Parameter Estimation in SAR Imagery using Stochastic Distances and Asymmetric Kernels
In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Mod...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
04.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution. |
---|---|
AbstractList | In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution. In this paper we analyze several strategies for the estimation of the roughness parameter of the $\mathcal G_I^0$ distribution. It has been shown that this distribution is able to characterize a large number of targets in monopolarized SAR imagery, deserving the denomination of "Universal Model" It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter, and the roughness or texture parameter. The latter is closely related to the number of elementary backscatters in each pixel, one of the reasons for receiving attention in the literature. Although there are efforts in providing improved and robust estimates for such quantity, its dependable estimation still poses numerical problems in practice. We discuss estimators based on the minimization of stochastic distances between empirical and theoretical densities, and argue in favor of using an estimator based on the Triangular distance and asymmetric kernels built with Inverse Gaussian densities. We also provide new results regarding the heavytailedness of this distribution. |
Author | Frery, Alejandro C Gambini, Juliana Lucini, María Magdalena Cassetti, Julia |
Author_xml | – sequence: 1 givenname: Juliana surname: Gambini fullname: Gambini, Juliana – sequence: 2 givenname: Julia surname: Cassetti fullname: Cassetti, Julia – sequence: 3 givenname: María surname: Lucini middlename: Magdalena fullname: Lucini, María Magdalena – sequence: 4 givenname: Alejandro surname: Frery middlename: C fullname: Frery, Alejandro C |
BackLink | https://doi.org/10.48550/arXiv.1408.0177$$DView paper in arXiv https://doi.org/10.1109/JSTARS.2014.2346017$$DView published paper (Access to full text may be restricted) |
BookMark | eNotj89PwjAYhhujiYjcPZkmnof9sa5fjwuCEkk0gufls3Q4wjpsh3H_vUM8vYf3yZv3uSLnvvGOkBvOxikoxe4x_FTfY54yGDOu9RkZCCl5AqkQl2QU45YxJjItlJID8v6KAWvXukCnsa1qbKvG08rTZf5G5zVuXOjoIVZ-Q5dtYz-xhyx9qGKL3rpI0a9pHru6nwh98eyCd7t4TS5K3EU3-s8hWc2mq8lTsnh5nE_yRYKKq0SU1gAYrbVcZ0paowSkaAwKlqEF4GCtNYILk6I2JZhSlU7wDw6ZNU5aOSS3p9k_5WIf-v-hK47qxVG9B-5OwD40XwcX22LbHILvLxWCAQPIZKrkL522XRI |
ContentType | Paper Journal Article |
Copyright | 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY AKZ EPD GOX |
DOI | 10.48550/arxiv.1408.0177 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv Mathematics arXiv Statistics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1408_0177 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY AKZ EPD GOX |
ID | FETCH-LOGICAL-a515-2fc98897773d653c95284a99a206ac8818ccc921294a79f89f5fe21b186c9e3c3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:37:00 EST 2024 Thu Oct 10 17:56:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a515-2fc98897773d653c95284a99a206ac8818ccc921294a79f89f5fe21b186c9e3c3 |
OpenAccessLink | https://arxiv.org/abs/1408.0177 |
PQID | 2080886345 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1408_0177 proquest_journals_2080886345 |
PublicationCentury | 2000 |
PublicationDate | 20140804 |
