Thermo-erosion gullies increase nitrogen available for hydrologic export
Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen (N) from arctic tundra to downstream ecosystems. We compared physical characteristics, N pools, and rates of N transformations in soils collected from ther...
Saved in:
Published in | Biogeochemistry Vol. 117; no. 2-3; pp. 299 - 311 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer-Verlag
01.03.2014
Springer Springer International Publishing Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0168-2563 1573-515X |
DOI | 10.1007/s10533-013-9862-0 |
Cover
Loading…
Abstract | Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen (N) from arctic tundra to downstream ecosystems. We compared physical characteristics, N pools, and rates of N transformations in soils collected from thermo-erosion gullies, intact water tracks (the typical precursor landform to thermo-erosion gullies), and undisturbed tundra to test potential mechanisms contributing to export of inorganic N. Subsidence exposes mineral soils, which tend to contain higher abundance of inorganic ions relative to surface soils, and may bring inorganic N into contact with flowing water. Alternatively, physical mixing may increase aeration and drainage of soils, which could promote N mineralization and nitrification while suppressing denitrification. Finally, some soil types are more prone to formation of thermokarst, and if these soils are relatively N-rich, thermokarst features may export more N than surrounding tundra. Inorganic N pools in thermo-erosion gullies were similar to the mean for all tundra types in this region, as well as to water tracks when integrated across two sampled depths. Thus, soils prone to thermo-erosion are not intrinsically N-rich, and increased N availability in thermokarst features is apparent only at sub-regional spatial scales. However, vertical profiles of N pools and transformation rates were homogenized within thermo-erosion gullies compared to adjacent intact tundra, indicating that physical mixing brings inorganic N to the surface, where it may be subject to hydrologic export. Increased inorganic N availability caused by formation of thermo-erosion gullies may have acute, localized consequences for aquatic ecosystems downstream of positions within drainage networks that are susceptible to thermo-erosion. |
---|---|
AbstractList | Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen (N) from arctic tundra to downstream ecosystems. We compared physical characteristics, N pools, and rates of N transformations in soils collected from thermo-erosion gullies, intact water tracks (the typical precursor landform to thermo-erosion gullies), and undisturbed tundra to test potential mechanisms contributing to export of inorganic N. Subsidence exposes mineral soils, which tend to contain higher abundance of inorganic ions relative to surface soils, and may bring inorganic N into contact with flowing water. Alternatively, physical mixing may increase aeration and drainage of soils, which could promote N mineralization and nitrification while suppressing denitrification. Finally, some soil types are more prone to formation of thermokarst, and if these soils are relatively N-rich, thermokarst features may export more N than surrounding tundra. Inorganic N pools in thermo-erosion gullies were similar to the mean for all tundra types in this region, as well as to water tracks when integrated across two sampled depths. Thus, soils prone to thermo-erosion are not intrinsically N-rich, and increased N availability in thermokarst features is apparent only at sub-regional spatial scales. However, vertical profiles of N pools and transformation rates were homogenized within thermo-erosion gullies compared to adjacent intact tundra, indicating that physical mixing brings inorganic N to the surface, where it may be subject to hydrologic export. Increased inorganic N availability caused by formation of thermo-erosion gullies may have acute, localized consequences for aquatic ecosystems downstream of positions within drainage networks that are susceptible to thermo-erosion. Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen (N) from arctic tundra to downstream ecosystems. We compared physical characteristics, N pools, and rates of N transformations in soils collected from thermo-erosion gullies, intact water tracks (the typical precursor landform to thermo-erosion gullies), and undisturbed tundra to test potential mechanisms contributing to export of inorganic N. Subsidence exposes mineral soils, which tend to contain higher abundance of inorganic ions relative to surface soils, and may bring inorganic N into contact with flowing water. Alternatively, physical mixing may increase aeration and drainage of soils, which could promote N mineralization and nitrification while suppressing denitrification. Finally, some soil types are more prone to formation of thermokarst, and if these soils are relatively N-rich, thermokarst features may export more N than surrounding tundra. Inorganic N pools in thermo-erosion gullies were similar to the mean for all tundra types in this region, as well as to water tracks when integrated across two sampled depths. Thus, soils prone to thermo-erosion are not intrinsically N-rich, and increased N availability in thermokarst features is apparent only at sub-regional spatial scales. However, vertical profiles of N pools and transformation rates were homogenized within thermo-erosion gullies compared to adjacent intact tundra, indicating that physical mixing brings inorganic N to the surface, where it may be subject to hydrologic export. Increased inorganic N availability caused by formation of thermo-erosion gullies may have acute, localized consequences for aquatic ecosystems downstream of positions within drainage networks that are susceptible to thermo-erosion.