
crossref_primary_10_1021_acs_orglett_1c00871
crossref_primary_10_1063_5_0156850
crossref_primary_10_5796_electrochemistry_22_00074
crossref_primary_10_1002_anie_202206064
crossref_primary_10_1002_ange_202411567
crossref_primary_10_1038_s41467_024_45217_y
crossref_primary_10_1016_j_poly_2021_115616
crossref_primary_10_1002_ange_202417025
crossref_primary_10_1021_jacs_3c08428
crossref_primary_10_3389_fchem_2022_887439
crossref_primary_10_1021_jacs_3c12766
crossref_primary_10_1021_jacs_1c05971
crossref_primary_10_1002_chem_202302339
crossref_primary_10_1016_j_ccr_2022_214479
crossref_primary_10_1021_acs_joc_0c00333
crossref_primary_10_1039_D0CC06007K
crossref_primary_10_1007_s11426_024_2169_4
crossref_primary_10_1002_cctc_202201542
crossref_primary_10_1002_anie_201916359
crossref_primary_10_1002_ange_202206064
crossref_primary_10_1055_a_2518_0987
crossref_primary_10_1016_j_poly_2021_115105
crossref_primary_10_3390_chemistry2020014
crossref_primary_10_1039_D3NR05265F
crossref_primary_10_3390_molecules28052171
crossref_primary_10_1002_ejic_201901058
crossref_primary_10_1021_jacsau_4c00384
crossref_primary_10_1063_5_0094380
crossref_primary_10_1021_acscatal_1c05621
crossref_primary_10_1021_acs_inorgchem_4c04481
crossref_primary_10_1038_s41557_020_0482_8
crossref_primary_10_1021_acs_inorgchem_3c04382
crossref_primary_10_5796_electrochemistry_20_00088
crossref_primary_10_1021_acs_joc_1c02972
crossref_primary_10_1002_cctc_202301100
crossref_primary_10_1016_j_chempr_2022_06_010
crossref_primary_10_1002_cptc_202100296
crossref_primary_10_1039_D3SC04877B
crossref_primary_10_1002_chem_202400541
crossref_primary_10_1002_ange_201916359
Cites_doi 10.1038/353737a0
10.1021/ic00044a022
10.1021/ed061p221
10.1016/0010-8545(82)85003-0
10.1039/C6QO00806B
10.1021/ic00182a023
10.1039/C2CC38198B
10.1038/s41570-017-0052
10.1007/128_2007_131
10.1007/978-1-4899-1495-8_5
10.1016/0010-8545(88)80032-8
10.1021/acs.chemrev.6b00057
10.1002/anie.201800731
10.1021/jacs.7b06762
10.1021/jacs.7b13616
10.1021/ja2093579
10.1021/ja00415a007
10.1021/cr300503r
10.1021/ja5075163
10.1016/j.tetlet.2012.04.021
10.1002/anie.201307133
10.1016/S0040-4020(01)89486-2
10.1016/j.tet.2018.03.052
10.1021/ic00153a012
10.1021/cr00019a005
10.1016/0009-2614(81)85323-7
10.1021/ja00359a045
10.1038/nature25175
10.1002/anie.201501220
10.1039/B913880N
10.1021/ja801514m
10.1039/C7CS00509A
10.1021/acscatal.7b02223
10.1039/C7CC04911K
10.1021/jp404838z
10.1021/ja205602j
10.1021/jo00004a013
10.1021/jacs.7b06735
10.1039/c2sc20658g
10.1021/acs.orglett.6b03545
10.1039/C5SC02185E
10.1021/acs.inorgchem.8b01921
10.1021/ja00543a053
10.1021/ja00399a017
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.9b01885
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 6391
ExternalDocumentID PMC6519111
30897327
10_1021_jacs_9b01885
a502685198
