Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels

G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the Kir3.1–4 (GIRK1–4) subunits. Different subunit combinations are expressed throughout the ce...

Full description

Saved in:
Bibliographic Details
Published inACS chemical neuroscience Vol. 10; no. 1; pp. 358 - 370
Main Authors Kozek, Krystian A, Du, Yu, Sharma, Swagat, Prael, Francis J, Spitznagel, Brittany D, Kharade, Sujay V, Denton, Jerod S, Hopkins, Corey R, Weaver, C. David
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the Kir3.1–4 (GIRK1–4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are composed of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100 000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step toward developing potent and selective non-GIRK1/X channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
AbstractList G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the Kir3.1–4 (GIRK1–4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are composed of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100 000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step toward developing potent and selective non-GIRK1/X channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the K 3.1-4 (GIRK1-4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are composed of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100 000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step toward developing potent and selective non-GIRK1/X channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
G protein-gated, inwardly-rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the K ir 3.1-4 (GIRK1-4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are comprised of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100,000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step towards developing potent and selective non-GIRK1/x channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
Author Spitznagel, Brittany D
Kozek, Krystian A
Prael, Francis J
Weaver, C. David
Denton, Jerod S
Hopkins, Corey R
Kharade, Sujay V
Sharma, Swagat
Du, Yu
AuthorAffiliation Department of Pharmacology
Vanderbilt Medical Scientist Training Program
Department of Anesthesiology
Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy
Vanderbilt Institute of Chemical Biology
Vanderbilt University
AuthorAffiliation_xml – name: Vanderbilt Institute of Chemical Biology
– name: Vanderbilt Medical Scientist Training Program
– name: Department of Anesthesiology
– name: Department of Pharmacology
– name: Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy
– name: Vanderbilt University
– name: 3 Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
– name: 1 Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
– name: 2 Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, USA
– name: 5 vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
– name: 4 vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
Author_xml – sequence: 1
  givenname: Krystian A
  surname: Kozek
  fullname: Kozek, Krystian A
  organization: Vanderbilt University
– sequence: 2
  givenname: Yu
  surname: Du
  fullname: Du, Yu
  organization: Vanderbilt University
– sequence: 3
  givenname: Swagat
  surname: Sharma
  fullname: Sharma, Swagat
  organization: Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy
– sequence: 4
  givenname: Francis J
  surname: Prael
  fullname: Prael, Francis J
  organization: Vanderbilt University
– sequence: 5
  givenname: Brittany D
  surname: Spitznagel
  fullname: Spitznagel, Brittany D
  organization: Vanderbilt University
– sequence: 6
  givenname: Sujay V
  surname: Kharade
  fullname: Kharade, Sujay V
  organization: Vanderbilt University
– sequence: 7
  givenname: Jerod S
  surname: Denton
  fullname: Denton, Jerod S
  organization: Vanderbilt University
– sequence: 8
  givenname: Corey R
  orcidid: 0000-0003-4958-1697
  surname: Hopkins
  fullname: Hopkins, Corey R
  organization: Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy
– sequence: 9
  givenname: C. David
  orcidid: 0000-0002-6886-1195
  surname: Weaver
  fullname: Weaver, C. David
  email: david.weaver@vanderbilt.edu
  organization: Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30136838$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9O3DAQh60KVP60b1BVPrbShtpx4k0uldAWlhVURVB6tWadMWuU2Mh2FoWH6bM2q6Voe-nJljzf55n5HZE95x0S8oGzE85y_gV01CvsHPbBn1RLxvJq-oYc8rqosimvxd7O_YAcxfjAmKxZJd-SA8G4kJWoDsnvbzZqv8YwUHANna0ggE4Y7DMk6x31hv66Y2VeC8EnFOjt4NIKk9X0toO2zb77FnXfIj3Vya4h-bBBLnznu1Gi6ZxeB5_QumwOCZsJXbgnCE070BscCTNYdz-h1z5BjLbv6Kf54uby86YP57CN78i-gTbi-5fzmNydn_2cXWRXP-aL2elVBiUvUyalEAXPx1GLXC6lMaWWXOtCiinIXAPjhRC6rEqDheRCN6CR49TUBhhqw8Ux-br1PvbLDhuNLgVo1WOwHYRBebDq3xdnV-rer5Us80qWchQUW4EOPsaA5pXlTG3yUrt5qZe8Ruzj7r-v0N-AxgK2LRhx9eD74MY1_N_5B70qqc0
CitedBy_id crossref_primary_10_1007_s11064_022_03804_9
crossref_primary_10_1152_ajpcell_00102_2022
crossref_primary_10_1042_BCJ20200332
crossref_primary_10_1152_ajpcell_00548_2020
crossref_primary_10_1016_j_bcp_2020_113870
crossref_primary_10_1073_pnas_1915010117
crossref_primary_10_1016_j_pharmthera_2021_107808
crossref_primary_10_1016_j_slasd_2024_100148
crossref_primary_10_3390_molecules29112437
crossref_primary_10_1002_jnr_24985
crossref_primary_10_1016_j_jbc_2022_102009
crossref_primary_10_1016_j_isci_2021_103018
crossref_primary_10_1016_j_bcp_2023_115863
crossref_primary_10_1016_j_tips_2020_12_002
crossref_primary_10_1016_j_heliyon_2022_e11375
crossref_primary_10_1113_JP282690
crossref_primary_10_3390_biomedicines10102552
crossref_primary_10_1021_acschemneuro_0c00583
Cites_doi 10.1021/ja00190a034
10.1038/325321a0
10.1038/nn.2358
10.1038/s41598-017-04681-x
10.1177/1178635317754071
10.1074/jbc.M011264200
10.1016/j.tips.2008.07.011
10.1097/ALN.0000000000000984
10.1021/acschemneuro.5b00004
10.1038/16012
10.1038/nn1181
10.1038/nrn2834
10.1016/j.tins.2013.12.002
10.1085/jgp.200308986
10.1210/en.2012-1241
10.1038/s41598-018-19719-x
10.1074/jbc.M004989200
10.1016/0169-328X(92)90127-W
10.1038/35882
10.1073/pnas.1722257115
10.1002/ana.24263
10.1016/S0896-6273(00)80438-9
10.1124/mol.109.059840
10.1523/JNEUROSCI.5051-14.2015
10.1074/jbc.274.13.8639
10.1124/mol.114.091884
10.1074/jbc.M116.753350
10.1074/jbc.M007087200
10.1085/jgp.115.5.547
10.1016/j.bmcl.2013.06.023
10.1523/JNEUROSCI.4616-11.2013
10.1097/00001756-200212200-00026
10.1007/s00424-008-0479-4
10.1007/978-1-4939-7362-0_9
10.1016/0169-4758(89)90079-3
10.1002/cne.20469
10.1016/S0896-6273(02)00614-1
10.1016/j.bmcl.2014.08.061
10.1074/jbc.M113.502021
10.36076/ppj.2012/15/ES9
10.1016/j.bmcl.2013.07.002
10.1016/j.tins.2013.10.006
10.1073/pnas.1405190111
10.1002/cmdc.201402235
10.1111/j.1476-5381.1989.tb16878.x
10.1523/JNEUROSCI.1657-07.2007
10.1124/mol.55.6.1020
10.1111/j.1601-183X.2008.00388.x
10.1016/j.neuron.2006.08.017
10.1016/j.ajhg.2014.12.011
10.1073/pnas.1311406110
10.1523/JNEUROSCI.16-11-03559.1996
10.1016/j.mcn.2004.10.009
10.1016/j.cell.2011.07.046
10.1073/pnas.92.14.6542
10.1074/jbc.M100207200
10.1073/pnas.1602815113
10.1523/JNEUROSCI.19-17-07289.1999
10.1021/cn400062a
10.1038/374135a0
10.3389/fncel.2018.00007
10.1523/JNEUROSCI.16-22-07137.1996
10.7554/eLife.02053
10.1124/mol.53.2.283
10.1089/adt.2013.544
10.1152/jn.00626.2006
10.1113/JP274871
10.1523/JNEUROSCI.1327-15.2016
10.1073/pnas.1416146112
10.1016/j.neuron.2014.03.011
10.1039/C5SC04084A
10.1038/ncomms5664
10.1002/ps.2780160605
10.1074/jbc.M603768200
10.1177/1087057104268749
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1021/acschemneuro.8b00287
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1948-7193
EndPage 370
ExternalDocumentID 10_1021_acschemneuro_8b00287
30136838
c709222026
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA068485
– fundername: NIGMS NIH HHS
  grantid: T32 GM007628
– fundername: NIMH NIH HHS
  grantid: R21 MH099363
– fundername: NIH HHS
  grantid: S10 OD021734
– fundername: NIGMS NIH HHS
  grantid: T32 GM065086
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
