Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis
Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photored...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 15; pp. 6385 - 6391 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts. |
---|---|
AbstractList | Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts. Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels-Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts.Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels-Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more noncoordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pairing interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts. Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of innovative synthetic applications. Many derivatives of these complexes are known, and the effect of ligand modifications on their efficacy as photoredox catalysts has been the subject of extensive, systematic investigation. However, the influence of the photocatalyst counteranion has received little attention, despite the fact that these complexes are generally cationic in nature. Herein, we demonstrate that counteranion effects exert a surprising, dramatic impact on the rate of a representative photocatalytic radical cation Diels–Alder reaction. A detailed analysis reveals that counteranion identity impacts multiple aspects of the reaction mechanism. Most notably, photocatalysts with more non-coordinating counteranions yield a more powerful triplet excited state oxidant and longer radical cation chain length. It is proposed that this counteranion effect arises from Coulombic ion-pair interactions between the counteranion and both the cationic photoredox catalyst and the radical cation intermediate, respectively. The comparatively slower rate of reaction with coordinating counteranions can be rescued by using hydrogen-bonding anion binders that attenuate deleterious ion-pairing interactions. These results demonstrate the importance of counteranion identity as a variable in the design and optimization of photoredox transformations and suggest a novel strategy for the optimization of organic reactions using this class of transition metal photocatalysts. |
Author | Hamers, Robert J Swords, Wesley B Torelli, Marco D Yoon, Tehshik P Farney, Elliot P Chapman, Steven J |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Elliot P surname: Farney fullname: Farney, Elliot P – sequence: 2 givenname: Steven J orcidid: 0000-0003-1570-4580 surname: Chapman fullname: Chapman, Steven J – sequence: 3 givenname: Wesley B orcidid: 0000-0002-2986-326X surname: Swords fullname: Swords, Wesley B – sequence: 4 givenname: Marco D orcidid: 0000-0002-7691-6491 surname: Torelli fullname: Torelli, Marco D – sequence: 5 givenname: Robert J orcidid: 0000-0003-3821-9625 surname: Hamers fullname: Hamers, Robert J – sequence: 6 givenname: Tehshik P orcidid: 0000-0002-3934-4973 surname: Yoon fullname: Yoon, Tehshik P email: tyoon@chem.wisc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30897327$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS3Uim4LN84oRw6keOw4sS9IaPsB0krtoZytiTOhXmXtxU4q9r8nS5cKEIiTNZ7fPL2Zd8qOQgzE2Cvg58AFvFujy-em5aC1esYWoAQvFYj6iC0456JsdC1P2GnO67mshIbn7ERybRopmgVbXfjs4gOlXYGhKy6HyfkORx9DEftiGacwUsKwry9oS6Gj4Kjwobi9j2NM1MVvxRJHHHbZ5xfsuMch08vDe8Y-X13eLT-Wq5vrT8sPqxIV1GPZuFYh1YiAQpsKeOOqvjEcSIta96p3grB3UDuuWmy0MZ2ouk4CtaClNPKMvX_U3U7thjpHYUw42G3yG0w7G9Hb3zvB39sv8cHWCgwAzAJvDgIpfp0oj3Yzn4GGAQPFKVshZKOkFMr8HwVTKyGais_o619tPfn5ee0ZePsIuBRzTtQ_IcDtPky7D9Mewpxx8Qfu_Pgjm3kpP_xr6OB3_7mOUwpzEn9HvwPdRrEj |