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD020022
– fundername: NIGMS NIH HHS
  grantid: R01 GM095666
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a516t-7cb5ae6aa1a2894107c4f7901e8268f5fc2eafc16c05ba7899d24dd31eb183393
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:24:09 EDT 2025
Fri Jul 11 04:42:31 EDT 2025
Thu Jul 10 18:19:23 EDT 2025
Mon Jul 21 05:36:52 EDT 2025
Tue Jul 01 03:21:44 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Thu Aug 27 13:44:18 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a516t-7cb5ae6aa1a2894107c4f7901e8268f5fc2eafc16c05ba7899d24dd31eb183393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7691-6491
0000-0002-2986-326X
0000-0003-1570-4580
0000-0002-3934-4973
0000-0003-3821-9625
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6519111
PMID 30897327
PQID 2196522740
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6519111
proquest_miscellaneous_2237533259
proquest_miscellaneous_2196522740
pubmed_primary_30897327
crossref_primary_10_1021_jacs_9b01885
crossref_citationtrail_10_1021_jacs_9b01885
acs_journals_10_1021_jacs_9b01885
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-17
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref18/cit18
ref19/cit19d
ref19/cit19c
ref19/cit19b
ref23/cit23a
ref11/cit11
ref23/cit23b
ref13/cit13a
ref8/cit8a
ref8/cit8c
ref8/cit8b
ref21/cit21b
ref21/cit21c
ref21/cit21a
ref5/cit5
ref1/cit1a
ref20/cit20
ref17/cit17
Roundhill D. M. (ref1/cit1b) 1994
ref10/cit10
ref16/cit16c
ref4/cit4a
ref16/cit16b
ref4/cit4b
ref16/cit16a
ref4/cit4c
ref14/cit14a
ref12/cit12
ref14/cit14c
ref14/cit14b
ref15/cit15
ref16/cit16d
Douglas J. J. (ref13/cit13b) 2014; 47
Lehn J. M. (ref2/cit2) 1977; 1
ref22/cit22
ref7/cit7b
ref7/cit7a
ref4/cit4d
ref19/cit19a
ref4/cit4e
ref6/cit6a
ref4/cit4f
ref6/cit6b
ref6/cit6c
References_xml – ident: ref3/cit3
  doi: 10.1038/353737a0
– ident: ref11/cit11
  doi: 10.1021/ic00044a022
– ident: ref17/cit17
  doi: 10.1021/ed061p221
– ident: ref1/cit1a
  doi: 10.1016/0010-8545(82)85003-0
– ident: ref16/cit16b
  doi: 10.1039/C6QO00806B
– ident: ref20/cit20
  doi: 10.1021/ic00182a023
– ident: ref23/cit23a
  doi: 10.1039/C2CC38198B
– ident: ref4/cit4d
  doi: 10.1038/s41570-017-0052
– ident: ref18/cit18
  doi: 10.1007/128_2007_131
– start-page: 165
  volume-title: Modern Inorganic Chemistry: Photochemistry and Photophysics of Metal Complexes
  year: 1994
  ident: ref1/cit1b
  doi: 10.1007/978-1-4899-1495-8_5
– ident: ref5/cit5
  doi: 10.1016/0010-8545(88)80032-8
– ident: ref4/cit4c
  doi: 10.1021/acs.chemrev.6b00057
– ident: ref22/cit22
  doi: 10.1002/anie.201800731
– ident: ref14/cit14b
  doi: 10.1021/jacs.7b06762
– ident: ref16/cit16d
  doi: 10.1021/jacs.7b13616
– volume: 1
  start-page: 449
  year: 1977
  ident: ref2/cit2
  publication-title: Nouv. J. Chim.