[PUBLICATION ABSTRACT] Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen(N) from arctic tundra to downstream ecosystems. We compared physical characteristics, N pools, and rates of N transformations in soils collected from thermo-erosion gullies, intact water tracks (the typical precursor landform to thermo-erosion gullies), and undisturbed tundra to test potential mechanisms contributing to export of inorganic N. Subsidence exposes mineral soils, which tend to contain higher abundance of inorganic ions relative to surface soils, and may bring inorganic N into contact with flowing water. Alternatively, physical mixing may increaseaeration and drainage of soils, which could promote N mineralization and nitrification while suppressing denitrification. Finally, some soil types are more prone to formation of thermokarst, and if these soils are relatively N-rich, thermokarst features may export more N than surrounding tundra. Inorganic N pools in thermo-erosion gullies were similar to the mean for all tundra types in this region, as well as to water tracks when integrated across two sampled depths. Thus, soils prone to thermo-erosion are not intrinsically N-rich, and increased N availability in thermokarst features is apparent only at sub-regional spatial scales. However, vertical profiles of N pools and transformation rates were homogenized within thermo-erosion gullies compared to adjacent intact tundra, indicating that physical mixing brings inorganic N to the surface,where it may be subject to hydrologic export. Increased inorganic N availability caused by formation of thermo-erosion gullies may have acute, localized consequences for aquatic ecosystems downstream of positions within drainage networks that are susceptible to thermo-erosion. |
Author | Abbott, Benjamin W. Harms, Tamara K. Jones, Jeremy B. |
Author_xml | – sequence: 1 fullname: Harms, Tamara K – sequence: 2 fullname: Abbott, Benjamin W – sequence: 3 fullname: Jones, Jeremy B |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609933$$DView record in Pascal Francis https://univ-rennes.hal.science/hal-01118264$$DView record in HAL |
BookMark | eNqNkk1r3DAQhkVJoZttf0APpYZSaA9uNfqyfAyh7RYWemgCvYmxLHu1eK2t5A3Jv6-M0w9yCD0JNM87mndenZOzMYyOkJdAPwCl1ccEVHJeUuBlrRUr6ROyAlnxUoL8cUZWFJQumVT8GTlPaU8prSvKV2RztXPxEEoXQ_JhLPrTMHiXCj_a6DC5YvRTDL0bC7xBP2AzuKILsdjdtTEMofe2cLfHEKfn5GmHQ3Iv7s81uf786epyU26_ffl6ebEtMU8ylQ12HeiqdR26pkFUddVowTjnQlnlpEZl24a1jrWd5dq2UmjN0EopatGg4Gvyfum7w8Ecoz9gvDMBvdlcbM18RwFAMyVuILPvFvYYw8-TS5M5-GTdMODowikZUIrnHUH9H6hkQkBV6XmCNw_QfTjFMZvOFNBKaCpopt7eU5gsDl3E0fr0Z2KmFa3rbHtNqoWzOYEUXWesn3DKWUwxL9wANXPAZgk4u-NmDtjML8AD5e_mj2nYokmZHXsX_5n9EdGrRbRPU4h_LYgqfypZ5_rrpd5hMNjHbPP6O6MgKIUcGwj-C7rJy2Q |
CODEN | BIOGEP |
CitedBy_id | crossref_primary_10_1029_2020JG005949 crossref_primary_10_5194_bg_12_3725_2015 crossref_primary_10_1002_2014JG002678 crossref_primary_10_1016_j_scitotenv_2018_01_275 crossref_primary_10_1038_s43247_020_00050_1 crossref_primary_10_1002_ppp_2057 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1029_2018JG004805 crossref_primary_10_1016_j_catena_2024_108425 crossref_primary_10_5194_bg_15_5287_2018 crossref_primary_10_1002_2015GL066296 crossref_primary_10_1016_j_geoderma_2021_115302 crossref_primary_10_1002_ppp_1958 crossref_primary_10_1038_s41598_018_22530_3 crossref_primary_10_1029_2020GL088823 crossref_primary_10_1016_j_chemgeo_2017_10_002 crossref_primary_10_1002_2015GB005337 crossref_primary_10_1088_1748_9326_aac4ad crossref_primary_10_5194_bg_13_1237_2016 crossref_primary_10_1007_s10533_014_0023_x crossref_primary_10_1002_2014JG002883 crossref_primary_10_1016_j_gloplacha_2017_11_017 crossref_primary_10_1021_acs_est_7b04979 crossref_primary_10_1007_s10533_022_00895_y crossref_primary_10_5194_bg_12_6915_2015 crossref_primary_10_1088_1748_9326_9_10_105010 crossref_primary_10_1139_as_2022_0038 crossref_primary_10_1007_s00248_019_01330_w crossref_primary_10_1002_2017GL074338 crossref_primary_10_1139_as_2015_0009 crossref_primary_10_1029_2020GB006850 crossref_primary_10_1088_1748_9326_acd0c2 crossref_primary_10_1111_gcb_15487 crossref_primary_10_1029_2020JG005889 crossref_primary_10_3390_nitrogen3040040 crossref_primary_10_5194_bg_12_4221_2015 crossref_primary_10_1016_j_earscirev_2019_02_018 crossref_primary_10_1002_ppp_2039 crossref_primary_10_1016_j_soilbio_2022_108757 crossref_primary_10_1002_hyp_14369 crossref_primary_10_1038_s41467_018_06232_y crossref_primary_10_1088_1748_9326_aae43b crossref_primary_10_1088_1748_9326_ac98d7 crossref_primary_10_1111_gcb_15507 crossref_primary_10_1021_acs_est_8b02271 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1002_ppp_2087 crossref_primary_10_1038_s41561_024_01440_2 crossref_primary_10_1016_j_scitotenv_2018_09_252 crossref_primary_10_1029_2018JG004518 crossref_primary_10_3389_feart_2019_00275 crossref_primary_10_1007_s10064_019_01511_4 crossref_primary_10_1016_j_catena_2022_106650 crossref_primary_10_1038_s41467_020_18331_w |
Cites_doi | 10.2307/2937049 10.1007/s10533-009-9396-7 10.14509/7191 10.2136/sssaj2006.0414N 10.1139/e04-089 10.2136/sssaj2010.0318 10.1029/2007JG000470 10.1016/j.soilbio.2003.09.008 10.1016/0165-232X(91)90001-W 10.1046/j.1365-2486.2002.00517.x 10.1111/j.1365-2486.2010.02303.x 10.1111/j.1365-2486.2009.01917.x 10.1029/98JD02024 10.1029/2006JG000371 10.1890/08-0773.1 10.1111/j.1365-2486.2012.02663.x 10.1029/2010JG001629 10.1016/0038-0717(77)90072-4 10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 10.1007/s10021-002-0185-6 10.2307/1938918 10.1002/ppp.595 10.1029/2006JG000369 10.1002/ppp.656 10.2307/2265708 10.1007/s10533-010-9426-5 10.1007/s10021-007-9024-0 10.1007/s11104-006-9083-6 10.1093/oso/9780195120837.001.0001 10.1080/10889379909377670 10.1139/x05-153 10.1029/2006JG000258 10.2307/1941665 10.1002/ppp.1745 10.1111/j.1365-2486.2012.02685.x 10.1007/s10021-011-9447-5 10.1139/e2012-015 10.1007/s00442-002-0892-x 10.1038/nature02887 10.2307/2937050 10.2136/sssaj1998.03615995006200030016x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2013 2015 INIST-CNRS Springer International Publishing Switzerland 2014 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2013 – notice: 2015 INIST-CNRS – notice: Springer International Publishing Switzerland 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION IQODW 3V. 7QL 7SN 7ST 7T7 7UA 7X7 7XB 88A 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH GNUQQ H96 HCIFZ K9. L.G LK8 M0S M2P M7P P64 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U SOI 7QH 7S9 L.6 1XC |
