Molecular Communication
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a...
Saved in:
Main Authors | , , |
---|---|
Format | eBook |
Language | English |
Published |
New York
Cambridge University Press
12.09.2013
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- A.4 Conditional, marginal, and joint probabilities -- A.5 Markov chains -- Index
- 6.3 Information theory of molecular communication -- 6.3.1 A brief introduction to information theory -- 6.3.2 Capacity -- 6.3.3 Calculating capacity: A simple example -- 6.3.4 Towards the general problem -- 6.3.5 Timing channels -- 6.4 Summary and conclusion -- References -- 7 Design and engineering of molecular communication systems -- 7.1 Protein molecules -- 7.1.1 Sender and receiver bio-nanomachines -- 7.1.2 Information molecules -- 7.1.3 Guide and transport molecules -- 7.2 DNA molecules -- 7.2.1 Sender and receiver bio-nanomachines -- 7.2.2 Information molecules -- 7.2.3 Interface molecules -- 7.2.4 Guide and transport molecules -- 7.3 Liposomes -- 7.3.1 Sender and receiver bio-nanomachines -- 7.3.2 Interface molecules -- 7.3.3 Guide molecules -- 7.4 Biological cells -- 7.4.1 Sender and receiver cells -- 7.4.2 Guide cells -- 7.4.3 Transport cells -- 7.5 Conclusion and summary -- References -- 8 Application areas of molecular communication -- 8.1 Drug delivery -- 8.1.1 Application scenarios -- 8.1.2 Example: Cooperative drug delivery -- 8.1.3 Example: Intracellular therapy -- 8.2 Tissue engineering -- 8.2.1 Application scenarios -- 8.2.2 Example: Tissue structure formation -- 8.3 Lab-on-a-chip technology -- 8.3.1 Application scenarios -- 8.3.2 Example: Bio-inspired lab-on-a-chip -- 8.3.3 Example: Smart dust biosensors -- 8.4 Unconventional computation -- 8.4.1 Application scenarios -- 8.4.2 Example: Reaction diffusion computation -- 8.4.3 Example: Artificial neural networks -- 8.4.4 Example: Combinatorial optimizers -- 8.5 Looking forward: Conclusion and summary -- References -- 9 Conclusion -- 9.1 Toward practical implementation -- 9.2 Toward the future: Demonstration projects -- Appendix Review of probability theory -- A.1 Basic probability -- A.2 Expectation, mean, and variance -- A.3 The Gaussian distribution
- 4.2.5 Massive parallelization -- 4.2.6 Energy efficiency -- 4.2.7 Biocompatibility -- 4.3 Molecular communication network architecture -- 4.3.1 Physical layer -- 4.3.2 Link layer -- 4.3.3 Network layer -- 4.3.4 Upper layers and other issues -- 4.4 Conclusion and summary -- References -- 5 Mathematical modeling and simulation -- 5.1 Discrete diffusion and Brownian motion -- 5.1.1 Environmental assumptions -- 5.1.2 The Wiener process -- 5.1.3 Markov property -- 5.1.4 Wiener process with drift -- 5.1.5 Multi-dimensional Wiener processes -- 5.1.6 Simulation -- 5.2 Molecular motors -- 5.3 First arrival times -- 5.3.1 Definition and closed-form examples -- 5.3.2 First arrival times in multiple dimensions -- 5.3.3 From first arrival times to communication systems -- 5.4 Concentration, mole fraction, and counting -- 5.4.1 Small numbers of molecules: Counting and inter-symbol interference -- 5.4.2 Large numbers of molecules: Towards concentration -- 5.4.3 Concentration: random and deterministic -- 5.4.4 Concentration as a Gaussian random variable -- 5.4.5 Concentration as a random process -- 5.4.6 Discussion and communication example -- 5.5 Models for ligand-receptor systems -- 5.5.1 Mathematical model of a ligand-receptor system -- 5.5.2 Simulation -- 5.6 Conclusion and summary -- References -- 6 Communication and information theory of molecular communication -- 6.1 Theoretical models for analysis of molecular communication -- 6.1.1 Abstract physical layer communication model -- 6.1.2 Ideal models -- 6.1.3 Distinguishable molecules: The additive inverse Gaussian noise channel -- 6.1.4 Indistinguishable molecules -- 6.1.5 Sequences in discrete time -- 6.2 Detection and estimation in molecular communication -- 6.2.1 Optimal detection and ML estimation -- 6.2.2 Parameter estimation -- 6.2.3 Optimal detection in the delay-selector channel
- Cover -- Half Title -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Molecular communication: Why, what, and how? -- 1.1.1 Why molecular communication? -- 1.1.2 What uses molecular communication? -- 1.1.3 How does it work? A quick introduction -- 1.2 A history of molecular communication -- 1.2.1 Early history and theoretical research -- 1.2.2 More recent theoretical research -- 1.2.3 Implementational aspects -- 1.2.4 Contemporary research -- 1.3 Applications areas -- 1.3.1 Biological engineering -- 1.3.2 Medical and healthcare applications -- 1.3.3 Industrial applications -- 1.3.4 Environmental applications -- 1.3.5 Information and communication technology applications -- 1.4 Rationale and organization of the book -- References -- 2 Nature-made biological nanomachines -- 2.1 Protein molecules -- 2.1.1 Molecular structure -- 2.1.2 Functions and roles -- 2.2 DNA and RNA molecules -- 2.2.1 Molecular structure -- 2.2.2 Functions and roles -- 2.3 Lipid membranes and vesicles -- 2.3.1 Molecular structure -- 2.3.2 Functions and roles -- 2.4 Whole cells -- 2.5 Conclusion and summary -- References -- 3 Molecular communication in biological systems -- 3.1 Scales of molecular communication -- 3.2 Modes of molecular communication -- 3.3 Examples of molecular communication -- 3.3.1 Chemotactic signaling -- 3.3.2 Vesicular trafficking -- 3.3.3 Calcium signaling -- 3.3.4 Quorum sensing -- 3.3.5 Bacterial migration and conjugation -- 3.3.6 Morphogen signaling -- 3.3.7 Hormonal signaling -- 3.3.8 Neuronal signaling -- 3.4 Conclusion and summary -- References -- 4 Molecular communication paradigm -- 4.1 Molecular communication model -- 4.2 General characteristics -- 4.2.1 Transmission of information molecules -- 4.2.2 Information representation -- 4.2.3 Slow speed and limited range -- 4.2.4 Stochastic communication