A Frostman type lemma for sets with large intersections, and an application to Diophantine approximation
We consider classes \(\mathscr{G}^s ([0,1])\) of subsets of \([0,1]\), originally introduced by Falconer, that are closed under countable intersections, and such that every set in the class has Hausdorff dimension at least \(s\). We provide a Frostman type lemma to determine if a limsup-set is in su...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
11.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider classes \(\mathscr{G}^s ([0,1])\) of subsets of \([0,1]\), originally introduced by Falconer, that are closed under countable intersections, and such that every set in the class has Hausdorff dimension at least \(s\). We provide a Frostman type lemma to determine if a limsup-set is in such a class. Suppose \(E = \limsup E_n \subset [0,1]\), and that \(\mu_n\) are probability measures with support in \(E_n\). If there is a constant \(C\) such that \[\iint|x-y|^{-s}\, \mathrm{d}\mu_n(x)\mathrm{d}\mu_n(y)<C\] for all \(n\), then under suitable conditions on the limit measure of the sequence \((\mu_n)\), we prove that the set \(E\) is in the class \(\mathscr{G}^s ([0,1])\). As an application we prove that for \(\alpha > 1\) and almost all \(\lambda \in (\frac{1}{2},1)\) the set \[ E_\lambda(\alpha) = \{\,x\in[0,1] : |x - s_n| < 2^{-\alpha n} \text{infinitely often}\ \}\] where \(s_n \in \{\,(1-\lambda)\sum_{k=0}^na_k\lambda^k\) and \(a_k\in\{0,1\}\,\}\), belongs to the class \(\mathscr{G}^s\) for \(s \leq \frac{1}{\alpha}\). This improves one of our previous results. |
---|---|
AbstractList | Proceedings of the Edinburgh Mathematical Society, Volume 58,
Issue 02, June 2015, 521--542 We consider classes $\mathscr{G}^s ([0,1])$ of subsets of $[0,1]$, originally
introduced by Falconer, that are closed under countable intersections, and such
that every set in the class has Hausdorff dimension at least $s$. We provide a
Frostman type lemma to determine if a limsup-set is in such a class. Suppose $E
= \limsup E_n \subset [0,1]$, and that $\mu_n$ are probability measures with
support in $E_n$. If there is a constant $C$ such that \[\iint|x-y|^{-s}\,
\mathrm{d}\mu_n(x)\mathrm{d}\mu_n(y)<C\] for all $n$, then under suitable
conditions on the limit measure of the sequence $(\mu_n)$, we prove that the
set $E$ is in the class $\mathscr{G}^s ([0,1])$. As an application we prove
that for $\alpha > 1$ and almost all $\lambda \in (\frac{1}{2},1)$ the set \[
E_\lambda(\alpha) = \{\,x\in[0,1] : |x - s_n| < 2^{-\alpha n} \text{infinitely
often}\ \}\] where $s_n \in \{\,(1-\lambda)\sum_{k=0}^na_k\lambda^k$ and
$a_k\in\{0,1\}\,\}$, belongs to the class $\mathscr{G}^s$ for $s \leq
\frac{1}{\alpha}$. This improves one of our previous results. We consider classes \(\mathscr{G}^s ([0,1])\) of subsets of \([0,1]\), originally introduced by Falconer, that are closed under countable intersections, and such that every set in the class has Hausdorff dimension at least \(s\). We provide a Frostman type lemma to determine if a limsup-set is in such a class. Suppose \(E = \limsup E_n \subset [0,1]\), and that \(\mu_n\) are probability measures with support in \(E_n\). If there is a constant \(C\) such that \[\iint|x-y|^{-s}\, \mathrm{d}\mu_n(x)\mathrm{d}\mu_n(y)<C\] for all \(n\), then under suitable conditions on the limit measure of the sequence \((\mu_n)\), we prove that the set \(E\) is in the class \(\mathscr{G}^s ([0,1])\). As an application we prove that for \(\alpha > 1\) and almost all \(\lambda \in (\frac{1}{2},1)\) the set \[ E_\lambda(\alpha) = \{\,x\in[0,1] : |x - s_n| < 2^{-\alpha n} \text{infinitely often}\ \}\] where \(s_n \in \{\,(1-\lambda)\sum_{k=0}^na_k\lambda^k\) and \(a_k\in\{0,1\}\,\}\), belongs to the class \(\mathscr{G}^s\) for \(s \leq \frac{1}{\alpha}\). This improves one of our previous results. |
Author | Persson, Tomas Reeve, Henry W J |
Author_xml | – sequence: 1 givenname: Tomas surname: Persson fullname: Persson, Tomas – sequence: 2 givenname: Henry surname: Reeve middlename: W J fullname: Reeve, Henry W J |
BackLink | https://doi.org/10.1017/S0013091514000066$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1302.0954$$DView paper in arXiv |
BookMark | eNotkM1LAzEQxYMoWGvvniTg1a35TvdYqlWh4KX3ZXabtSm7yZqk2v733W09DA_mPWYevzt07bwzCD1QMhUzKckLhIP9nVJO2JTkUlyhEeOcZjPB2C2axLgjhDClmZR8hLZzvAw-phYcTsfO4Ma0LeDaBxxNivjPpi1uIHwbbF0yIZoqWe_iMwa36QdD1zW2gmGJk8ev1ndbcMk6M1jBH2x7Nu_RTQ1NNJN_HaP18m29-MhWX--fi_kqA0lVJjbaQG54TQnXSlSMm1rqihmSC1FqwsoZBcpAK5rnQgtRAy8JqwhRmlNZ8jF6vJw9Uyi60L8Px2KgUQw0-sDTJdB3-9mbmIqd3wfXVyoY0YoLpaXiJ0_GZDI |
ContentType | Paper Journal Article |
Copyright | 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1302.0954 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1302_0954 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a516-4d7ea9e3f103764c23ef57c2e0944b702b81a12a761994744fa3b02c0067315b3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:45:01 EST 2024 Thu Oct 10 18:45:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a516-4d7ea9e3f103764c23ef57c2e0944b702b81a12a761994744fa3b02c0067315b3 |
OpenAccessLink | https://arxiv.org/abs/1302.0954 |
PQID | 2076346756 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1302_0954 proquest_journals_2076346756 |
PublicationCentury | 2000 |
PublicationDate | 20170911 |
PublicationDateYYYYMMDD | 2017-09-11 |
PublicationDate_xml | – month: 09 year: 2017 text: 20170911 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2017 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.6796205 |
SecondaryResourceType | preprint |
Snippet | We consider classes \(\mathscr{G}^s ([0,1])\) of subsets of \([0,1]\), originally introduced by Falconer, that are closed under countable intersections, and... Proceedings of the Edinburgh Mathematical Society, Volume 58, Issue 02, June 2015, 521--542 We consider classes $\mathscr{G}^s ([0,1])$ of subsets of $[0,1]$,... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Intersections Mathematics - Dynamical Systems Mathematics - Number Theory |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXjzt9MpOXg0uqRp2p5E1DkExcOE3UqSJmywtbWtsj_fvKxTQfDQS0MvL817X77340PoQjAr3BInQgWW8EQmREnKiNSGDUIWU6Mgo_v8IkZv_GkSTlrCrW7LKtc-0TvqrNDAkQMTIgJ3qkNxU74TUI2C7GorobGJuhQm4UGn-PDxm2NhInKIOVhlJ_3ormtZLWefIIHMrhy44A6S-jd_PLEPL8Md1H2Vpal20YbJ99CWr8rU9T6a3mLflbGQOQauFM_NYiGxw5m4Nk2NgUTFc6jlxjD2oap9XVVeX2KZZ-7Bv9LTuCnw_awopxK0IQz2w8SXs1Xn4gEaDx_GdyPSSiMQGVJBeBYZmZjAQpef4JoFxoaRZsZd1riKBkzF1FlcAkeR8IhzKwM1YNrL0tBQBYeokxe5OUbY4QVrqXS3Qvepi_cytg4VMZspHSdaJz105C2UlqvpF5D_YinYrof6a5ul7Y9fpz_bdPL_8inaZhAhQY2B9lGnqT7MmYvvjTr3m_gFhkqlhw priority: 102 providerName: ProQuest |
Title | A Frostman type lemma for sets with large intersections, and an application to Diophantine approximation |
URI | https://www.proquest.com/docview/2076346756 https://arxiv.org/abs/1302.0954 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61ZWFBIF6FUjwwEogd5zUW6ENILQgVqVtkp7ZaqU2rJqBO_HbOToqQEEMyJPZytu713X0HcBMwHeAv7gTS0w6PRexIQZkjUsVcn0VUSYPoDkfB4J0_T_xJDa53vTBis51_lvzAMr83qNodOgG8DnXGTMVW_2VSgo2Wiata_rMMPUz75Y9itdaidwgHlZtHOuW5HEFNZccw6xDbZLEUGTGpT7JQy6Ug6DaSXBU5MTlRsjCl2cSwOGxyWyaV5bcEw318yC-0mRQr8jRfrWfCjHpQxHKDb-dlI-IJjHvd8ePAqSYdOMKngcOnoRKx8rRp2gt4yjyl_TBlCmMvLkOXyYiiAIVJOcQ85FwLT7ostVNmqC-9U2hkq0ydA0HzrzUVGOThVjTfItLo5DA9lWkUp2nchDMroWRdklkYOIslRnZNaO1kllT3OE-Yi_oHdakfXPy78RL2mbF1Zq4CbUGj2HyoK7TUhWxDPer127D30B29vrXt6eF7-NX9BsGpmCA |
link.rule.ids | 228,230,786,790,891,12792,21416,27956,33406,33777,43633,43838 |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYvTmtyhqDx6dsq7rtpPxi6ACIQYTbktb2kAC29ym4c-3rww1MfGwy5pdXtf3fv29jx9CF4xoZpaow4SnHRrxyBHcJQ6XirR8ErpKQEa312edN_o88kcV4VZUZZUrn2gd9TiVwJEDE8I8c6p9dpO9O6AaBdnVSkJjHdVh5GZYQ_W7x_7g9ZtlISwwmNlb5ift8K5rni-mnyCCTK4MvKAGlNo3f3yxDTDtbVQf8EzlO2hNJbtow9ZlymIPTW6x7cuY8wQDW4pnaj7n2CBNXKiywECj4hlUc2MY_JAXtrIqKS4xT8bmwb8S1LhM8cM0zSYc1CEUtuPEF9Nl7-I-GrYfh_cdpxJHcLjvMoeOA8Uj5Wno82NUEk9pP5BEmesaFUGLiNA1NufAUkQ0oFRzT7SItMI0ri-8A1RL0kQdIWwQg9YuN_dC86mJ-DzUBhcRPRYyjKSMGujQWijOlvMvIANGYrBdAzVXNourX7-Ifzbq-P_lc7TZGfa6cfep_3KCtgjES9BmcJuoVuYf6tRE-1KcVVv6BVpIqd4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Frostman+type+lemma+for+sets+with+large+intersections%2C+and+an+application+to+Diophantine+approximation&rft.jtitle=arXiv.org&rft.au=Persson%2C+Tomas&rft.au=Reeve%2C+Henry+W+J&rft.date=2017-09-11&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1302.0954 |