PublicationDateYYYYMMDD | 2014-08-04 |
PublicationDate_xml | – month: 08 year: 2014 text: 20140804 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2014 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.5785842 |
SecondaryResourceType | preprint |
Snippet | In this paper we analyze several strategies for the estimation of the roughness parameter of the \(\mathcal G_I^0\) distribution. It has been shown that this... In this paper we analyze several strategies for the estimation of the roughness parameter of the $\mathcal G_I^0$ distribution. It has been shown that this... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Backscattering Computer Science - Information Theory Empirical analysis Imagery Kernels Mathematical models Mathematics - Information Theory Parameter estimation Robustness (mathematics) Roughness Statistics - Applications Synthetic aperture radar Target recognition |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgERIb3xQK8sAakcRxbE-oQFEBUVX9kLpFtuNAh6YlKYj-e85uCgMSqyNZyrN97-78fIfQVUiyRJJc-JJK7QNDaV9AvOMnOeEs4pKryL53fukl3XH8NKGTOuFW1bLKjU10hjqba5sjhyCdw4FISExvFu--7Rplb1frFhrbyIsgUggayLvt9PqDnyxLlDDwmcn6ftIV77qW5df0EwyEFVGGDFjJcyN_bLEjmIc95PXlwpT7aMsUB2jH6TJ1dYjGfWnVU_DzuAOHcf3OEE8LPGwP8OPMFqBYYatdf8XD5Vy_SVt2Gd9bp9Dqo7EsMtyuVrOZbZyl8bMpCyDDIzR66Izuun7dCQEgDKkf5VpwDp4aA2Qp0YAmj6UQMgoSqTlwrtZaAAmJWDKRc5HT3EShCnmihSGaHKNGMS_MKcIs1EoxZljAlJsiUzBnlgVE5TTTtIlOHBzpYl3sIrVApRaoJmptAErrfV6lv6ty9v_nc7QLrkbspHNxCzWW5Ye5ADpfqst6zb4BUvegGw priority: 102 providerName: ProQuest |
Title | Parameter Estimation in SAR Imagery using Stochastic Distances and Asymmetric Kernels |
URI | https://www.proquest.com/docview/2080886345 https://arxiv.org/abs/1408.0177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT8IwGP0CePFiNP4WsQevU9ata3tEHaAGJPxIuC1ttykHhgE0cvFv9-s2vBgvOyxtk712e6_Z-14Brl0vDpSXSkcxZRxkKONI3O84QeoJToUSmtp6514_6E78pymbVuBqWwujll-zzyIfWK9uUf2LG1wzvApVSq1jq_MyLX425klcZfPfZqgw8zt_Pqw5W7T3Ya-UeaRVzMsBVJLsECYDZa1Q-CQkxDerKBoks4yMWkPyOLdpEhtijeivZLRemDdlM5TJg1V41uxMcNNPWqvNfG5PwTLkOVlmyGxHMG6H4_uuUx5rgHi4zKGpkUKg7OIIE_MMQiN8JaWizUAZgQRqjJHIKNJXXKZCpixNqKtdERiZeMY7hlq2yJJTINw1WnOe8CbX-RCxxjHjuOnplMWGncFJDkf0XiRXRBaoyAJ1BvUtQFG5aFcRRfUoROD57Pzfjhewi5LBzy1wfh1q6-VHcom0vNYNqIp2pwE7d2F_MGzkU4XX3nf4A8-ckWY |
link.rule.ids | 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817 |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagEYKNN4UCHlgjmjiO7QkVaNXSh6o-pG6R4zjQoWlJC6L_nrObwoDE6kiW8tm-7-78-Q6hO48koSSpcCWVygWGUq6AeMcNU8KZzyWPffPeudsLm-PgZUInRcJtWcgqtzbRGupkrkyOHIJ0DgciJAF9WLy7pmuUuV0tWmjsIseUqoLgy3ms9_qDnyyLHzLwmcnmftIW77qX-df0EwyEEVF6DFjJsSN_bLElmMYhcvpyofMjtKOzY7RndZlqeYLGfWnUU_DzuA6HcfPOEE8zPKwNcGtmClCssdGuv-Lhaq7epCm7jJ-NU2j00VhmCa4t17OZaZylcFvnGZDhKRo16qOnplt0QgAIPer6qRKcg6fGAFlKFKDJAymE9KuhVBw4VyklgIREIJlIuUhpqn0v9niohCaKnKFSNs_0BcLMU3HMmGZVFtspkhjmTJIqiVOaKFpG5xaOaLEpdhEZoCIDVBlVtgBFxT5fRr-rcvn_51u03xx1O1Gn1WtfoQNwOwIrowsqqLTKP_Q1UPsqvinW7xsQgKMV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+Estimation+in+SAR+Imagery+using+Stochastic+Distances+and+Asymmetric+Kernels&rft.jtitle=arXiv.org&rft.au=Gambini%2C+Juliana&rft.au=Cassetti%2C+Julia&rft.au=Lucini%2C+Mar%C3%ADa+Magdalena&rft.au=Frery%2C+Alejandro+C&rft.date=2014-08-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1408.0177 |