Optimal investment under multiple defaults risk: A BSDE-decomposition approach
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional den...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
21.02.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1102.5678 |
Cover
Abstract | We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. |
---|---|
AbstractList | Annals of Applied Probability 2013, Vol. 23, No. 2, 455-491 We study an optimal investment problem under contagion risk in a financial
model subject to multiple jumps and defaults. The global market information is
formulated as a progressive enlargement of a default-free Brownian filtration,
and the dependence of default times is modeled by a conditional density
hypothesis. In this Ito-jump process model, we give a decomposition of the
corresponding stochastic control problem into stochastic control problems in
the default-free filtration, which are determined in a backward induction. The
dynamic programming method leads to a backward recursive system of quadratic
backward stochastic differential equations (BSDEs) in Brownian filtration, and
our main result proves, under fairly general conditions, the existence and
uniqueness of a solution to this system, which characterizes explicitly the
value function and optimal strategies to the optimal investment problem. We
illustrate our solutions approach with some numerical tests emphasizing the
impact of default intensities, loss or gain at defaults and correlation between
assets. Beyond the financial problem, our decomposition approach provides a new
perspective for solving quadratic BSDEs with a finite number of jumps. We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps. |
Author | Kharroubi, Idris Jiao, Ying Pham, Huyên |
Author_xml | – sequence: 1 givenname: Ying surname: Jiao fullname: Jiao, Ying – sequence: 2 givenname: Idris surname: Kharroubi fullname: Kharroubi, Idris – sequence: 3 givenname: Huyên surname: Pham fullname: Pham, Huyên |
BackLink | https://doi.org/10.48550/arXiv.1102.5678$$DView paper in arXiv https://doi.org/10.1214/11-AAP829$$DView published paper (Access to full text may be restricted) |
BookMark | eNotzztPwzAUBWALgUSB7kzIEnOK307YSikPqaID3SPXuRYuiRPspIJ_T0qZ7h2Ojs53gU5DGwCha0pmIpeS3Jn47fczSgmbSaXzEzRhnNMsF4ydo2lKO0IIU5pJySfobd31vjE19mEPqW8g9HgIFUTcDHXvuxpwBc6Mf8LRp897PMcP74_LrALbNl2bfO_bgE3XxdbYjyt05kydYPp_L9HmablZvGSr9fPrYr7KjKQqc1sGTigj3FbYXFtFnSjAUWGokQUhlWaWayiUKQoNTNAcdF5JZanieguWX6KbY-2fteziSIg_5cFcHsxj4PYYGGd9DSOs3LVDDOOkkpFcKqYJUfwXefpboQ |
ContentType | Paper Journal Article |
Copyright | 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1102.5678 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1102_5678 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a516-fb2ef46a4fb4c87c61f49ef14a1a5900d72c37e96a997e2418e78d56c1637bec3 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 23:40:19 EDT 2025 Mon Jun 30 09:29:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a516-fb2ef46a4fb4c87c61f49ef14a1a5900d72c37e96a997e2418e78d56c1637bec3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 IMS-AAP-AAP829 |
OpenAccessLink | https://arxiv.org/abs/1102.5678 |