GroupedDBID -
53G
55A
5EH
7~N
AABXI
AAKDD
ABMVS
ABUCX
ACGFS
ACS
ADBBV
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAWUL
DIK
EBS
ED
ED~
EJD
F5P
GNL
GX1
IH9
JG
JG~
OK1
RNS
ROL
RPM
UI2
VF5
VG9
W1F
---
5VS
6J9
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-a515t-6633412719426b6ff5c61cc4637a62ca01433c585fe4613cdace1e7f9fa0ecf13
IEDL.DBID ACS
ISSN 1948-7193
IngestDate Tue Sep 17 20:48:53 EDT 2024
Fri Aug 23 03:14:50 EDT 2024
Sat Sep 28 08:29:40 EDT 2024
Thu Aug 27 13:44:02 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GIRK channel
small molecule
modulator
whole-cell patch-clamp electrophysiology
ion channel
high-throughput screening
activator
Kir3
thallium flux assay
GIRK2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515t-6633412719426b6ff5c61cc4637a62ca01433c585fe4613cdace1e7f9fa0ecf13
Notes C.D.W. conceived and designed the overall study. K.A.K. conducted the high-throughput screen with the help of B.D.S., F.J.P., and Y.D. C.D.W. generated the stable GIRK1/2 cell line. Y.D. generated the stable GIRK2, GIRK2/NPY4R, and GIRK1/4 cell lines. B.D.S. generated the stable Slack, α1β2 MaxiK, and α1β4 MaxiK cell lines. F.J.P. generated the stable KCC2/SuperClomeleon cell line. C.R.H. designed the target compounds and S.S. performed the chemical synthesis. K.A.K. conducted the thallium flux experiments, generated the western blot, and performed the electrophysiology experiments. K.A.K. and F.J.P. conducted the FRET assays. All authors commented on the manuscript. K.A.K. and C.D.W. co-wrote the manuscript.
Author Contributions
ORCID 0000-0003-4958-1697
0000-0002-6886-1195
OpenAccessLink https://europepmc.org/articles/pmc6528656?pdf=render
PMID 30136838
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6528656
crossref_primary_10_1021_acschemneuro_8b00287
pubmed_primary_30136838
acs_journals_10_1021_acschemneuro_8b00287
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-01-16
PublicationDateYYYYMMDD 2019-01-16
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS chemical neuroscience
PublicationTitleAlternate ACS Chem. Neurosci
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Dawson G. R. (ref61/cit61) 2000; 295
ref67/cit67
ref24/cit24
ref38/cit38
Weaver C. D. (ref82/cit82) 2018
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
Frenk S. M. (ref2/cit2) 2015
ref6/cit6
ref36/cit36
ref18/cit18
Barragry T. B. (ref56/cit56) 1987; 28
ref65/cit65
ref79/cit79
Medsker B. (ref72/cit72) 2016; 70
ref11/cit11
ref25/cit25
ref29/cit29
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
Manchikanti L. (ref1/cit1) 2012; 15
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
Days E. (ref48/cit48) 2013
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref70/cit70
Tipps M. E. (ref5/cit5) 2015; 123
ref7/cit7
References_xml – ident: ref65/cit65
  doi: 10.1021/ja00190a034
– ident: ref32/cit32
  doi: 10.1038/325321a0
– ident: ref35/cit35
  doi: 10.1038/nn.2358
– ident: ref40/cit40
  doi: 10.1038/s41598-017-04681-x
– ident: ref41/cit41
  doi: 10.1177/1178635317754071
– ident: ref59/cit59
  doi: 10.1074/jbc.M011264200
– ident: ref10/cit10
  doi: 10.1016/j.tips.2008.07.011
– ident: ref16/cit16
  doi: 10.1097/ALN.0000000000000984
– ident: ref80/cit80
  doi: 10.1021/acschemneuro.5b00004
– ident: ref34/cit34
  doi: 10.1038/16012
– ident: ref29/cit29
  doi: 10.1038/nn1181
– ident: ref6/cit6
  doi: 10.1038/nrn2834
– ident: ref7/cit7
  doi: 10.1016/j.tins.2013.12.002
– ident: ref58/cit58
  doi: 10.1085/jgp.200308986
– ident: ref23/cit23
  doi: 10.1210/en.2012-1241
– ident: ref27/cit27
  doi: 10.1038/s41598-018-19719-x
– ident: ref46/cit46
  doi: 10.1074/jbc.M004989200
– ident: ref64/cit64
  doi: 10.1016/0169-328X(92)90127-W
– ident: ref31/cit31
  doi: 10.1038/35882
– ident: ref37/cit37
  doi: 10.1073/pnas.1722257115
– ident: ref76/cit76
  doi: 10.1002/ana.24263
– ident: ref21/cit21
  doi: 10.1016/S0896-6273(00)80438-9
– volume: 295
  start-page: 1051
  issue: 3
  year: 2000
  ident: ref61/cit61
  publication-title: J Pharmacol Exp Ther.