CitedBy_id | crossref_primary_10_1039_D3CP03255H crossref_primary_10_1039_D1CC02604F crossref_primary_10_1039_D2AN01719A crossref_primary_10_3390_molecules27134047 crossref_primary_10_1021_jacs_2c05805 crossref_primary_10_1039_D1DT03353K crossref_primary_10_1016_j_ccr_2024_215819 crossref_primary_10_1055_s_0043_1773499 crossref_primary_10_1002_chem_202004519 crossref_primary_10_1016_j_ijms_2021_116754 crossref_primary_10_1002_ajoc_202100473 crossref_primary_10_1021_acs_inorgchem_3c03831 crossref_primary_10_1021_acscatal_4c01678 crossref_primary_10_1021_acs_inorgchem_2c01387 crossref_primary_10_3762_bjoc_18_112 crossref_primary_10_1021_acscatal_1c04314 crossref_primary_10_1002_tcr_202100029 crossref_primary_10_1016_j_checat_2023_100854 crossref_primary_10_1016_j_carbpol_2021_118446 crossref_primary_10_1002_ajoc_201900749 crossref_primary_10_1021_jacsau_3c00542 crossref_primary_10_1021_acscatal_4c01288 crossref_primary_10_1021_acs_orglett_3c00299 crossref_primary_10_1038_s41557_022_00911_6 crossref_primary_10_1016_j_ccr_2023_215522 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1021_jacs_2c08173 crossref_primary_10_1002_ejoc_201901576 crossref_primary_10_1002_anie_202405868 crossref_primary_10_1002_adsc_202100260 crossref_primary_10_1021_jacs_4c08551 crossref_primary_10_1021_jacsau_1c00137 crossref_primary_10_1002_ange_202013419 crossref_primary_10_1021_jacs_2c06831 crossref_primary_10_1002_anie_202417025 crossref_primary_10_1021_acscatal_3c02515 crossref_primary_10_1002_adsc_202200199 crossref_primary_10_1038_s41586_023_05804_3 crossref_primary_10_1002_anie_202013419 crossref_primary_10_1016_j_ccr_2020_213371 crossref_primary_10_1021_acs_orglett_2c01779 crossref_primary_10_1021_acs_orglett_1c00173 crossref_primary_10_1039_D5QO00241A crossref_primary_10_1002_anie_202411567 crossref_primary_10_1021_acscatal_1c03919 crossref_primary_10_1002_ange_202405868 crossref_primary_10_1002_cptc_202400134 crossref_primary_10_1055_a_2161_9607 crossref_primary_10_1002_anie_202213207 crossref_primary_10_1007_s40242_024_4134_1 crossref_primary_10_1039_D0SE01454K crossref_primary_10_1016_j_jinorgbio_2021_111448 crossref_primary_10_1039_D3NJ01131C crossref_primary_10_1021_acscatal_1c05318 crossref_primary_10_1021_jacs_0c09468 crossref_primary_10_1002_ajoc_202000268 crossref_primary_10_1021_jacs_0c03197 crossref_primary_10_1021_jacs_2c04759 crossref_primary_10_1002_ange_202213207 crossref_primary_10_1088_1361_6528_ab494f crossref_primary_10_1021_jacs_4c10422 crossref_primary_10_1021_acs_orglett_1c00871 crossref_primary_10_1063_5_0156850 crossref_primary_10_5796_electrochemistry_22_00074 crossref_primary_10_1002_anie_202206064 crossref_primary_10_1002_ange_202411567 crossref_primary_10_1038_s41467_024_45217_y crossref_primary_10_1016_j_poly_2021_115616 crossref_primary_10_1002_ange_202417025 crossref_primary_10_1021_jacs_3c08428 crossref_primary_10_3389_fchem_2022_887439 crossref_primary_10_1021_jacs_3c12766 crossref_primary_10_1021_jacs_1c05971 