Projection Design For Statistical Compressive Sensing: A Tight Frame Based Approach

In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chen, Wei, Rodrigues, Miguel R D, Wassell, Ian
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 04.02.2013
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1302.0635

Cover

Abstract In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracle estimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
AbstractList IEEE Transaction on Signal Processing, 61(8):2016-2029, 2013 In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracle estimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capitalizing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to the performance of standard sparse recovery algorithms, we use the fact that a Parseval tight frame is the closest design - in the Frobenius norm sense - to the solution of a convex relaxation of the optimization problem that relates to the minimization of the MSE of the oracle estimator with respect to the equivalent sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii) the designs exhibit superior performance in relation to other designs in the literature, which is revealed by our numerical investigation in various scenarios with different sparse recovery algorithms including basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).
Author Chen, Wei
Rodrigues, Miguel R D
Wassell, Ian
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 2
  givenname: Miguel
  surname: Rodrigues
  middlename: R D
  fullname: Rodrigues, Miguel R D
– sequence: 3
  givenname: Ian
  surname: Wassell
  fullname: Wassell, Ian
BackLink https://doi.org/10.48550/arXiv.1302.0635$$DView paper in arXiv
https://doi.org/10.1109/TSP.2013.2245661$$DView published paper (Access to full text may be restricted)
BookMark eNotj89PwjAYhhujiYjcPZkmnof9sW9rvSGImpBoAvel275BCbSzHUT_e4d4et_DmzfPc0MunXdIyB1n41QBsEcTvu1xzCUTY5ZJuCADISVPVCrENRnFuGWMiSwXAHJAlp_Bb7HqrHd0htGuHZ37QJed6WzsbGV2dOr3bcAY7RHpEl20bv1EJ3Rl15uOzoPZI302EWs6advgTbW5JVeN2UUc_eeQrOYvq-lbsvh4fZ9OFokBDknOG17loi5ZCoCVyHQtITelKVUtmr5yzYXmkDWYKlVWmGNeZkrXnGsQEuSQ3J9v_4SLNti9CT_FSbw4ifeDh_Ogx_o6YOyKrT8E1yMVgimhVaoFyF97j1vI
ContentType Paper
Journal Article
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.1302.0635
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1302_0635
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a515-71f1c72db0455ec269d357abab8d2f35719129156fe488bce7e7b689d11952353
IEDL.DBID 8FG
IngestDate Tue Jul 22 23:14:12 EDT 2025
Mon Jun 30 09:19:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515-71f1c72db0455ec269d357abab8d2f35719129156fe488bce7e7b689d11952353
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2082984925?pq-origsite=%requestingapplication%
PQID 2082984925
PQPubID 2050157
ParticipantIDs arxiv_primary_1302_0635
proquest_journals_2082984925
PublicationCentury 2000
PublicationDate 20130204
2013-02-04
PublicationDateYYYYMMDD 2013-02-04
PublicationDate_xml – month: 02
  year: 2013
  text: 20130204
  day: 04
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5021642
SecondaryResourceType preprint
Snippet In this paper, we develop a framework to design sensing matrices for compressive sensing applications that lead to good mean squared error (MSE) performance...
IEEE Transaction on Signal Processing, 61(8):2016-2029, 2013 In this paper, we develop a framework to design sensing matrices for compressive sensing...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Information Theory
Detection
Error detection
Iterative methods
Mathematics - Information Theory
Optimization
Recovery
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED6VTiwIxKtQwAOrgV4eTtjKI1RIPKQWqVtkJxfEkqK2VPx87pyUBbFFkZ3hHOf7vtzdZ4Bz1mehJXLaYVHpkDDWSZoEurLkGC0oMpU0OD89x6O38HEaTTtwtu6FsfPvj1XjD-wWl5JVu2AQjTZgA1G01cPLtEk2eieudvjvMGaY_s6fD6tHi2wbtlqap4bNuuxAh-pdGL82vz04FOrOV06obDZXwve8XTJPkO3pK1NXpMZSW16_X6uhmoiEVpkUUqkbxp1SDVsv8D2YZPeT25FuDzXQlqmDNoNqUBgsHVOpiAqM0zKIjHXWJSVWfMn6CVMWVRXx1nIFGTIuTtJSrNkwiIJ96Nazmg5BWcPch6xhzROLxWAq3lXO2DK2g9Q56sGBD0b-2fhWSOYKcwlTD_rr8OTtK7vIUbpsE3nQ0b8Tj2ET_XEQqK_CPnSX8y86YVBeulO_ND90bYxj
  priority: 102
  providerName: Cornell University
Title Projection Design For Statistical Compressive Sensing: A Tight Frame Based Approach
URI https://www.proquest.com/docview/2082984925
https://arxiv.org/abs/1302.0635
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4ojYk336JI9uB11W5pt_ViQCnEBCSKCbdmt50aE1OwIPHkb3dmKXow8dL0cZvdnW8eX79h7Bzzs5YGMMLINBctkIEIo9ATuQaDaAG-yukH58Ew6D-37if-pCq4zSta5donWkedTVOqkWOSHsooJCm9m9m7oKlR1F2tRmhsMsdFpKF9Hsa9nxqLDBRGzN6qO2mluy51-fm6pBHI8gLBGRHFsW_-eGILL_EOc0Z6BuUu24Bij21ZVmY632dPo1WdBG3H7yzVgsfTklOAaPWV9Run82yprEvgT0RGL16ueZuPKefmMTGveAeBKuPtSjz8gI3j7vi2L6opCEJjrCGUm7upkpnB2MuHVAZR5vlKG23CTOZ4iwmXjDALywHPoklBgTJBGGWk5SY93ztktWJawDHjWmGwBFphkhSQISMSuzJKZ4F2I2Ogzo6sMZLZSuiCWl0yITPVWWNtnqTa4_Pkd0VO_v98yralHSIhxVWrwWqL8gPOEMoXpmnXq8mcTnc4esSn3sMEr4Ov7jcjvKFh
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEN0QiNGb36Koe9DjqmxLtzUxBsUK8hESMOHW7LZTY2IAAVF_lP_RmQX0YOKNW9PeZqYz82Zn32PsBPGZqwGMMDJOhQvSE37gOyLVYLBaQEmldMG52fKqj-5Dr9TLsK_FXRhaq1zkRJuok0FMM3IE6b4MfKLSux6-ClKNotPVhYTGLCzq8PmOkG18Vaugf0-lDO-6t1UxVxUQGmu3UMW0GCuZGOxlShBLL0icktJGGz-RKT4igJEBopoUMLZNDAqU8fwgIW40aUUiMOPnXMcJSCnCD-9_RjrSU9igO7PDUMsUdq5HH89TUlyWZ9gLYAHL2Td_Er-tZuE6y7X1EEYbLAP9TbZil0Dj8RbrtGdjGXQVr9jNDh4ORpz6UUvnrF84pQ-7OTsF3qHd9_7TJS_zLkF8HtKiF7_Bupjw8pyrfJt1l2GeHZbtD_qwx7hW2JuBVojJPPJbQNxaRunE08XAGMizXWuMaDjj1aCTNRmRmfKssDBPNP-lxtFvAOz___mYrVa7zUbUqLXqB2xNWv0KKS7cAstORm9wiF3ExBxZ33EWLTlWvgGuXdhJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projection+Design+For+Statistical+Compressive+Sensing%3A+A+Tight+Frame+Based+Approach&rft.jtitle=arXiv.org&rft.au=Chen%2C+Wei&rft.au=Rodrigues%2C+Miguel+R+D&rft.au=Wassell%2C+Ian&rft.date=2013-02-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1302.0635