PQID | 2085627006 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1102_5678 proquest_journals_2085627006 |
PublicationCentury | 2000 |
PublicationDate | 20130221 |
PublicationDateYYYYMMDD | 2013-02-21 |
PublicationDate_xml | – month: 02 year: 2013 text: 20130221 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2013 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.5032791 |
SecondaryResourceType | preprint |
Snippet | We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is... Annals of Applied Probability 2013, Vol. 23, No. 2, 455-491 We study an optimal investment problem under contagion risk in a financial model subject to... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Decomposition Default Dependence Differential equations Dynamic programming Economic models Enlargement Filtration Global marketing Investment Mathematical models Mathematics - Probability Optimal control Recursive methods Stochastic processes |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzbbVKDl5ju0k22fUiPlqLYBWs0NuSzQMK2q67Vfz5ZtJdPQjmtGRv3yQzw8yX-RA6o1HufJ5OiZE2IZzq1PtBlxPLTKRY3yiaQx3yYSxGL_x-Gk_rgltV0yobnxgctVloqJH3QEtSQJdUXBbvBFSjoLtaS2iso3bkIw2c82R491NjoUL6jJmtupNhdFdPlV-zT-C-0_NYgLZaO-z88cQhvAy3UPtJFbbcRmt2voM2AitTV7to_Ogv9Jt6xbMwDQMKeRgefZW44QFiY53y3xUGjvgFvsLXz7cDYixQxWs-Fm7mhu-hyXAwuRmRWgCBqDgSxOXUOi4UdznXidQicjy1HloVKRD7NJJqJm0qVJpK60NxYmViYqF9jiW9bdg-as0Xc3uIsA_aqzenKs05l_2EG8b8dbR-GRabDjoIOGTFasZFBghlgFAHdRtksvp4V9mvMY7-_32MNmnQj6CERl3UWpYf9sRH8WV-Gkz1Db2HnD0 priority: 102 providerName: ProQuest |
Title | Optimal investment under multiple defaults risk: A BSDE-decomposition approach |
URI | https://www.proquest.com/docview/2085627006 https://arxiv.org/abs/1102.5678 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIL4KpXhgNTSOYydsLaStkNoiKFK3yI4dqQMFtQUx8ds5OwkLIkMUWfbyHN8723fvAK5YoAv00xk10saUszxBO1hoakMTqLBnFNPuHHIyFeMX_rCIFg24rHNh1Ppr-VnqA-vNDXITu47QnjahyZjbW41mi_Ky0StxVd1_u6GH6Vv-GFbPFsN92KvcPNIv5-UAGnZ1CNMZrs9XbF56cQt3LkdcDtea1GF9xNhC4feGuJDvW9Ing-f7lBrrIr-r8CpSy4AfwXyYzu_GtKpnQFUUCFpoZgsuFC80z2OZi6DgiUWkVKBc7U4jWR5KmwiVJNIis8ZWxiYSObpMEqEOj6G1elvZUyDIwWUKqUo057IXcxOGuLosPiaMTBtOPA7ZeylZkTmEModQGzo1Mln1t24yV6dTuBtocfbvwHPYZb4SBKMs6EBru_6wF8jHW92FZjwcdWFnkE4fn7p-jvA9-U5_ACyNjvg |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4Ib79eAHOAYtqZp0iIhxGDTxraCYEi7VWmTSkgwxsbzR_EfibsWDkjc6ClqpSq1E8e1P_sD2GdOnFo_nVEtjU85SwJrB9OYGlc7yq1pxWKMQ_ZC0brlFwNvMAOfRS0MwioLm5gZav2YYIy8ilySArOk4mT0RJE1CrOrBYXGdFl0zMeb_WWbHLfPrX4PGGs2-mctmrMKUOU5gqYxMykXiqcxT3yZCCflgbHzVY5CBk0tWeJKEwgVBNLY88030teeSKzjIu0Hu_a1s1DmWNBagnK9EV5dfwd1mJDWRXen6dCsV1hVjd_vXhFszw49gWRu5ezOL9OfnWfNRShfqZEZL8GMGS7DXAYDTSYrEF5aC_Kg7sld1n4DI4cEq8zGpAAeEm1SZccTgqD0I3JK6jfnDaoNYtNzABgpGpWvQv8_ZLMGpeHj0GwAsV7CtMhVBTHnsuZz7bp2_xt7adfTm7CeySEaTZtqRCihCCW0CZVCMlG-nybRj_a3_n68B_Otfq8bddthZxsWWEZewShzKlB6Hr-YHetCPMe7ueIIRP-8VL4A70vZ-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+investment+under+multiple+defaults+risk%3A+A+BSDE-decomposition+approach&rft.jtitle=arXiv.org&rft.au=Jiao%2C+Ying&rft.au=Kharroubi%2C+Idris&rft.au=Pham%2C+Huy%C3%AAn&rft.date=2013-02-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1102.5678 |