crossref_primary_10_1002_chem_202302339 crossref_primary_10_1016_j_ccr_2022_214479 crossref_primary_10_1021_acs_joc_0c00333 crossref_primary_10_1039_D0CC06007K crossref_primary_10_1007_s11426_024_2169_4 crossref_primary_10_1002_cctc_202201542 crossref_primary_10_1002_anie_201916359 crossref_primary_10_1002_ange_202206064 crossref_primary_10_1055_a_2518_0987 crossref_primary_10_1016_j_poly_2021_115105 crossref_primary_10_3390_chemistry2020014 crossref_primary_10_1039_D3NR05265F crossref_primary_10_3390_molecules28052171 crossref_primary_10_1002_ejic_201901058 crossref_primary_10_1021_jacsau_4c00384 crossref_primary_10_1063_5_0094380 crossref_primary_10_1021_acscatal_1c05621 crossref_primary_10_1021_acs_inorgchem_4c04481 crossref_primary_10_1038_s41557_020_0482_8 crossref_primary_10_1021_acs_inorgchem_3c04382 crossref_primary_10_5796_electrochemistry_20_00088 crossref_primary_10_1021_acs_joc_1c02972 crossref_primary_10_1002_cctc_202301100 crossref_primary_10_1016_j_chempr_2022_06_010 crossref_primary_10_1002_cptc_202100296 crossref_primary_10_1039_D3SC04877B crossref_primary_10_1002_chem_202400541 crossref_primary_10_1002_ange_201916359 |
Cites_doi | 10.1038/353737a0 10.1021/ic00044a022 10.1021/ed061p221 10.1016/0010-8545(82)85003-0 10.1039/C6QO00806B 10.1021/ic00182a023 10.1039/C2CC38198B 10.1038/s41570-017-0052 10.1007/128_2007_131 10.1007/978-1-4899-1495-8_5 10.1016/0010-8545(88)80032-8 10.1021/acs.chemrev.6b00057 10.1002/anie.201800731 10.1021/jacs.7b06762 10.1021/jacs.7b13616 10.1021/ja2093579 10.1021/ja00415a007 10.1021/cr300503r 10.1021/ja5075163 10.1016/j.tetlet.2012.04.021 10.1002/anie.201307133 10.1016/S0040-4020(01)89486-2 10.1016/j.tet.2018.03.052 10.1021/ic00153a012 10.1021/cr00019a005 10.1016/0009-2614(81)85323-7 10.1021/ja00359a045 10.1038/nature25175 10.1002/anie.201501220 10.1039/B913880N 10.1021/ja801514m 10.1039/C7CS00509A 10.1021/acscatal.7b02223 10.1039/C7CC04911K 10.1021/jp404838z 10.1021/ja205602j 10.1021/jo00004a013 10.1021/jacs.7b06735 10.1039/c2sc20658g 10.1021/acs.orglett.6b03545 10.1039/C5SC02185E 10.1021/acs.inorgchem.8b01921 10.1021/ja00543a053 10.1021/ja00399a017 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.9b01885 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6391 |
ExternalDocumentID | PMC6519111 30897327 10_1021_jacs_9b01885 a502685198 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: S10 OD020022 – fundername: NIGMS NIH HHS grantid: R01 GM095666 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a516t-7cb5ae6aa1a2894107c4f7901e8268f5fc2eafc16c05ba7899d24dd31eb183393 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:24:09 EDT 2025 Fri Jul 11 04:42:31 EDT 2025 Thu Jul 10 18:19:23 EDT 2025 Mon Jul 21 05:36:52 EDT 2025 Tue Jul 01 03:21:44 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Thu Aug 27 13:44:18 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a516t-7cb5ae6aa1a2894107c4f7901e8268f5fc2eafc16c05ba7899d24dd31eb183393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7691-6491 0000-0002-2986-326X 0000-0003-1570-4580 0000-0002-3934-4973 0000-0003-3821-9625 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6519111 |
PMID | 30897327 |