DOI | 10.1007/s10533-013-9862-0 |
DatabaseName | AGRIS CrossRef Pascal-Francis ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Biological Science Collection Health & Medical Collection (Alumni) Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Aqualine AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Agricultural & Environmental Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts ProQuest Central (Alumni) Aqualine AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Chemistry Biology Environmental Sciences |
EISSN | 1573-515X |
EndPage | 311 |
ExternalDocumentID | oai_HAL_hal_01118264v1 3258732821 28609933 10_1007_s10533_013_9862_0 24716859 US201400154914 |
Genre | Feature |
GeographicLocations | polar regions Arctic region PN, Arctic |
GeographicLocations_xml | – name: PN, Arctic |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7X7 7XC 88A 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHKG AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXTN AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLY ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADULT ADURQ ADYFF ADZKW ADZLD AEBTG AEEJZ AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESBF AESKC AESTI AETLH AEUPB AEVLU AEVTX AEXYK AFAZZ AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGUYK AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIIXL AILAN AIMYW AIRJO AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANHSF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CBGCD CCPQU COF CS3 CSCUP CWIXF D1J DATOO DDRTE DFEDG DL5 DNIVK DOOOF DPUIP DU5 DWIUU DWQXO EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPL EQZMY ESBYG ESX FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GTFYD GXS HCIFZ HF~ HG5 HG6 HGD HMCUK HMJXF HQYDN HRMNR HTVGU HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW LAK LK8 LLZTM M0L M2P M4Y M7P MA- ML0 MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SA0 SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z5O Z7U Z7Y Z7Z Z86 Z88 Z8O Z8S Z8T Z92 ZMTXR ~8M ~EX AAHBH AAJSJ AAKKN AASML AAYZH ABDBE ABEEZ ABFSG ABXSQ ACHIC ACSTC ACUHS AEFQL AEUYN AEZWR AFBBN AFGXO AFHIU AGQEE AGQPQ AGRTI AHPBZ AHWEU AHXOZ AIXLP ALIPV AQVQM AYFIA C6C H13 IPSME PHGZM PHGZT ABAKF ABMOR ABQSL ACACY ACULB ACZOJ C24 AAYXX ADHKG CITATION IQODW 7QL 7SN 7ST 7T7 7UA 7XB 8FD 8FK C1K F1W FR3 H96 K9. L.G P64 PKEHL PQEST PQGLB PQUKI Q9U SOI 7QH 7S9 L.6 1XC |
ID | FETCH-LOGICAL-a515t-baff187defaebbaa697b84233346c6e58a6cdb2de2dfc38cd54882ac55494ba43 |
IEDL.DBID | U2A |
ISSN | 0168-2563 |
IngestDate | Wed Jul 02 06:31:53 EDT 2025 Fri Jul 11 09:53:06 EDT 2025 Fri Jul 11 10:57:20 EDT 2025 Wed Aug 13 03:52:47 EDT 2025 Wed Apr 02 07:25:08 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Tue Jul 01 02:08:47 EDT 2025 Fri Feb 21 02:37:16 EST 2025 Thu Jul 03 21:32:27 EDT 2025 Wed Dec 27 19:06:05 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Thermokarst Mineralization Arctic tundra Nitrification Denitrification Permafrost Thermo-erosion gully Nitrogen gullies thermokarst nitrogen mixing precursors ice drainage patterns denitrification landforms tundra mineralization depth permafrost nitrification ecosystems transformations erosion subsidence drainage ions soils export |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a515t-baff187defaebbaa697b84233346c6e58a6cdb2de2dfc38cd54882ac55494ba43 |
Notes | http://dx.doi.org/10.1007/s10533-013-9862-0 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1510748040 |
PQPubID | 54135 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_01118264v1 proquest_miscellaneous_1663573191 proquest_miscellaneous_1524417784 proquest_journals_1510748040 pascalfrancis_primary_28609933 crossref_citationtrail_10_1007_s10533_013_9862_0 crossref_primary_10_1007_s10533_013_9862_0 springer_journals_10_1007_s10533_013_9862_0 jstor_primary_24716859 fao_agris_US201400154914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Biogeochemistry |
PublicationTitleAbbrev | Biogeochemistry |
PublicationYear | 2014 |
Publisher | Springer-Verlag Springer Springer International Publishing Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer International Publishing – name: Springer Nature B.V – name: Springer Verlag |
References | Jorgenson MT, Shur Y, Osterkamp T (2009) Thermokarst in Alaska. In: Ninth international conference on permafrost. University of Alaska Fairbanks, pp 117–124 BoothMStarkJHartSSoil mixing effects on inorganic nitrogen production and consumption in forest and shrubland soilsPlant Soil200628951510.1007/s11104-006-9083-6 Walker DA, Barry NC (1991) Toolik Lake permanent plots: site factors, soil physical and chemical properties, plant species cover, photographs, and soil descriptions. In: Department of Energy R4D Program data report, Joint Facility for Regional Ecosystem Analysis, Institute of Arctic and Alpine Research, National Snow and Ice Data Center, Boulder, CO LavoieMMackMCSchuurEAGEffects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soilsJ Geophys Res-Biogeosci2011116G0301310.1029/2010JG001629 BrzostekERBlairJMDukesJSFreySDHobbieSEMelilloJMMitchellRJPendallEReichPBShaverGRStefanskiATjoelkerMGFinziACThe effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universalGlob Change Biol2012182617262510.1111/j.1365-2486.2012.02685.x ZhangTBarryRKnowlesJHeginbottomJBrownJStatistics and characteristics of permafrost and ground ice distribution in the Northern HemispherePolar Geogr19992313215410.1080/10889379909377670 BockheimJGImportance of cryoturbation in redistributing organic carbon in permafrost-affected soilsSoil Sci Soc Am J2007711335134210.2136/sssaj2006.0414N FortierDAllardMShurYObservation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic ArchipelagoPermafrost Periglac Process20071822924310.1002/ppp.595 JonassonSShaverGRWithin-stand nutrient cycling in arctic and boreal wetlandsEcology1999802139215010.