Optimal investment under multiple defaults risk: A BSDE-decomposition approach

We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional den...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Jiao, Ying, Kharroubi, Idris, Pham, Huyên
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.02.2013
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1102.5678

Cover

Abstract We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
AbstractList Annals of Applied Probability 2013, Vol. 23, No. 2, 455-491 We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as a progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modeled by a conditional density hypothesis. In this Ito-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic backward stochastic differential equations (BSDEs) in Brownian filtration, and our main result proves, under fairly general conditions, the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with a finite number of jumps.
Author Kharroubi, Idris
Jiao, Ying
Pham, Huyên
Author_xml – sequence: 1
  givenname: Ying
  surname: Jiao
  fullname: Jiao, Ying
– sequence: 2
  givenname: Idris
  surname: Kharroubi
  fullname: Kharroubi, Idris
– sequence: 3
  givenname: Huyên
  surname: Pham
  fullname: Pham, Huyên
BackLink https://doi.org/10.48550/arXiv.1102.5678$$DView paper in arXiv
https://doi.org/10.1214/11-AAP829$$DView published paper (Access to full text may be restricted)
BookMark eNotzztPwzAUBWALgUSB7kzIEnOK307YSikPqaID3SPXuRYuiRPspIJ_T0qZ7h2Ojs53gU5DGwCha0pmIpeS3Jn47fczSgmbSaXzEzRhnNMsF4ydo2lKO0IIU5pJySfobd31vjE19mEPqW8g9HgIFUTcDHXvuxpwBc6Mf8LRp897PMcP74_LrALbNl2bfO_bgE3XxdbYjyt05kydYPp_L9HmablZvGSr9fPrYr7KjKQqc1sGTigj3FbYXFtFnSjAUWGokQUhlWaWayiUKQoNTNAcdF5JZanieguWX6KbY-2fteziSIg_5cFcHsxj4PYYGGd9DSOs3LVDDOOkkpFcKqYJUfwXefpboQ
ContentType Paper
Journal Article
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1102.5678
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1102_5678
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a516-fb2ef46a4fb4c87c61f49ef14a1a5900d72c37e96a997e2418e78d56c1637bec3
IEDL.DBID GOX
IngestDate Tue Jul 22 23:40:19 EDT 2025
Mon Jun 30 09:29:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a516-fb2ef46a4fb4c87c61f49ef14a1a5900d72c37e96a997e2418e78d56c1637bec3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
IMS-AAP-AAP829
OpenAccessLink https://arxiv.org/abs/1102.5678
PQID 2085627006
PQPubID 2050157
ParticipantIDs arxiv_primary_1102_5678
proquest_journals_2085627006
PublicationCentury 2000
PublicationDate 20130221
PublicationDateYYYYMMDD 2013-02-21
PublicationDate_xml – month: 02
  year: 2013
  text: 20130221
  day: 21
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5032791
SecondaryResourceType preprint
Snippet We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is...
Annals of Applied Probability 2013, Vol. 23, No. 2, 455-491 We study an optimal investment problem under contagion risk in a financial model subject to...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Decomposition
Default
Dependence
Differential equations
Dynamic programming
Economic models
Enlargement
Filtration
Global marketing
Investment
Mathematical models
Mathematics - Probability
Optimal control
Recursive methods
Stochastic processes
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzbbVKDl5ju0k22fUiPlqLYBWs0NuSzQMK2q67Vfz5ZtJdPQjmtGRv3yQzw8yX-RA6o1HufJ5OiZE2IZzq1PtBlxPLTKRY3yiaQx3yYSxGL_x-Gk_rgltV0yobnxgctVloqJH3QEtSQJdUXBbvBFSjoLtaS2iso3bkIw2c82R491NjoUL6jJmtupNhdFdPlV-zT-C-0_NYgLZaO-z88cQhvAy3UPtJFbbcRmt2voM2AitTV7to_Ogv9Jt6xbMwDQMKeRgefZW44QFiY53y3xUGjvgFvsLXz7cDYixQxWs-Fm7mhu-hyXAwuRmRWgCBqDgSxOXUOi4UdznXidQicjy1HloVKRD7NJJqJm0qVJpK60NxYmViYqF9jiW9bdg-as0Xc3uIsA_aqzenKs05l_2EG8b8dbR-GRabDjoIOGTFasZFBghlgFAHdRtksvp4V9mvMY7-_32MNmnQj6CERl3UWpYf9sRH8WV-Gkz1Db2HnD0
  priority: 102
  providerName: ProQuest
Title Optimal investment under multiple defaults risk: A BSDE-decomposition approach
URI https://www.proquest.com/docview/2085627006
https://arxiv.org/abs/1102.5678
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIL4KpXhgNTSOYydsLaStkNoiKFK3yI4dqQMFtQUx8ds5OwkLIkMUWfbyHN8723fvAK5YoAv00xk10saUszxBO1hoakMTqLBnFNPuHHIyFeMX_rCIFg24rHNh1Ppr-VnqA-vNDXITu47QnjahyZjbW41mi_Ky0StxVd1_u6GH6Vv-GFbPFsN92KvcPNIv5-UAGnZ1CNMZrs9XbF56cQt3LkdcDtea1GF9xNhC4feGuJDvW9Ing-f7lBrrIr-r8CpSy4AfwXyYzu_GtKpnQFUUCFpoZgsuFC80z2OZi6DgiUWkVKBc7U4jWR5KmwiVJNIis8ZWxiYSObpMEqEOj6G1elvZUyDIwWUKqUo057IXcxOGuLosPiaMTBtOPA7ZeylZkTmEModQGzo1Mln1t24yV6dTuBtocfbvwHPYZb4SBKMs6EBru_6wF8jHW92FZjwcdWFnkE4fn7p-jvA9-U5_ACyNjvg
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4Ib79eAHOAYtqZp0iIhxGDTxraCYEi7VWmTSkgwxsbzR_EfibsWDkjc6ClqpSq1E8e1P_sD2GdOnFo_nVEtjU85SwJrB9OYGlc7yq1pxWKMQ_ZC0brlFwNvMAOfRS0MwioLm5gZav2YYIy8ilySArOk4mT0RJE1CrOrBYXGdFl0zMeb_WWbHLfPrX4PGGs2-mctmrMKUOU5gqYxMykXiqcxT3yZCCflgbHzVY5CBk0tWeJKEwgVBNLY88030teeSKzjIu0Hu_a1s1DmWNBagnK9EV5dfwd1mJDWRXen6dCsV1hVjd_vXhFszw49gWRu5ezOL9OfnWfNRShfqZEZL8GMGS7DXAYDTSYrEF5aC_Kg7sld1n4DI4cEq8zGpAAeEm1SZccTgqD0I3JK6jfnDaoNYtNzABgpGpWvQv8_ZLMGpeHj0GwAsV7CtMhVBTHnsuZz7bp2_xt7adfTm7CeySEaTZtqRCihCCW0CZVCMlG-nybRj_a3_n68B_Otfq8bddthZxsWWEZewShzKlB6Hr-YHetCPMe7ueIIRP-8VL4A70vZ-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+investment+under+multiple+defaults+risk%3A+A+BSDE-decomposition+approach&rft.jtitle=arXiv.org&rft.au=Jiao%2C+Ying&rft.au=Kharroubi%2C+Idris&rft.au=Pham%2C+Huy%C3%AAn&rft.date=2013-02-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1102.5678