– ident: ref6/cit6a
  doi: 10.1021/ja2093579
– ident: ref19/cit19b
  doi: 10.1021/ja00415a007
– ident: ref4/cit4b
  doi: 10.1021/cr300503r
– ident: ref21/cit21c
  doi: 10.1021/ja5075163
– ident: ref6/cit6b
  doi: 10.1016/j.tetlet.2012.04.021
– ident: ref23/cit23b
  doi: 10.1002/anie.201307133
– ident: ref9/cit9
  doi: 10.1016/S0040-4020(01)89486-2
– ident: ref16/cit16a
  doi: 10.1016/j.tet.2018.03.052
– ident: ref7/cit7b
  doi: 10.1021/ic00153a012
– ident: ref12/cit12
  doi: 10.1021/cr00019a005
– ident: ref19/cit19a
  doi: 10.1016/0009-2614(81)85323-7
– ident: ref19/cit19d
  doi: 10.1021/ja00359a045
– volume: 47
  start-page: 15
  year: 2014
  ident: ref13/cit13b
  publication-title: Aldrichim. Acta
– ident: ref4/cit4f
  doi: 10.1038/nature25175
– ident: ref8/cit8a
  doi: 10.1002/anie.201501220
– ident: ref4/cit4a
  doi: 10.1039/B913880N
– ident: ref21/cit21a
  doi: 10.1021/ja801514m
– ident: ref4/cit4e
  doi: 10.1039/C7CS00509A
– ident: ref8/cit8b
  doi: 10.1021/acscatal.7b02223
– ident: ref16/cit16c
  doi: 10.1039/C7CC04911K
– ident: ref14/cit14a
  doi: 10.1021/jp404838z
– ident: ref21/cit21b
  doi: 10.1021/ja205602j
– ident: ref8/cit8c
  doi: 10.1021/jo00004a013
– ident: ref15/cit15
  doi: 10.1021/jacs.7b06735
– ident: ref13/cit13a
  doi: 10.1039/c2sc20658g
– ident: ref6/cit6c
  doi: 10.1021/acs.orglett.6b03545
– ident: ref10/cit10
  doi: 10.1039/C5SC02185E
– ident: ref14/cit14c
  doi: 10.1021/acs.inorgchem.8b01921
– ident: ref7/cit7a
  doi: 10.1021/ja00543a053
– ident: ref19/cit19c
  doi: 10.1021/ja00399a017
SSID ssj0004281
Score 2.5772316
Snippet Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6385
SubjectTerms cations
hydrogen bonding
ligands
oxidants
photocatalysis
photocatalysts
reaction mechanisms
redox reactions
Title Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis
URI http://dx.doi.org/10.1021/jacs.9b01885
https://www.ncbi.nlm.nih.gov/pubmed/30897327
https://www.proquest.com/docview/2196522740
https://www.proquest.com/docview/2237533259
https://pubmed.ncbi.nlm.nih.gov/PMC6519111