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 McClellandJStieglitzMPanFHolmesRPetersonBRecent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, AlaskaJ Geophys Res-Biogeosci2007112G04S6010.1029/2006JG000371 Walker DA (2008) Toolik-Arctic Geobotanical Atlas. Alaska Geobotany Center, www.geobotany.uaf.edu HamiltonTDWalkerDAGlacial geology of Toolik Lake and the Upper Kuparuk River regionBiological papers of the University of Alaska2003FairbanksUniversity of Alaska LantzTCKokeljSVGergelSEHenryzGHRRelative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumpsGlob Change Biol2009151664167510.1111/j.1365-2486.2009.01917.x PingCLBockheimJGKimbleJMMichaelsonGJWalkerDACharacteristics of cryogenic soils along a latitudinal transect in Arctic AlaskaJ Geophys Res-Atmospheres1998103289172892810.1029/98JD02024 ChengWVirginiaRAOberbauerSFGillespieCTReynoldsJFSoil nitrogen, microbial biomass, and respiration along an arctic toposequenceSoil Sci Soc Am J19986265466210.2136/sssaj1998.03615995006200030016x HobbieSEGoughLFoliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern AlaskaOecologia200213145346210.1007/s00442-002-0892-x TeamToolik Environmental Data CenterMeteorological monitoring program at Toolik2011FairbanksToolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks99775 GiblinAENadelhofferKJShaverGRLaundreJAMcKerrowAJBiogeochemical diversity along a riverside toposequence in arctic AlaskaEcol Monogr19916141543510.2307/2937049 WhittinghillKAHobbieSEEffects of landscape age on soil organic matter processing in Northern AlaskaSoil Sci Soc Am J20117590791710.2136/sssaj2010.0318 BockheimJHinkelKAccumulation of excess ground ice in an age sequence of drained thermokarst lake basins, arctic AlaskaPermafrost Periglac Process20122323123610.1002/ppp.1745 NadelhofferKJGiblinAEShaverGRLaundreJAEffects of temperature and substrate quality on element mineralization in 6 arctic soilsEcology19917224225310.2307/1938918 NataliSMSchuurEAGTruccoCHicks PriesCECrummerKGBaron LopezAFEffects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundraGlob Change Biol2011171394140710.1111/j.1365-2486.2010.02303.x KaiserCMeyerHRusalimovaOBarsukovPRichterAConservation of soil organic matter through cryoturbation in arctic soils in SiberiaJ Geophys Res-Biogeosci2007112G2G0201710.1029/2006JG000258 GodinEFortierDGeomorphology of a thermo-erosion gully, Bylot Island, Nunavut, CanadaCan J Earth Sci20124997998610.1139/e2012-015 YoshinariTHynesRKnowlesRAcetylene inhibition of nitrous-oxide reduction and measurement of denitrification and nitrogen-fixation in soilSoil Biol Biochem1977917718310.1016/0038-0717(77)90072-4 ChapinFSFetcherNKiellandKEverettKRLinkinsAEProductivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil waterEcology19886969370210.2307/1941665 KokeljSVBurnCGeochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Northwest Territories, CanadaCan J Earth Sci200542374810.1139/e04-089 USGS/NPSState surficial geology map of Alaska1999AnchorageNational Park Service Alaska Regional Office BowdenWBGooseffMNBalserAGreenAPetersonBJBradfordJSediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystemsJ Geophys Res-Biogeosci2008113G0202610.1029/2007JG000470 HobbieSEMileyTAWeissMSCarbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern AlaskaEcosystems2002576177410.1007/s10021-002-0185-6 WalkerDRaynoldsMMaierHBarbourENeufeldGCircumpolar geobotanical mapping: a web-based plant-to-planet approach for vegetation-change analysis in the arctcViten20101125128 KeuperFvan BodegomPMDorrepaalEWeedonJTvan HalJvan LogtestijnRSPAertsRA frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlandsGlob Change Biol2012181998200710.1111/j.1365-2486.2012.02663.x HinzmanLDKaneDLGieckREEverettKRHydrologic and thermal-properties of the active layer in the Alaskan ArcticCold Reg Sci Technol1991199511010.1016/0165-232X(91)90001-W LeeHSchuurEAGVogelJGSoil CO2 production in upland tundra where permafrost is thawingJ Geophys Res-Biogeosci2010115G01009 DeMarcoJMackMCBret-HarteMSThe effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan arctic plant communitiesEcosystems20111480481710.1007/s10021-011-9447-5 BuckeridgeKMCenYPLayzellDBGroganPSoil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availabilityBiogeochemistry20109912714110.1007/s10533-009-9396-7 OsterkampTEJorgensonMTSchuurEAGShurYLKanevskiyMZVogelJGTumskoyVEPhysical and ecological changes associated with warming permafrost and thermokarst in interior AlaskaPermafrost Periglac Process20092023525610.1002/ppp.656 ShaverGRJohnsonLCCadesDHMurrayGLaundreJARastetterEBNadelhofferKJGiblinAEBiomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and lightEcol Monogr1998687597 HamiltonTDSurficial geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) area, southern Arctic foothills2003AlaskaAlaska Division of Geological & Geophysical Surveys RobertsonGPColemanDBledsoeCSollinsPStandard Soil Methods for Long-Term Ecological Research1999New YorkOxford University Press Karlstrom TNV (1964) Surficial geology of Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map 357, 2 sheets, scale 1:1,584,000 SchuurEAGCrummerKGVogelJGMackMCPlant species composition and productivity following permafrost thaw and thermokarst in alaskan tundraEcosystems20071028029210.1007/s10021-007-9024-0 YanoYShaverGRGiblinAERastetterEBNadelhofferKJNitrogen dynamics in a small arctic watershed: retention and downhill movement of 15NEcol Monogr20108033135110.1890/08-0773.1 WalkerDAEverettKRLoess ecosystems of Northern Alaska: regional gradient and toposequence at Prudhoe BayEcol Monogr19916143746410.2307/2937050 BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5 MackMCSchuurEAGBret-HarteMSShaverGRChapinFSEcosystem carbon storage in arctic tundra reduced by long-term nutrient fertilizationNature200443144044310.1038/nature02887 NeffJCHooperDUVegetation and climate controls on potential CO2, DOC and DON production in northern latitude soilsGlob Change Biol2002887288410.1046/j.1365-2486.2002.00517.x SchimelJPBilbroughCWelkerJAIncreased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communitiesSoil Biol Biochem20043621722710.1016/j.soilbio.2003.09.008 ARC-LTER Arctic Long-Term Ecological Research Program, Gus Shaver, Soil chemistry, ecosystems. http://mbl.edu/arc/datacatalog.html. Accessed 2011 FreyKMcClellandJHolmesRSmithLImpacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara SeaJ Geophys Res-Biogeosci2007112G04S5810.1029/2006JG000369 SchimelJPChapinFSTundra plant uptake of amino acid and NH4+ nitrogen in situ: plants compete well for amino acid NEcology1996772142214710.2307/2265708 JorgensonMTOsterkampTEResponse of boreal ecosystems to varying modes of permafrost degradationCan J For Res2005352100211110.1139/x05-153 LantzTCKokeljSVIncreasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, NWTCan Geophys Res Lett200835L06502 KM Buckeridge (9862_CR7) 2010; 101 TD Hamilton (9862_CR17) 2003 E Godin (9862_CR16) 2012; 49 TC Lantz (9862_CR30) 2009; 15 H Lee (9862_CR32) 2010; 115 J McClelland (9862_CR22) 2007; 112 K Frey (9862_CR14) 2007; 112 JP Schimel (9862_CR41) 2004; 36 MT Jorgenson (9862_CR24) 2005; 35 M Booth (9862_CR4) 2006; 289 J DeMarco (9862_CR12) 2011; 14 GP Robertson (9862_CR39) 1999 Toolik Environmental Data Center Team (9862_CR44) 2011 JG Bockheim (9862_CR2) 2007; 71 GR Shaver (9862_CR43) 1998; 68 C Kaiser (9862_CR11) 2007; 112 MC Mack (9862_CR33) 2004; 431 Y Yano (9862_CR51) 2010; 80 J Bockheim (9862_CR3) 2012; 23 9862_CR26 9862_CR25 T Zhang (9862_CR53) 1999; 23 W Cheng (9862_CR10) 1998; 62 F Keuper (9862_CR27) 2012; 18 TC Lantz (9862_CR29) 2008; 35 D Walker (9862_CR49) 2010; 1 SV Kokelj (9862_CR28) 2005; 42 AE Giblin (9862_CR15) 1991; 61 M Lavoie (9862_CR31) 2011; 116 T Yoshinari (9862_CR52) 1977; 9 D Fortier (9862_CR13) 2007; 18 JC Neff (9862_CR36) 2002; 8 KJ Nadelhoffer (9862_CR34) 1991; 72 KA Whittinghill (9862_CR50) 2011; 75 TE Osterkamp (9862_CR37) 2009; 20 USGS/NPS (9862_CR45) 1999 WB Bowden (9862_CR5) 2008; 113 KM Buckeridge (9862_CR8) 2010; 99 ER Brzostek (9862_CR6) 2012; 18 DA Walker (9862_CR48) 1991; 61 TD Hamilton (9862_CR18) 2003 JP Schimel (9862_CR40) 1996; 77 SE Hobbie (9862_CR21) 2002; 5 CL Ping (9862_CR38) 1998; 103 9862_CR1 9862_CR47 S Jonasson (9862_CR23) 1999; 80 9862_CR46 FS Chapin (9862_CR9) 1988; 69 LD Hinzman (9862_CR19) 1991; 19 SE Hobbie (9862_CR20) 2002; 131 SM Natali (9862_CR35) 2011; 17 EAG Schuur (9862_CR42) 2007; 10 |
References_xml | – reference: BuckeridgeKMCenYPLayzellDBGroganPSoil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availabilityBiogeochemistry20109912714110.1007/s10533-009-9396-7 – reference: HobbieSEGoughLFoliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern AlaskaOecologia200213145346210.1007/s00442-002-0892-x – reference: SchimelJPChapinFSTundra plant uptake of amino acid and NH4+ nitrogen in situ: plants compete well for amino acid NEcology1996772142214710.2307/2265708 – reference: Walker DA, Barry NC (1991) Toolik Lake permanent plots: site factors, soil physical and chemical properties, plant species cover, photographs, and soil descriptions. In: Department of Energy R4D Program data report, Joint Facility for Regional Ecosystem Analysis, Institute of Arctic and Alpine Research, National Snow and Ice Data Center, Boulder, CO – reference: MackMCSchuurEAGBret-HarteMSShaverGRChapinFSEcosystem carbon storage in arctic tundra reduced by long-term nutrient fertilizationNature200443144044310.1038/nature02887 – reference: DeMarcoJMackMCBret-HarteMSThe effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan arctic plant communitiesEcosystems20111480481710.1007/s10021-011-9447-5 – reference: HobbieSEMileyTAWeissMSCarbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern AlaskaEcosystems2002576177410.1007/s10021-002-0185-6 – reference: GiblinAENadelhofferKJShaverGRLaundreJAMcKerrowAJBiogeochemical diversity along a riverside toposequence in arctic AlaskaEcol Monogr19916141543510.2307/2937049 – reference: WalkerDRaynoldsMMaierHBarbourENeufeldGCircumpolar geobotanical mapping: a web-based plant-to-planet approach for vegetation-change analysis in the arctcViten20101125128 – reference: Jorgenson MT, Shur Y, Osterkamp T (2009) Thermokarst in Alaska. In: Ninth international conference on permafrost. University of Alaska Fairbanks, pp 117–124 – reference: SchimelJPBilbroughCWelkerJAIncreased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communitiesSoil Biol Biochem20043621722710.1016/j.soilbio.2003.09.008 – reference: HamiltonTDWalkerDAGlacial geology of Toolik Lake and the Upper Kuparuk River regionBiological papers of the University of Alaska2003FairbanksUniversity of Alaska – reference: ChapinFSFetcherNKiellandKEverettKRLinkinsAEProductivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil waterEcology19886969370210.2307/1941665 – reference: ARC-LTER Arctic Long-Term Ecological Research Program, Gus Shaver, Soil chemistry, ecosystems. http://mbl.edu/arc/datacatalog.html. Accessed 2011 – reference: BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5 – reference: HinzmanLDKaneDLGieckREEverettKRHydrologic and thermal-properties of the active layer in the Alaskan ArcticCold Reg Sci Technol1991199511010.1016/0165-232X(91)90001-W – reference: ZhangTBarryRKnowlesJHeginbottomJBrownJStatistics and characteristics of