  contributor:
    fullname: Dawson G. R.
– year: 2013
  ident: ref48/cit48
  publication-title: Probe Rep. NIH Mol. Libr. Progr.
  contributor:
    fullname: Days E.
– ident: ref77/cit77
  doi: 10.1124/mol.109.059840
– ident: ref12/cit12
  doi: 10.1523/JNEUROSCI.5051-14.2015
– ident: ref38/cit38
  doi: 10.1074/jbc.274.13.8639
– ident: ref79/cit79
  doi: 10.1124/mol.114.091884
– ident: ref42/cit42
  doi: 10.1074/jbc.M116.753350
– ident: ref30/cit30
  doi: 10.1074/jbc.M007087200
– ident: ref45/cit45
  doi: 10.1085/jgp.115.5.547
– ident: ref50/cit50
  doi: 10.1016/j.bmcl.2013.06.023
– ident: ref68/cit68
  doi: 10.1523/JNEUROSCI.4616-11.2013
– ident: ref3/cit3
  doi: 10.1097/00001756-200212200-00026
– ident: ref28/cit28
  doi: 10.1007/s00424-008-0479-4
– start-page: 105
  volume-title: Potassium Channels: Methods and Protocols
  year: 2018
  ident: ref82/cit82
  doi: 10.1007/978-1-4939-7362-0_9
  contributor:
    fullname: Weaver C. D.
– ident: ref55/cit55
  doi: 10.1016/0169-4758(89)90079-3
– ident: ref70/cit70
  doi: 10.1002/cne.20469
– volume: 123
  volume-title: GIRK Channels: A Potential Link Between Learning and Addiction
  year: 2015
  ident: ref5/cit5
  contributor:
    fullname: Tipps M. E.
– ident: ref66/cit66
  doi: 10.1016/S0896-6273(02)00614-1
– ident: ref52/cit52
  doi: 10.1016/j.bmcl.2014.08.061
– volume: 70
  start-page: 773
  issue: 12
  year: 2016
  ident: ref72/cit72
  publication-title: Therapeutic Target
  contributor:
    fullname: Medsker B.
– ident: ref73/cit73
  doi: 10.1074/jbc.M113.502021
– volume: 15
  start-page: ES9
  issue: 3
  year: 2012
  ident: ref1/cit1
  publication-title: Pain Physician
  doi: 10.36076/ppj.2012/15/ES9
  contributor:
    fullname: Manchikanti L.
– ident: ref51/cit51
  doi: 10.1016/j.bmcl.2013.07.002
– volume: 28
  start-page: 512
  issue: 8
  year: 1987
  ident: ref56/cit56
  publication-title: Can. Vet. J.
  contributor:
    fullname: Barragry T. B.
– ident: ref4/cit4
  doi: 10.1016/j.tins.2013.10.006
– ident: ref14/cit14
  doi: 10.1073/pnas.1405190111
– ident: ref74/cit74
  doi: 10.1002/cmdc.201402235
– start-page: 1
  issue: 189
  year: 2015
  ident: ref2/cit2
  publication-title: NCHS Data Brief
  contributor:
    fullname: Frenk S. M.