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EAv0A8KC21lpPaEskrsxHaOaNktqqCq1CJxi2zHEStQUjW7EvDrmcnHwi6C9phkkihjJ34vM_MG4Euqi0SnRgbWU0lO6HyA4MgGoSApkDyOfBMuOP0hj8_i7-fJ-X2C7GoEn5M-kKuHqQ0jrZOX8IpLrYhkHY5-3dc_ch31MFdpKboE99WzaQFy9fIC9AhVriZHPlhtJpvwra_ZaZNMLofzmR2628cSjv94kDew0QFOdtjOkLfwwpfvYH3U93l7DydH09pRIucNM2XOxldzN20bLbGqYFSzTkXKJW0fdR1znWfTkv28qJCw-7y6ZiP6CUTaJltwNhn_Hh0HXY-FwCSRnAXK2cR4aUxkkHrFSAZdXCgECR55B45j4bg3hYukCxNrFLKznMd5LiL8xmshUvEB1sqq9DvApHEhDnMspfN4DWm4zRHQFUoVJvapHcA-eiDr3pE6a8LfHOkH7e38MoCDfnAy14mUU6-Mqyesvy6s_7TiHE_Y7ffjnKFzKSRiSl_N64yToCJHZh4-Y8MFcjqBPHEA2-3cWNxNhJrkjtQA1NKsWRiQevfykXJ60ah4S8TOuNDs_odX9uA14rQmiBWpj7A2-zv3nxALzezn5kW4AwwABWI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGAvsLy7D9ZIcEJBiZ3YybEqRWUpFRIgcYtsx1ErULLatNLu_npm0rRsuwJxjDNJHD_i78t4vgE4TuI8ihMtPeMoJMe3zkNwZDxfkBRIFgaudhdcD2TvPvzxED00weoUC4OVqPBOVe3Ef1EXIJkgLEyMH8Rx9AHWEIdw4lrtzu1LGCSPgxnaVbEUzT735atpHbLV4jr0H7hc3iP5z6JzsQmDeXXrvSaPZ5OxObN_l5Qc3_0-n2CjgZ-sPR0vW7Diim1Y78yyvu1A_3xUWdrW-YfpImPdp4kdTdMusTJnFMFOIcsFHZ83-XOtY6OC3QxLpO8uK3-zDv0SIqWTXbi_6N51el6TccHTUSDHnrIm0k5qHWgkYiFSQxvmCiGDQxaCvZpb7nRuA2n9yGiFXC3jYZaJAL_4sRCJ2IPVoizcATCprY-dHkppHd5Dam4yhHe5UrkOXWJacIQtkDYzpkprZzhHMkKlTbu04HTWR6ltJMspc8bTK9Ync-ufU6mOV-yOZt2dYuOSg0QXrpxUKSd5RY483X_DhgtkeAJZYwv2p0Nk_jThxyR-pFqgFgbP3IC0vBfPFKNhrektEUnjsvP5Ha3yHdZ7d9f9tH85uPoCHxHB1e6tQH2F1fGvifuGKGlsDuu58QyA5A3D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkNpeoC2lXaDUSOVUBcVxYifH1T4ELUUIisQtsh1HrIoS1OxKhV_PTDbZsouo4Jhk4jh-xN-X8XwD8DWJ8yhOtPSMo5Ac3zoPwZHxfEFSIFnIXe0u-HkiDy_C75fR5RLwNhYGK1FhSVXtxKdZfZPljcIASQXhhcT4PI6jZVgljx3xrW7v_F8oZBDzFvGqWIpmr_vi3bQW2Wp-LXoEMBf3ST5YeIbrcDarcr3f5PfBZGwO7N2CmuOL3uktrDUwlHWn4-YdLLniPbzutdnfNuC4P6osbe-8ZbrI2OB6YkfT9EuszBlFslPockHH_SaPrnVsVLDTqxJpvMvKv6xHv4ZI8eQDXAwHv3qHXpN5wdMRl2NPWRNpJ7XmGglZiBTRhrlC6OCQjWDv5jZwOrdcWj8yWiFny4IwywTHL38sRCI2YaUoC_cJmNTWx84PpbQOy5A6MBnCvFypXIcuMR3YwxZIm5lTpbVTPEBSQmebdunAt7afUttIl1MGjesnrPdn1jdTyY4n7PbaLk-xcclRogtXTqo0IJnFAPm6_x-bQCDTE8geO_BxOkxmTxN-TCJIqgNqbgDNDEjTe_5KMbqqtb0lImpcfrae0Spf4NVpf5geH5382IY3CORqLxdXO7Ay_jNxnxEsjc1uPT3uASgiEEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+and+Elucidation+of+Counteranion+Dependence+in+Photoredox+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Farney%2C+Elliot+P.&rft.au=Chapman%2C+Steven+J.&rft.au=Swords%2C+Wesley+B.&rft.au=Torelli%2C+Marco+D.&rft.date=2019-04-17&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=15&rft.spage=6385&rft.epage=6391&rft_id=info:doi/10.1021%2Fjacs.9b01885&rft_id=info%3Apmid%2F30897327&rft.externalDocID=PMC6519111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon