Morphogen Profiles Can Be Optimised to Buffer Against Noise
Morphogen profiles play a vital role in biology by specifying position in embryonic development. However, the factors that influence the shape of a morphogen profile remain poorly understood. Since morphogens should provide precise positional information, one significant factor is the robustness of...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.04.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.0904.1637 |
Cover
Summary: | Morphogen profiles play a vital role in biology by specifying position in embryonic development. However, the factors that influence the shape of a morphogen profile remain poorly understood. Since morphogens should provide precise positional information, one significant factor is the robustness of the profile to noise. We compare three classes of morphogen profiles (linear, exponential, algebraic) to see which is most precise when subject to both external embryo-to-embryo fluctuations and internal fluctuations due to intrinsically random processes such as diffusion. We find that both the kinetic parameters and the overall gradient shape (e.g. exponential versus algebraic) can be optimised to generate maximally precise positional information. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0904.1637 |