– ident: ref60/cit60
  doi: 10.1111/j.1476-5381.1989.tb16878.x
– ident: ref71/cit71
  doi: 10.1523/JNEUROSCI.1657-07.2007
– ident: ref47/cit47
  doi: 10.1124/mol.55.6.1020
– ident: ref13/cit13
  doi: 10.1111/j.1601-183X.2008.00388.x
– ident: ref33/cit33
  doi: 10.1016/j.neuron.2006.08.017
– ident: ref18/cit18
  doi: 10.1016/j.ajhg.2014.12.011
– ident: ref36/cit36
  doi: 10.1073/pnas.1311406110
– ident: ref26/cit26
  doi: 10.1523/JNEUROSCI.16-11-03559.1996
– ident: ref43/cit43
  doi: 10.1016/j.mcn.2004.10.009
– ident: ref39/cit39
  doi: 10.1016/j.cell.2011.07.046
– ident: ref67/cit67
  doi: 10.1073/pnas.92.14.6542
– ident: ref44/cit44
  doi: 10.1074/jbc.M100207200
– ident: ref53/cit53
  doi: 10.1073/pnas.1602815113
– ident: ref57/cit57
  doi: 10.1523/JNEUROSCI.19-17-07289.1999
– ident: ref17/cit17
  doi: 10.1021/cn400062a
– ident: ref24/cit24
  doi: 10.1038/374135a0
– ident: ref69/cit69
  doi: 10.3389/fncel.2018.00007
– ident: ref25/cit25
  doi: 10.1523/JNEUROSCI.16-22-07137.1996
– ident: ref15/cit15
  doi: 10.7554/eLife.02053
– ident: ref62/cit62
  doi: 10.1124/mol.53.2.283
– ident: ref78/cit78
  doi: 10.1089/adt.2013.544
– ident: ref19/cit19
  doi: 10.1152/jn.00626.2006
– ident: ref54/cit54
  doi: 10.1113/JP274871
– ident: ref8/cit8
  doi: 10.1523/JNEUROSCI.1327-15.2016
– ident: ref9/cit9
  doi: 10.1073/pnas.1416146112
– ident: ref11/cit11
  doi: 10.1016/j.neuron.2014.03.011
– ident: ref49/cit49
  doi: 10.1039/C5SC04084A
– ident: ref20/cit20
  doi: 10.1038/ncomms5664
– ident: ref63/cit63
  doi: 10.1002/ps.2780160605
– ident: ref22/cit22
  doi: 10.1074/jbc.M603768200
– ident: ref81/cit81
  doi: 10.1177/1087057104268749
SSID ssj0069086
Score 2.3313875
Snippet G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are...
G protein-gated, inwardly-rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are...
SourceID pubmedcentral
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 358
SubjectTerms Dose-Response Relationship, Drug
Drug Discovery - methods
G Protein-Coupled Inwardly-Rectifying Potassium Channels - agonists
G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism
HEK293 Cells
Humans
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Neurons - drug effects
Neurons - metabolism
Pyrazines - chemistry
Pyrazines - pharmacology
Title Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels
URI http://dx.doi.org/10.1021/acschemneuro.8b00287
https://www.ncbi.nlm.nih.gov/pubmed/30136838
https://pubmed.ncbi.nlm.nih.gov/PMC6528656
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZgXLgAY8DKL70DQkyqSx2ndnKsOtYONJhWinqLHMfWqjUOWtND-WP4W3l22rKCEHDJJY7l-Nf7Pvu97xHyiifdmOuIUcYKQeM0Z9THO9JCJ7hhprlQISXL2UcxmsTvp73pT6L46w1-xN4qjTTPlEHesZMEkiBvkzuRxPXhodBgvNl5keiFzI7IyxMqEZlsQuX-UIs3SHqxY5C2VmjXQ_KGyTm5Tz5tAncaT5OrzrLOO_rb7zqO__g3D8i9NfqEfjNd9skt4x6Sg75D5l2u4DUEf9Bw0H5Avh_PFto7eK5AuQIGW2XnJnATKgtfJv4Gj3PWBgXjlUMwiRXDuFTzOT1rEu8a6OuQQq269p-MqrIKl0QwhHOvETFz1J_gFW04dd6Dd76CC78Jh_irNpxXNcL72bKEN8PTiw9Hvh3eNWfxiExO3n0ejOg6mwNViJlqitAGLWaE44KgIBfW9rRgWseCSyUirbzQINfIXqyJEWPoQmnDjLSpVV2jLeOPyZ6rnDkkoLjkpmtlEUfI5niRikLmCN247tpUMtsiR9jP2Xo1LrJw0R6x7GbnZ-vObxG6Gf7sayPw8ZfyT5qpsS3NvexdwpMWkTuTZlvAK3jvvnGzy6DkLXo-MFg8_Y_2PiN3EbN5HzfKxHOyV18vzQvERXX-MiwGfA6n7AebHgzw
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeICX8TE-yqcfEGJSXeo4sZPHqrC1bJ2mdZ32FjmOLao1DlrSh_LH8LdydtqwIiG018SxbOfs-53v7ncIfWBxP2QqoITSnJMwyShx-Y4kVzEcmEnGpS_JMjnlo1n47Sq62kHRJhcGBlFBT5V34v9hF6Cf4RnMovAsj73Y2wriHrofCdCZDhENp5sDGOw9X-ARzPOYCAAom4y5f_Ti9JKqtvRSq4y2AyVvaZ7DR-iyHbMPOLnuLeusp37-Red450k9RntrLIoHjfA8QTvaPkX7Awt2eLHCH7GPDvXX7vvo15d5pVy45wpLm-Nhy_PcpHHi0uDLmfPnMUa7WOLpygK0hI7xtJCLBZk0ZXg1HihfUK28cZ-MyqL0LiN8hM8cY8TcEnefl3fx2Lp43sUKn7sj2WdjdfFZWQPYny8L_OlofH584MbhAnWqZ2h2-PViOCLr2g5EAoKqCQAd0J8B_B6ACBk3JlKcKhVyJiQPlHS0g0yBLWN0CIhD5VJpqoVJjOxrZSh7jnZtafVLhCUTTPeNyMMAbDuWJzwXGQA5pvomEdR00AGsc7rem1Xq3e4BTW8vfrpe_A4iGylIfzR0H_9p_6KRkLY1cyR4MYs7SGzJTtvA8Xlvv7Hz757Xm0cuTZi_usN436MHo4vJSXoyPj1-jR4CmnPRb4TyN2i3vlnqt4CY6uyd3x-_AWQlFGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkRAXXsujPH1AiJXqUsepnRyrLt2WZVfVlqIVl8jxQ1Q0yWqTHsqP4bcydtKoRUIIrolj2c7Y841n5huE3rCoHzIVUEKp5iSMU0pcviPRKoIDM0659CVZzs75ZBF-vBxc7pT6gkGU0FPpnfhuV19p2zAM0PfwHGaSeabHXuTtBXET3RoI6j20w9F8ewiDzeeLPIKJHhEBIGWbNfeHXpxuUuWebmoV0n6w5I72Gd9DX9tx-6CT7711lfbUj98oHf9rYvfR3QaT4mEtRA_QDZM_RIfDHOzxbIPfYh8l6q_fD9HP42WpXNjnBstc41HL91ync-LC4i8L59djjHaxxPNNDhATOsbzTK5W5Kwux2vwUPnCasW1-2RSZIV3HeETPHPMEcucuHs93cXT3MX1rjb4wh3NPiuri2dFBaB_uc7wu5PpxemRG4cL2CkfocX4w-fRhDQ1HogEJFURADygRwP4RQAVUm7tQHGqVMiZkDxQ0tEPMgU2jTUhIA-lpTLUCBtb2TfKUvYYHeRFbp4iLJlgpm-FDgOw8ZiOuRYpADqm-jYW1HbQEaxz0uzRMvHu94Amu4ufNIvfQWQrCclVTfvxl_ZPailpWzNHhhexqIPEnvy0DRyv9_6bfPnN83vzgUsX5s_-Ybyv0e3Z8Tj5ND0_fY7uAKhzQXCE8hfooLpem5cAnKr0ld8ivwALoxbe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+and+Characterization+of+VU0529331%2C+a+Synthetic+Small-Molecule+Activator+of+Homomeric+G+Protein-Gated%2C+Inwardly+Rectifying%2C+Potassium+%28GIRK%29+Channels&rft.jtitle=ACS+chemical+neuroscience&rft.au=Kozek%2C+Krystian+A&rft.au=Du%2C+Yu&rft.au=Sharma%2C+Swagat&rft.au=Prael%2C+Francis+J&rft.date=2019-01-16&rft.pub=American+Chemical+Society&rft.issn=1948-7193&rft.eissn=1948-7193&rft.volume=10&rft.issue=1&rft.spage=358&rft.epage=370&rft_id=info:doi/10.1021%2Facschemneuro.8b00287&rft.externalDocID=c709222026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7193&client=summon