PQID | 2196522740 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6519111 proquest_miscellaneous_2237533259 proquest_miscellaneous_2196522740 pubmed_primary_30897327 crossref_primary_10_1021_jacs_9b01885 crossref_citationtrail_10_1021_jacs_9b01885 acs_journals_10_1021_jacs_9b01885 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-17 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref18/cit18 ref19/cit19d ref19/cit19c ref19/cit19b ref23/cit23a ref11/cit11 ref23/cit23b ref13/cit13a ref8/cit8a ref8/cit8c ref8/cit8b ref21/cit21b ref21/cit21c ref21/cit21a ref5/cit5 ref1/cit1a ref20/cit20 ref17/cit17 Roundhill D. M. (ref1/cit1b) 1994 ref10/cit10 ref16/cit16c ref4/cit4a ref16/cit16b ref4/cit4b ref16/cit16a ref4/cit4c ref14/cit14a ref12/cit12 ref14/cit14c ref14/cit14b ref15/cit15 ref16/cit16d Douglas J. J. (ref13/cit13b) 2014; 47 Lehn J. M. (ref2/cit2) 1977; 1 ref22/cit22 ref7/cit7b ref7/cit7a ref4/cit4d ref19/cit19a ref4/cit4e ref6/cit6a ref4/cit4f ref6/cit6b ref6/cit6c |
References_xml | – ident: ref3/cit3 doi: 10.1038/353737a0 – ident: ref11/cit11 doi: 10.1021/ic00044a022 – ident: ref17/cit17 doi: 10.1021/ed061p221 – ident: ref1/cit1a doi: 10.1016/0010-8545(82)85003-0 – ident: ref16/cit16b doi: 10.1039/C6QO00806B – ident: ref20/cit20 doi: 10.1021/ic00182a023 – ident: ref23/cit23a doi: 10.1039/C2CC38198B – ident: ref4/cit4d doi: 10.1038/s41570-017-0052 – ident: ref18/cit18 doi: 10.1007/128_2007_131 – start-page: 165 volume-title: Modern Inorganic Chemistry: Photochemistry and Photophysics of Metal Complexes year: 1994 ident: ref1/cit1b doi: 10.1007/978-1-4899-1495-8_5 – ident: ref5/cit5 doi: 10.1016/0010-8545(88)80032-8 – ident: ref4/cit4c doi: 10.1021/acs.chemrev.6b00057 – ident: ref22/cit22 doi: 10.1002/anie.201800731 – ident: ref14/cit14b doi: 10.1021/jacs.7b06762 – ident: ref16/cit16d doi: 10.1021/jacs.7b13616 – volume: 1 start-page: 449 year: 1977 ident: ref2/cit2 publication-title: Nouv. J. Chim. – ident: ref6/cit6a doi: 10.1021/ja2093579 – ident: ref19/cit19b doi: 10.1021/ja00415a007 – ident: ref4/cit4b doi: 10.1021/cr300503r – ident: ref21/cit21c doi: 10.1021/ja5075163 – ident: ref6/cit6b doi: 10.1016/j.tetlet.2012.04.021 – ident: ref23/cit23b doi: 10.1002/anie.201307133 – ident: ref9/cit9 doi: 10.1016/S0040-4020(01)89486-2 – ident: ref16/cit16a doi: 10.1016/j.tet.2018.03.052 – ident: ref7/cit7b doi: 10.1021/ic00153a012 – ident: ref12/cit12 doi: 10.1021/cr00019a005 – ident: ref19/cit19a doi: 10.1016/0009-2614(81)85323-7 – ident: ref19/cit19d doi: 10.1021/ja00359a045 – volume: 47 start-page: 15 year: 2014 ident: ref13/cit13b publication-title: Aldrichim. Acta – ident: ref4/cit4f doi: 10.1038/nature25175 – ident: ref8/cit8a doi: 10.1002/anie.201501220 – ident: ref4/cit4a doi: 10.1039/B913880N – ident: ref21/cit21a doi: 10.1021/ja801514m – ident: ref4/cit4e doi: 10.1039/C7CS00509A – ident: ref8/cit8b doi: 10.1021/acscatal.7b02223 – ident: ref16/cit16c doi: 10.1039/C7CC04911K – ident: ref14/cit14a doi: 10.1021/jp404838z – ident: ref21/cit21b doi: 10.1021/ja205602j – ident: ref8/cit8c doi: 10.1021/jo00004a013 – ident: ref15/cit15 doi: 10.1021/jacs.7b06735 – ident: ref13/cit13a doi: 10.1039/c2sc20658g – ident: ref6/cit6c doi: 10.1021/acs.orglett.6b03545 – ident: ref10/cit10 doi: 10.1039/C5SC02185E – ident: ref14/cit14c doi: 10.1021/acs.inorgchem.8b01921 – ident: ref7/cit7a doi: 10.1021/ja00543a053 – ident: ref19/cit19c doi: 10.1021/ja00399a017 |
SSID | ssj0004281 |
