Parameter Estimation in SAR Imagery using Stochastic Distances and Asymmetric Kernels

In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Mod...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gambini, Juliana, Cassetti, Julia, Lucini, María Magdalena, Frery, Alejandro C
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 04.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution.
AbstractList In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution.
In this paper we analyze several strategies for the estimation of the roughness parameter of the $\mathcal G_I^0$ distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution.
Author Frery, Alejandro C
Gambini, Juliana
Lucini, María Magdalena
Cassetti, Julia
Author_xml – sequence: 1
  givenname: Juliana
  surname: Gambini
  fullname: Gambini, Juliana
– sequence: 2
  givenname: Julia
  surname: Cassetti
  fullname: Cassetti, Julia
– sequence: 3
  givenname: María
  surname: Lucini
  middlename: Magdalena
  fullname: Lucini, María Magdalena
– sequence: 4
  givenname: Alejandro
  surname: Frery
  middlename: C
  fullname: Frery, Alejandro C
BackLink https://doi.org/10.48550/arXiv.1408.0177$$DView paper in arXiv
https://doi.org/10.1109/JSTARS.2014.2346017$$DView published paper (Access to full text may be restricted)
BookMark eNotj89PwjAYhhujiYjcPZkmnof9sa5fjwuCEkk0gufls3Q4wjpsh3H_vUM8vYf3yZv3uSLnvvGOkBvOxikoxe4x_FTfY54yGDOu9RkZCCl5AqkQl2QU45YxJjItlJID8v6KAWvXukCnsa1qbKvG08rTZf5G5zVuXOjoIVZ-Q5dtYz-xhyx9qGKL3rpI0a9pHru6nwh98eyCd7t4TS5K3EU3-s8hWc2mq8lTsnh5nE_yRYKKq0SU1gAYrbVcZ0paowSkaAwKlqEF4GCtNYILk6I2JZhSlU7wDw6ZNU5aOSS3p9k_5WIf-v-hK47qxVG9B-5OwD40XwcX22LbHILvLxWCAQPIZKrkL522XRI
ContentType Paper
Journal Article
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
EPD
GOX
DOI 10.48550/arxiv.1408.0177
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1408_0177
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
EPD
GOX
ID FETCH-LOGICAL-a515-2fc98897773d653c95284a99a206ac8818ccc921294a79f89f5fe21b186c9e3c3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:37:00 EST 2024
Thu Oct 10 17:56:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515-2fc98897773d653c95284a99a206ac8818ccc921294a79f89f5fe21b186c9e3c3
OpenAccessLink https://arxiv.org/abs/1408.0177
PQID 2080886345
PQPubID 2050157
ParticipantIDs arxiv_primary_1408_0177
proquest_journals_2080886345
PublicationCentury 2000
PublicationDate 20140804
PublicationDateYYYYMMDD 2014-08-04
PublicationDate_xml – month: 08
  year: 2014
  text: 20140804
  day: 04
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5785842
SecondaryResourceType preprint
Snippet In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this...
In this paper we analyze several strategies for the estimation of the roughness parameter of the $\mathcal G_I^0$ distribution. It has been shown that this...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Backscattering
Computer Science - Information Theory
Empirical analysis
Imagery
Kernels
Mathematical models
Mathematics - Information Theory
Parameter estimation
Robustness (mathematics)
Roughness
Statistics - Applications
Synthetic aperture radar
Target recognition
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgERIb3xQK8sAakcRxbE-oQFEBUVX9kLpFtuNAh6YlKYj-e85uCgMSqyNZyrN97-78fIfQVUiyRJJc-JJK7QNDaV9AvOMnOeEs4pKryL53fukl3XH8NKGTOuFW1bLKjU10hjqba5sjhyCdw4FISExvFu--7Rplb1frFhrbyIsgUggayLvt9PqDnyxLlDDwmcn6ftIV77qW5df0EwyEFVGGDFjJcyN_bLEjmIc95PXlwpT7aMsUB2jH6TJ1dYjGfWnVU_DzuAOHcf3OEE8LPGwP8OPMFqBYYatdf8XD5Vy_SVt2Gd9bp9Dqo7EsMtyuVrOZbZyl8bMpCyDDIzR66Izuun7dCQEgDKkf5VpwDp4aA2Qp0YAmj6UQMgoSqTlwrtZaAAmJWDKRc5HT3EShCnmihSGaHKNGMS_MKcIs1EoxZljAlJsiUzBnlgVE5TTTtIlOHBzpYl3sIrVApRaoJmptAErrfV6lv6ty9v_nc7QLrkbspHNxCzWW5Ye5ADpfqst6zb4BUvegGw
  priority: 102
  providerName: ProQuest
Title Parameter Estimation in SAR Imagery using Stochastic Distances and Asymmetric Kernels
URI https://www.proquest.com/docview/2080886345
https://arxiv.org/abs/1408.0177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT8IwGP0CePFiNP4WsQevU9ata3tEHaAGJPxIuC1ttykHhgE0cvFv9-s2vBgvOyxtk712e6_Z-14Brl0vDpSXSkcxZRxkKONI3O84QeoJToUSmtp6514_6E78pymbVuBqWwujll-zzyIfWK9uUf2LG1wzvApVSq1jq_MyLX425klcZfPfZqgw8zt_Pqw5W7T3Ya-UeaRVzMsBVJLsECYDZa1Q-CQkxDerKBoks4yMWkPyOLdpEhtijeivZLRemDdlM5TJg1V41uxMcNNPWqvNfG5PwTLkOVlmyGxHMG6H4_uuUx5rgHi4zKGpkUKg7OIIE_MMQiN8JaWizUAZgQRqjJHIKNJXXKZCpixNqKtdERiZeMY7hlq2yJJTINw1WnOe8CbX-RCxxjHjuOnplMWGncFJDkf0XiRXRBaoyAJ1BvUtQFG5aFcRRfUoROD57Pzfjhewi5LBzy1wfh1q6-VHcom0vNYNqIp2pwE7d2F_MGzkU4XX3nf4A8-ckWY
link.rule.ids 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagEYKNN4UCHlgjmjiO7QkVaNXSh6o-pG6R4zjQoWlJC6L_nrObwoDE6kiW8tm-7-78-Q6hO48koSSpcCWVygWGUq6AeMcNU8KZzyWPffPeudsLm-PgZUInRcJtWcgqtzbRGupkrkyOHIJ0DgciJAF9WLy7pmuUuV0tWmjsIseUqoLgy3ms9_qDnyyLHzLwmcnmftIW77qX-df0EwyEEVF6DFjJsSN_bLElmMYhcvpyofMjtKOzY7RndZlqeYLGfWnUU_DzuA6HcfPOEE8zPKwNcGtmClCssdGuv-Lhaq7epCm7jJ-NU2j00VhmCa4t17OZaZylcFvnGZDhKRo16qOnplt0QgAIPer6qRKcg6fGAFlKFKDJAymE9KuhVBw4VyklgIREIJlIuUhpqn0v9niohCaKnKFSNs_0BcLMU3HMmGZVFtspkhjmTJIqiVOaKFpG5xaOaLEpdhEZoCIDVBlVtgBFxT5fRr-rcvn_51u03xx1O1Gn1WtfoQNwOwIrowsqqLTKP_Q1UPsqvinW7xsQgKMV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+in+SAR+Imagery+using+Stochastic+Distances+and+Asymmetric+Kernels&rft.jtitle=arXiv.org&rft.au=Gambini%2C+Juliana&rft.au=Cassetti%2C+Julia&rft.au=Lucini%2C+Mar%C3%ADa+Magdalena&rft.au=Frery%2C+Alejandro+C&rft.date=2014-08-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1408.0177