Molecular Communication

This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a...

Full description

Saved in:
Bibliographic Details
Main Authors Nakano, Tadashi, Eckford, Andrew W., Haraguchi, Tokuko
Format eBook
LanguageEnglish
Published New York Cambridge University Press 12.09.2013
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • A.4 Conditional, marginal, and joint probabilities -- A.5 Markov chains -- Index
  • 6.3 Information theory of molecular communication -- 6.3.1 A brief introduction to information theory -- 6.3.2 Capacity -- 6.3.3 Calculating capacity: A simple example -- 6.3.4 Towards the general problem -- 6.3.5 Timing channels -- 6.4 Summary and conclusion -- References -- 7 Design and engineering of molecular communication systems -- 7.1 Protein molecules -- 7.1.1 Sender and receiver bio-nanomachines -- 7.1.2 Information molecules -- 7.1.3 Guide and transport molecules -- 7.2 DNA molecules -- 7.2.1 Sender and receiver bio-nanomachines -- 7.2.2 Information molecules -- 7.2.3 Interface molecules -- 7.2.4 Guide and transport molecules -- 7.3 Liposomes -- 7.3.1 Sender and receiver bio-nanomachines -- 7.3.2 Interface molecules -- 7.3.3 Guide molecules -- 7.4 Biological cells -- 7.4.1 Sender and receiver cells -- 7.4.2 Guide cells -- 7.4.3 Transport cells -- 7.5 Conclusion and summary -- References -- 8 Application areas of molecular communication -- 8.1 Drug delivery -- 8.1.1 Application scenarios -- 8.1.2 Example: Cooperative drug delivery -- 8.1.3 Example: Intracellular therapy -- 8.2 Tissue engineering -- 8.2.1 Application scenarios -- 8.2.2 Example: Tissue structure formation -- 8.3 Lab-on-a-chip technology -- 8.3.1 Application scenarios -- 8.3.2 Example: Bio-inspired lab-on-a-chip -- 8.3.3 Example: Smart dust biosensors -- 8.4 Unconventional computation -- 8.4.1 Application scenarios -- 8.4.2 Example: Reaction diffusion computation -- 8.4.3 Example: Artificial neural networks -- 8.4.4 Example: Combinatorial optimizers -- 8.5 Looking forward: Conclusion and summary -- References -- 9 Conclusion -- 9.1 Toward practical implementation -- 9.2 Toward the future: Demonstration projects -- Appendix Review of probability theory -- A.1 Basic probability -- A.2 Expectation, mean, and variance -- A.3 The Gaussian distribution
  • 4.2.5 Massive parallelization -- 4.2.6 Energy efficiency -- 4.2.7 Biocompatibility -- 4.3 Molecular communication network architecture -- 4.3.1 Physical layer -- 4.3.2 Link layer -- 4.3.3 Network layer -- 4.3.4 Upper layers and other issues -- 4.4 Conclusion and summary -- References -- 5 Mathematical modeling and simulation -- 5.1 Discrete diffusion and Brownian motion -- 5.1.1 Environmental assumptions -- 5.1.2 The Wiener process -- 5.1.3 Markov property -- 5.1.4 Wiener process with drift -- 5.1.5 Multi-dimensional Wiener processes -- 5.1.6 Simulation -- 5.2 Molecular motors -- 5.3 First arrival times -- 5.3.1 Definition and closed-form examples -- 5.3.2 First arrival times in multiple dimensions -- 5.3.3 From first arrival times to communication systems -- 5.4 Concentration, mole fraction, and counting -- 5.4.1 Small numbers of molecules: Counting and inter-symbol interference -- 5.4.2 Large numbers of molecules: Towards concentration -- 5.4.3 Concentration: random and deterministic -- 5.4.4 Concentration as a Gaussian random variable -- 5.4.5 Concentration as a random process -- 5.4.6 Discussion and communication example -- 5.5 Models for ligand-receptor systems -- 5.5.1 Mathematical model of a ligand-receptor system -- 5.5.2 Simulation -- 5.6 Conclusion and summary -- References -- 6 Communication and information theory of molecular communication -- 6.1 Theoretical models for analysis of molecular communication -- 6.1.1 Abstract physical layer communication model -- 6.1.2 Ideal models -- 6.1.3 Distinguishable molecules: The additive inverse Gaussian noise channel -- 6.1.4 Indistinguishable molecules -- 6.1.5 Sequences in discrete time -- 6.2 Detection and estimation in molecular communication -- 6.2.1 Optimal detection and ML estimation -- 6.2.2 Parameter estimation -- 6.2.3 Optimal detection in the delay-selector channel
  • Cover -- Half Title -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Molecular communication: Why, what, and how? -- 1.1.1 Why molecular communication? -- 1.1.2 What uses molecular communication? -- 1.1.3 How does it work? A quick introduction -- 1.2 A history of molecular communication -- 1.2.1 Early history and theoretical research -- 1.2.2 More recent theoretical research -- 1.2.3 Implementational aspects -- 1.2.4 Contemporary research -- 1.3 Applications areas -- 1.3.1 Biological engineering -- 1.3.2 Medical and healthcare applications -- 1.3.3 Industrial applications -- 1.3.4 Environmental applications -- 1.3.5 Information and communication technology applications -- 1.4 Rationale and organization of the book -- References -- 2 Nature-made biological nanomachines -- 2.1 Protein molecules -- 2.1.1 Molecular structure -- 2.1.2 Functions and roles -- 2.2 DNA and RNA molecules -- 2.2.1 Molecular structure -- 2.2.2 Functions and roles -- 2.3 Lipid membranes and vesicles -- 2.3.1 Molecular structure -- 2.3.2 Functions and roles -- 2.4 Whole cells -- 2.5 Conclusion and summary -- References -- 3 Molecular communication in biological systems -- 3.1 Scales of molecular communication -- 3.2 Modes of molecular communication -- 3.3 Examples of molecular communication -- 3.3.1 Chemotactic signaling -- 3.3.2 Vesicular trafficking -- 3.3.3 Calcium signaling -- 3.3.4 Quorum sensing -- 3.3.5 Bacterial migration and conjugation -- 3.3.6 Morphogen signaling -- 3.3.7 Hormonal signaling -- 3.3.8 Neuronal signaling -- 3.4 Conclusion and summary -- References -- 4 Molecular communication paradigm -- 4.1 Molecular communication model -- 4.2 General characteristics -- 4.2.1 Transmission of information molecules -- 4.2.2 Information representation -- 4.2.3 Slow speed and limited range -- 4.2.4 Stochastic communication