permafrost and ground ice distribution in the Northern HemispherePolar Geogr19992313215410.1080/10889379909377670 – reference: BockheimJHinkelKAccumulation of excess ground ice in an age sequence of drained thermokarst lake basins, arctic AlaskaPermafrost Periglac Process20122323123610.1002/ppp.1745 – reference: McClellandJStieglitzMPanFHolmesRPetersonBRecent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, AlaskaJ Geophys Res-Biogeosci2007112G04S6010.1029/2006JG000371 – reference: Karlstrom TNV (1964) Surficial geology of Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map 357, 2 sheets, scale 1:1,584,000 – reference: BockheimJGImportance of cryoturbation in redistributing organic carbon in permafrost-affected soilsSoil Sci Soc Am J2007711335134210.2136/sssaj2006.0414N – reference: LeeHSchuurEAGVogelJGSoil CO2 production in upland tundra where permafrost is thawingJ Geophys Res-Biogeosci2010115G01009 – reference: GodinEFortierDGeomorphology of a thermo-erosion gully, Bylot Island, Nunavut, CanadaCan J Earth Sci20124997998610.1139/e2012-015 – reference: BrzostekERBlairJMDukesJSFreySDHobbieSEMelilloJMMitchellRJPendallEReichPBShaverGRStefanskiATjoelkerMGFinziACThe effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universalGlob Change Biol2012182617262510.1111/j.1365-2486.2012.02685.x – reference: HamiltonTDSurficial geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) area, southern Arctic foothills2003AlaskaAlaska Division of Geological & Geophysical Surveys – reference: USGS/NPSState surficial geology map of Alaska1999AnchorageNational Park Service Alaska Regional Office – reference: Walker DA (2008) Toolik-Arctic Geobotanical Atlas. Alaska Geobotany Center, www.geobotany.uaf.edu – reference: TeamToolik Environmental Data CenterMeteorological monitoring program at Toolik2011FairbanksToolik Field Station, Institute of Arctic Biology, University of Alaska Fairbanks99775 – reference: FortierDAllardMShurYObservation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic ArchipelagoPermafrost Periglac Process20071822924310.1002/ppp.595 – reference: NeffJCHooperDUVegetation and climate controls on potential CO2, DOC and DON production in northern latitude soilsGlob Change Biol2002887288410.1046/j.1365-2486.2002.00517.x – reference: PingCLBockheimJGKimbleJMMichaelsonGJWalkerDACharacteristics of cryogenic soils along a latitudinal transect in Arctic AlaskaJ Geophys Res-Atmospheres1998103289172892810.1029/98JD02024 – reference: ChengWVirginiaRAOberbauerSFGillespieCTReynoldsJFSoil nitrogen, microbial biomass, and respiration along an arctic toposequenceSoil Sci Soc Am J19986265466210.2136/sssaj1998.03615995006200030016x – reference: WalkerDAEverettKRLoess ecosystems of Northern Alaska: regional gradient and toposequence at Prudhoe BayEcol Monogr19916143746410.2307/2937050 – reference: OsterkampTEJorgensonMTSchuurEAGShurYLKanevskiyMZVogelJGTumskoyVEPhysical and ecological changes associated with warming permafrost and thermokarst in interior AlaskaPermafrost Periglac Process20092023525610.1002/ppp.656 – reference: LantzTCKokeljSVGergelSEHenryzGHRRelative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumpsGlob Change Biol2009151664167510.1111/j.1365-2486.2009.01917.x – reference: JorgensonMTOsterkampTEResponse of boreal ecosystems to varying modes of permafrost degradationCan J For Res2005352100211110.1139/x05-153 – reference: NadelhofferKJGiblinAEShaverGRLaundreJAEffects of temperature and substrate quality on element mineralization in 6 arctic soilsEcology19917224225310.2307/1938918 – reference: LantzTCKokeljSVIncreasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, NWTCan Geophys Res Lett200835L06502 – reference: KaiserCMeyerHRusalimovaOBarsukovPRichterAConservation of soil organic matter through cryoturbation in arctic soils in SiberiaJ Geophys Res-Biogeosci2007112G2G0201710.1029/2006JG000258 – reference: KokeljSVBurnCGeochemistry of the active layer and near-surface permafrost, Mackenzie delta region, Northwest Territories, CanadaCan J Earth Sci200542374810.1139/e04-089 – reference: SchuurEAGCrummerKGVogelJGMackMCPlant species composition and productivity following permafrost thaw and thermokarst in alaskan tundraEcosystems20071028029210.1007/s10021-007-9024-0 – reference: ShaverGRJohnsonLCCadesDHMurrayGLaundreJARastetterEBNadelhofferKJGiblinAEBiomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and lightEcol Monogr1998687597 – reference: YanoYShaverGRGiblinAERastetterEBNadelhofferKJNitrogen dynamics in a small arctic watershed: retention and downhill movement of 15NEcol Monogr20108033135110.1890/08-0773.1 – reference: KeuperFvan BodegomPMDorrepaalEWeedonJTvan HalJvan LogtestijnRSPAertsRA frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlandsGlob Change Biol2012181998200710.1111/j.1365-2486.2012.02663.x – reference: YoshinariTHynesRKnowlesRAcetylene inhibition of nitrous-oxide reduction and measurement of denitrification and nitrogen-fixation in soilSoil Biol Biochem1977917718310.1016/0038-0717(77)90072-4 – reference: WhittinghillKAHobbieSEEffects of landscape age on soil organic matter processing in Northern AlaskaSoil Sci Soc Am J20117590791710.2136/sssaj2010.0318 – reference: NataliSMSchuurEAGTruccoCHicks PriesCECrummerKGBaron LopezAFEffects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundraGlob Change Biol2011171394140710.1111/j.1365-2486.2010.02303.x – reference: FreyKMcClellandJHolmesRSmithLImpacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara SeaJ Geophys Res-Biogeosci2007112G04S5810.1029/2006JG000369 – reference: LavoieMMackMCSchuurEAGEffects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soilsJ Geophys Res-Biogeosci2011116G0301310.1029/2010JG001629 – reference: BoothMStarkJHartSSoil mixing effects on inorganic nitrogen production and consumption in forest and shrubland soilsPlant Soil200628951510.1007/s11104-006-9083-6 – reference: BowdenWBGooseffMNBalserAGreenAPetersonBJBradfordJSediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystemsJ Geophys Res-Biogeosci2008113G0202610.1029/2007JG000470 – reference: JonassonSShaverGRWithin-stand nutrient cycling in arctic and boreal wetlandsEcology1999802139215010.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 – reference: RobertsonGPColemanDBledsoeCSollinsPStandard Soil Methods for Long-Term Ecological Research1999New YorkOxford University Press – volume: 61 start-page: 415 year: 1991 ident: 9862_CR15 publication-title: Ecol Monogr doi: 10.2307/2937049 – volume: 115 start-page: G01009 year: 2010 ident: 9862_CR32 publication-title: J Geophys Res-Biogeosci – volume: 1 start-page: 125 year: 2010 ident: 9862_CR49 publication-title: Viten – volume: 99 start-page: 127 year: 2010 ident: 9862_CR8 publication-title: Biogeochemistry doi: 10.1007/s10533-009-9396-7 – volume-title: Surficial geology of the Dalton Highway (Itkillik-Sagavanirktok rivers) area, southern Arctic foothills year: 2003 ident: 9862_CR18 doi: 10.14509/7191 – volume: 71 start-page: 1335 year: 2007 ident: 9862_CR2 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2006.0414N – ident: 9862_CR25 – volume: 42 start-page: 37 year: 2005 ident: 9862_CR28 publication-title: Can J Earth Sci doi: 10.1139/e04-089 – volume: 75 start-page: 907 year: 2011 ident: 9862_CR50 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2010.0318 – volume: 113 start-page: G02026 year: 2008 ident: 9862_CR5 publication-title: J Geophys Res-Biogeosci doi: 10.1029/2007JG000470 – volume: 36 start-page: 217 year: 2004 ident: 9862_CR41 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2003.09.008 – volume: 19 start-page: 95 year: 1991 ident: 9862_CR19 publication-title: Cold Reg Sci Technol doi: 10.1016/0165-232X(91)90001-W – volume: 68 start-page: 75 year: 1998 ident: 9862_CR43 publication-title: Ecol Monogr – ident: 9862_CR46 – volume: 8 start-page: 872 year: 2002 ident: 9862_CR36 publication-title: Glob Change Biol doi: 10.1046/j.1365-2486.2002.00517.x – volume: 17 start-page: 1394 year: 2011 ident: 9862_CR35 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2010.02303.x – volume: 15 start-page: 1664 year: 2009 ident: 9862_CR30 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2009.01917.x – volume: 103 start-page: 28917 year: 1998 ident: 9862_CR38 publication-title: J Geophys Res-Atmospheres doi: 10.1029/98JD02024 – volume: 112 start-page: G04S60 year: 2007 ident: 9862_CR22 publication-title: J Geophys Res-Biogeosci doi: 10.1029/2006JG000371 – volume: 80 start-page: 331 year: 2010 ident: 9862_CR51 publication-title: Ecol Monogr doi: 10.1890/08-0773.1 – volume-title: Meteorological monitoring program at Toolik year: 2011 ident: 9862_CR44 – volume: 18 start-page: 1998 year: 2012 ident: 9862_CR27 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2012.02663.x – volume: 116 start-page: G03013 year: 2011 ident: 9862_CR31 publication-title: J Geophys Res-Biogeosci doi: 10.1029/2010JG001629 – volume: 9 start-page: 177 year: 1977 ident: 9862_CR52 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(77)90072-4 – volume-title: Biological papers of the University of Alaska year: 2003 ident: 9862_CR17 – volume: 80 start-page: 2139 year: 1999 ident: 9862_CR23 publication-title: Ecology doi: 10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 – volume: 5 start-page: 761 year: 2002 ident: 9862_CR21 publication-title: Ecosystems doi: 10.1007/s10021-002-0185-6 – volume: 72 start-page: 242 year: 1991 ident: 9862_CR34 publication-title: Ecology doi: 10.2307/1938918 – volume: 18 start-page: 229 year: 2007 ident: 9862_CR13 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.595 – volume: 112 start-page: G04S58 year: 2007 ident: 9862_CR14 publication-title: J Geophys Res-Biogeosci doi: 10.1029/2006JG000369 – volume: 20 start-page: 235 year: 2009 ident: 9862_CR37 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.656 – volume: 77 start-page: 2142 year: 1996 ident: 9862_CR40 publication-title: Ecology doi: 10.2307/2265708 – volume-title: State surficial geology map of Alaska year: 1999 ident: 9862_CR45 – volume: 101 start-page: 105 year: 2010 ident: 9862_CR7 publication-title: Biogeochemistry doi: 10.1007/s10533-010-9426-5 – volume: 10 start-page: 280 year: 2007 ident: 9862_CR42 publication-title: Ecosystems doi: 10.1007/s10021-007-9024-0 – volume: 289 start-page: 5 year: 2006 ident: 9862_CR4 publication-title: Plant Soil doi: 10.1007/s11104-006-9083-6 – volume-title: Standard Soil Methods for Long-Term Ecological Research year: 1999 ident: 9862_CR39 doi: 10.1093/oso/9780195120837.001.0001 – volume: 23 start-page: 132 year: 1999 ident: 9862_CR53 publication-title: Polar Geogr doi: 10.1080/10889379909377670 – volume: 35 start-page: 2100 year: 2005 ident: 9862_CR24 publication-title: Can J For Res doi: 10.1139/x05-153 – volume: 112 start-page: G02017 issue: G2 year: 2007 ident: 9862_CR11 publication-title: J Geophys Res-Biogeosci doi: 10.1029/2006JG000258 – volume: 69 start-page: 693 year: 1988 ident: 9862_CR9 publication-title: Ecology doi: 10.2307/1941665 – volume: 23 start-page: 231 year: 2012 ident: 9862_CR3 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.1745 – volume: 18 start-page: 2617 year: 2012 ident: 9862_CR6 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2012.02685.x – volume: 14 start-page: 804 year: 2011 ident: 9862_CR12 publication-title: Ecosystems doi: 10.1007/s10021-011-9447-5 – ident: 9862_CR26 – volume: 49 start-page: 979 year: 2012 ident: 9862_CR16 publication-title: Can J Earth Sci doi: 10.1139/e2012-015 – volume: 131 start-page: 453 year: 2002 ident: 9862_CR20 publication-title: Oecologia doi: 10.1007/s00442-002-0892-x – ident: 9862_CR47 – volume: 431 start-page: 440 year: 2004 ident: 9862_CR33 publication-title: Nature doi: 10.1038/nature02887 – volume: 61 start-page: 437 year: 1991 ident: 9862_CR48 publication-title: Ecol Monogr doi: 10.2307/2937050 – volume: 62 start-page: 654 year: 1998 ident: 9862_CR10 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1998.03615995006200030016x – ident: 9862_CR1 – volume: 35 start-page: L06502 year: 2008 ident: 9862_CR29 publication-title: Can Geophys Res Lett |
SSID | ssj0009703 |
Score | 2.3334284 |
Snippet | Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen (N) from... Formation of thermokarst features, ground subsidence caused by thaw of ice-rich permafrost, can result in increased export of inorganic nitrogen(N) from arctic... |
SourceID | hal proquest pascalfrancis crossref springer jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 299 |
SubjectTerms | Acid soils aeration Animal and plant ecology Animal, plant and microbial ecology Aquatic ecosystems Bioavailability Biodiversity and Ecology Biogeosciences Biological and medical sciences denitrification drainage Drainage patterns Earth and Environmental Science Earth Sciences Earth, ocean, space Ecosystems Environmental Chemistry Environmental Sciences Exact sciences and technology Fundamental and applied biological sciences. Psychology Gullies Gully erosion Hydrology inorganic ions landforms Life Sciences Marine and continental quaternary Mineral soils Mineralization Nitrification Nitrogen Organic soils Permafrost Soil depth Soil ecology Soil erosion Soil organic matter Soil surfaces Soil types Soil water Soils Subsidence Surficial geology Synecology Terrestrial ecosystems Thermal energy Tundra Tundra soils Tundras |
SummonAdditionalLinks | – databaseName: Health Medical collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xIQQvCAbTwsYUEE8gizR2bOcJTROjQsALVOqbZTv2NmlLRttN9L_fXX60FIm-5CFxU8vf-fxdfL4P4F2UKuoySuZzmzHhcSpqmTmmpKtE6UZKtofCvv-Q44n4Oi2m_Qe3eZ9WOfjE1lFXjadv5B9xZcLVTqPNfbr5zUg1inZXewmNHXhIpcso-FJTtS66q1plZGQ1aA2F5MOuZnd0DokOI22DEkk9yzbWpZ1oG7xeUG5kl6ZIOZN2jsMWO72LDUL6zx5quzSdPYOnPadMTzojeA4PQr0HjzqVyeUePD4dRN3w7pdWyXf5AsZoILPrhgXsDmKTntOuUJinlzXxyHlIca7PGjSv1N7Zyys6YZUiwU0vltWsc5hp-EPk_SVMzj7_Oh2zXlaBWSQvC-ZsjCOtqhBtcM5aWSqnkVVxLqSXodBW-srlVcir6Ln2FQY1OrceiUcpnBV8H3brpg4HkCquvNcYUYmAwGjpclEpzovIM3xDUSSQDYNqfF9znKQvrsy6WjLhYBAHQziYLIH3q5_cdAU3tjU-QKSMPUeHaCY_cwoX26JzI5HAW4Rv9Qqqoj0--WboHro0iqrE3SiB_RbdVbMc12qpizKB4w241w3QkpHS8QSOBvxNP-vnZm2jCbxZPUaEaRPG1qG5pTY5qb4pLba0IRqo0DliBz8MtvXX3_xvOF5t79QhPKER6jLojmB3MbsNr5FSLdxxO2_uAftLFqg priority: 102 providerName: ProQuest |
Title | Thermo-erosion gullies increase nitrogen available for hydrologic export |
URI | https://www.jstor.org/stable/24716859 https://link.springer.com/article/10.1007/s10533-013-9862-0 https://www.proquest.com/docview/1510748040 https://www.proquest.com/docview/1524417784 https://www.proquest.com/docview/1663573191 https://univ-rennes.hal.science/hal-01118264 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTQheEAymZYwqIJ5AkdLEsZ3HMnWr-JgQUKk8WbZjb5O2BDXdtP733OWjXRFM4iWV0osT3e98_p18vgN467nwMvc8somOI2ZxKkoem0hwU7DcDAVvDoV9OeWTKfs4y2bdOe66z3bvtyQbT33nsBtSk4i6EeRIwyOM03cyDN3JrKfJaF1pVzTtkJHKoAlkPO23Mv82xMZitOV1hddzSohscxMpUVLXqCvfNrnYYKF_bJw269HxU3jSEclw1CL_DB64chcetq0ll7vw6Kjv5IZ3T5r2vcvnMEGrmF9VkcPPQUDCM9oKcnV4URJ5rF2IE3xeoU2F-kZfXNKxqhBZbXi-LOatlwzdLTH2FzA9Hv84mkRdL4VII2NZREZ7P5SicF47Y7TmuTASqVSaMm65y6TmtjBJ4ZLC21TaAiMZmWiLbCNnRrN0D7bLqnT7EIpUWCsxjGIOPYDkJmGFSNPMpzGOkGUBxL1Sle0KjVO_i0u1LpFMOCjEQREOKg7g3eqRX22VjfuE9xEppc_QC6rp94RixKbS3JAF8AbhWw1BpbMno8-K7qEfo1CK3QwD2GvQXYkluEBzmeUBDDbgXgug-SKPSwM47PFX3VSvFVImpGESVRHA69XfiDDtvOjSVdckk1CrNyHZPTLE_QR6RPzA971t3XnNv9Rx8F_SL-ExKazNojuE7cX82r1CWrUwA9gSMzGAndHJz09j_P0wPv36bdBMrt8ADxdS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5tndB4QTCYFhgjIHgBRUtjx3YeEBpjo2NdhWCT9mZsx9kmjWa03aB_it_IXdK0FIm-7aUPqeta_s5338X2fQAvCyELlRUicomJI-5wKSoR20gKm_PMtqWoLoUd9UTnhH86TU-X4HdzF4aOVTY-sXLUeenoHfk2RiaMdgpt7t3Vj4hUo2h3tZHQqM3i0I9_Yso2fHvwAfF9lST7e8e7nWiiKhAZjN2jyJqiaCuZ-8J4a40RmbQKSQVjXDjhU2WEy22S-yQvHFMuR06vEuMw7mbcGs6w32VY4QypQgtW3u_1Pn-ZlfmVlRYz8ii0v1SwZh-1vqyH1CoiNYUM04gonouEy4Up8fOcTmPWByPplKYZIlBFrbAxR4H_2bWtguH-fbg3YbHhTm12D2DJ99fgTq1rOV6D1d1GRg6ffqy0g8cPoYMmOfheRh6Hg9YQntE-lB-GF31irkMfoncZlGjQobkxF5d0pytESh2ej_NB7aJD_4vShUdwcitTvg6tftn3GxBKJp1TmMNxj6aghE14LhlLCxZjD2kaQNxMqnaTKucktnGpZ_WZCQeNOGjCQccBvJ7-5Kou8bGo8QYipc0ZumB98jWhBLUqc9fmAbxA-KZdUN3uzk5X0zN0opTH8Zt2AOsVutNmCbIDodIsgK05uGcNcO0giWQBbDb464mfGerZqgjg-fRrRJi2fUzfl9fUJiGdOan4gjZEPCW6Yxzgm8a2_vqb_03H48WDegarneOjru4e9A6fwF2arfr83ia0RoNr_xQJ3chuTVZRCN9ue-H-AVRDV1M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH_ahvi4IBhMC4wREFxA0dLYsZ0DQtNG6diYkKBSb5nt2NukkYy2G_Rf46_jvaRpKRK97dJD6rqW39fvxc_vB_DKC-lV5kVkEx1H3KIpKhGbSApT8Mx0pKgvhX0-Fr0-_zRIByvwu70LQ2WVrU-sHXVRWXpHvoORCaOdQp3b8dOyiC_73feXPyJikKKT1pZOo1GRQzf5ienb6N3BPsr6dZJ0P3zb60VThoFIYxwfR0Z731GycF47Y7QWmTQKAQZjXFjhUqWFLUxSuKTwlilbIL5XibYYgzNuNGc47yrckgzDJtqSHMh5w19ZszIjokJNTAVrT1Sba3sIsiLiVcgwoYjihZi46nWFn2dUl9mUSFK9ph6hyHzDtbEAhv85v63DYvcB3J_i2XC3UcCHsOLKdbjdMFxO1uHuXksoh08_1izCk0fQQ-Ucfq8ih8tBvQhP6UTKjcLzkjDsyIXoZ4YVqnaor_X5Bd3uChFch2eTYtg469D9osThMfRvZMM3YK2sSrcJoWTSWoXZHHeoFEqYhBeSsdSzGGdI0wDidlNzO-13TrQbF_m8UzPJIUc55CSHPA7gzewnl02zj2WDN1FSuT5FZ5z3vyaUqtYN7zo8gJcovtkU1MG7t3uU0zN0p5TR8etOABu1dGfDEsQJQqVZANsL4p4PQCtCOMkC2Grln089ziif20cAL2Zfo4TpAEiXrrqiMQkxzknFl4whCCrRMeMC37a69dff_G87nixf1HO4g-aaHx0cHz6Fe7RZTSHfFqyNh1fuGSK7sdmuTSiEk5u22T_EX1oj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermo-erosion+gullies+increase+nitrogen+available+for+hydrologic+export&rft.jtitle=Biogeochemistry&rft.au=Harms%2C+Tamara+K.&rft.au=Abbott%2C+Benjamin+W.&rft.au=Jones%2C+Jeremy+B.&rft.date=2014-03-01&rft.pub=Springer+International+Publishing&rft.issn=0168-2563&rft.eissn=1573-515X&rft.volume=117&rft.issue=2-3&rft.spage=299&rft.epage=311&rft_id=info:doi/10.1007%2Fs10533-013-9862-0&rft.externalDocID=10_1007_s10533_013_9862_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-2563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-2563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-2563&client=summon |