Score | 2.5772316 |
Snippet | Over the past decade, there has been a renewed interest in the use of transition metal polypyridyl complexes as photoredox catalysts for a variety of... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6385 |
SubjectTerms | cations hydrogen bonding ligands oxidants photocatalysis photocatalysts reaction mechanisms redox reactions |
Title | Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis |
URI | http://dx.doi.org/10.1021/jacs.9b01885 https://www.ncbi.nlm.nih.gov/pubmed/30897327 https://www.proquest.com/docview/2196522740 https://www.proquest.com/docview/2237533259 https://pubmed.ncbi.nlm.nih.gov/PMC6519111 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EAv0A8KC21lpPaEskrsxHaOaNktqqCq1CJxi2zHEStQUjW7EvDrmcnHwi6C9phkkihjJ34vM_MG4Euqi0SnRgbWU0lO6HyA4MgGoSApkDyOfBMuOP0hj8_i7-fJ-X2C7GoEn5M-kKuHqQ0jrZOX8IpLrYhkHY5-3dc_ch31MFdpKboE99WzaQFy9fIC9AhVriZHPlhtJpvwra_ZaZNMLofzmR2628cSjv94kDew0QFOdtjOkLfwwpfvYH3U93l7DydH09pRIucNM2XOxldzN20bLbGqYFSzTkXKJW0fdR1znWfTkv28qJCw-7y6ZiP6CUTaJltwNhn_Hh0HXY-FwCSRnAXK2cR4aUxkkHrFSAZdXCgECR55B45j4bg3hYukCxNrFLKznMd5LiL8xmshUvEB1sqq9DvApHEhDnMspfN4DWm4zRHQFUoVJvapHcA-eiDr3pE6a8LfHOkH7e38MoCDfnAy14mUU6-Mqyesvy6s_7TiHE_Y7ffjnKFzKSRiSl_N64yToCJHZh4-Y8MFcjqBPHEA2-3cWNxNhJrkjtQA1NKsWRiQevfykXJ60ah4S8TOuNDs_odX9uA14rQmiBWpj7A2-zv3nxALzezn5kW4AwwABWI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGAvsLy7D9ZIcEJBiZ3YybEqRWUpFRIgcYtsx1ErULLatNLu_npm0rRsuwJxjDNJHD_i78t4vgE4TuI8ihMtPeMoJMe3zkNwZDxfkBRIFgaudhdcD2TvPvzxED00weoUC4OVqPBOVe3Ef1EXIJkgLEyMH8Rx9AHWEIdw4lrtzu1LGCSPgxnaVbEUzT735atpHbLV4jr0H7hc3iP5z6JzsQmDeXXrvSaPZ5OxObN_l5Qc3_0-n2CjgZ-sPR0vW7Diim1Y78yyvu1A_3xUWdrW-YfpImPdp4kdTdMusTJnFMFOIcsFHZ83-XOtY6OC3QxLpO8uK3-zDv0SIqWTXbi_6N51el6TccHTUSDHnrIm0k5qHWgkYiFSQxvmCiGDQxaCvZpb7nRuA2n9yGiFXC3jYZaJAL_4sRCJ2IPVoizcATCprY-dHkppHd5Dam4yhHe5UrkOXWJacIQtkDYzpkprZzhHMkKlTbu04HTWR6ltJMspc8bTK9Ync-ufU6mOV-yOZt2dYuOSg0QXrpxUKSd5RY483X_DhgtkeAJZYwv2p0Nk_jThxyR-pFqgFgbP3IC0vBfPFKNhrektEUnjsvP5Ha3yHdZ7d9f9tH85uPoCHxHB1e6tQH2F1fGvifuGKGlsDuu58QyA5A3D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkNpeoC2lXaDUSOVUBcVxYifH1T4ELUUIisQtsh1HrIoS1OxKhV_PTDbZsouo4Jhk4jh-xN-X8XwD8DWJ8yhOtPSMo5Ac3zoPwZHxfEFSIFnIXe0u-HkiDy_C75fR5RLwNhYGK1FhSVXtxKdZfZPljcIASQXhhcT4PI6jZVgljx3xrW7v_F8oZBDzFvGqWIpmr_vi3bQW2Wp-LXoEMBf3ST5YeIbrcDarcr3f5PfBZGwO7N2CmuOL3uktrDUwlHWn4-YdLLniPbzutdnfNuC4P6osbe-8ZbrI2OB6YkfT9EuszBlFslPockHH_SaPrnVsVLDTqxJpvMvKv6xHv4ZI8eQDXAwHv3qHXpN5wdMRl2NPWRNpJ7XmGglZiBTRhrlC6OCQjWDv5jZwOrdcWj8yWiFny4IwywTHL38sRCI2YaUoC_cJmNTWx84PpbQOy5A6MBnCvFypXIcuMR3YwxZIm5lTpbVTPEBSQmebdunAt7afUttIl1MGjesnrPdn1jdTyY4n7PbaLk-xcclRogtXTqo0IJnFAPm6_x-bQCDTE8geO_BxOkxmTxN-TCJIqgNqbgDNDEjTe_5KMbqqtb0lImpcfrae0Spf4NVpf5geH5382IY3CORqLxdXO7Ay_jNxnxEsjc1uPT3uASgiEEY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+and+Elucidation+of+Counteranion+Dependence+in+Photoredox+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Farney%2C+Elliot+P.&rft.au=Chapman%2C+Steven+J.&rft.au=Swords%2C+Wesley+B.&rft.au=Torelli%2C+Marco+D.&rft.date=2019-04-17&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=141&rft.issue=15&rft.spage=6385&rft.epage=6391&rft_id=info:doi/10.1021%2Fjacs.9b01885&rft_id=info%3Apmid%2F30897327&rft.externalDocID=PMC6519111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |