Micro Energy Harvesting
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale wit...
Saved in:
Main Author | |
---|---|
Format | eBook |
Language | English |
Published |
Newark
Wiley
2015
John Wiley & Sons, Incorporated Wiley-VCH |
Edition | 1 |
Series | Advanced micro & nanosystems |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Cover -- Title Page -- Copyright -- Contents -- About the Volume Editors -- List of Contributors -- Chapter 1 Introduction to Micro Energy Harvesting -- 1.1 Introduction to the Topic -- 1.2 Current Status and Trends -- 1.3 Book Content and Structure -- Chapter 2 Fundamentals of Mechanics and Dynamics -- 2.1 Introduction -- 2.2 Strategies for Micro Vibration Energy Harvesting -- 2.2.1 Piezoelectric -- 2.2.2 Electromagnetic -- 2.2.3 Electrostatic -- 2.2.4 From Macro to Micro to Nano -- 2.3 Dynamical Models for Vibration Energy Harvesters -- 2.3.1 Stochastic Character of Ambient Vibrations -- 2.3.2 Linear Case 1: Piezoelectric Cantilever Generator -- 2.3.3 Linear Case 2: Electromagnetic Generator -- 2.3.4 Transfer Function -- 2.4 Beyond Linear Micro-Vibration Harvesting -- 2.4.1 Frequency Tuning -- 2.4.2 Multimodal Harvesting -- 2.4.3 Up-Conversion Techniques -- 2.5 Nonlinear Micro-Vibration Energy Harvesting -- 2.5.1 Bistable Oscillators: Cantilever -- 2.5.2 Bistable Oscillators: Buckled Beam -- 2.5.3 Monostable Oscillators -- 2.6 Conclusions -- Acknowledgments -- References -- Chapter 3 Electromechanical Transducers -- 3.1 Introduction -- 3.2 Electromagnetic Transducers -- 3.2.1 Basic Principle -- 3.2.1.1 Induced Voltage -- 3.2.1.2 Self-Induction -- 3.2.1.3 Mechanical Aspect -- 3.2.2 Typical Architectures -- 3.2.2.1 Case Study -- 3.2.2.2 General Case -- 3.2.3 Energy Extraction Cycle -- 3.2.3.1 Resistive Cycle -- 3.2.3.2 Self-Inductance Cancelation -- 3.2.3.3 Cycle with Rectification -- 3.2.3.4 Active Cycle -- 3.2.4 Figures of Merit and Limitations -- 3.3 Piezoelectric Transducers -- 3.3.1 Basic Principles and Constitutive Equations -- 3.3.1.1 Physical Origin of Piezoelectricity in Ceramics and Crystals -- 3.3.1.2 Constitutive Equations -- 3.3.2 Typical Architectures for Energy Harvesting -- 3.3.2.1 Modeling
- 3.3.2.2 Application to Typical Configurations -- 3.3.3 Energy Extraction Cycles -- 3.3.3.1 Resistive Cycles -- 3.3.3.2 Cycles with Rectification -- 3.3.3.3 Active Cycles -- 3.3.3.4 Comparison -- 3.3.4 Maximal Power Density and Figure of Merit -- 3.4 Electrostatic Transducers -- 3.4.1 Basic Principles -- 3.4.1.1 Gauss's Law -- 3.4.1.2 Capacitance C0 -- 3.4.1.3 Electric Potential -- 3.4.1.4 Energy -- 3.4.1.5 Force -- 3.4.2 Design Parameters for a Capacitor -- 3.4.2.1 Architecture -- 3.4.2.2 Dielectric -- 3.4.3 Energy Extraction Cycles -- 3.4.3.1 Charge-Constrained Cycle -- 3.4.3.2 Voltage-Constrained Cycle -- 3.4.3.3 Electret Cycle -- 3.4.4 Limits -- 3.4.4.1 Parasitic Capacitors -- 3.4.4.2 Breakdown Voltage -- 3.4.4.3 Pull-In Force -- 3.5 Other Electromechanical Transduction Principles -- 3.5.1 Electrostrictive Materials -- 3.5.1.1 Physical Origin and Constitutive Equations -- 3.5.1.2 Energy Harvesting Strategies -- 3.5.2 Magnetostrictive Materials -- 3.5.2.1 Physical Origin -- 3.5.2.2 Constitutive Equations -- 3.6 Effect of the Vibration Energy Harvester Mechanical Structure -- 3.7 Summary -- References -- Chapter 4 Thermal Fundamentals -- 4.1 Introduction -- 4.2 Fundamentals of Thermoelectric Power Generation -- 4.2.1 Overview of Nanoscale Heat Conduction and the Seebeck Effect -- 4.2.2 Heat Transfer Analysis of Thermoelectric Power Generation -- 4.3 Near-Field Thermal Radiation and Thermophotovoltaic Power Generation -- 4.3.1 Introduction -- 4.3.2 Theoretical Framework: Fluctuational Electrodynamics -- 4.3.3 Introduction to Thermophotovoltaic Power Generation and Physics of Near-Field Radiative Heat Transfer between Two Bulk Materials Separated by a Subwavelength Vacuum Gap -- 4.3.4 Nanoscale-Gap Thermophotovoltaic Power Generation -- 4.4 Conclusions -- Acknowledgments -- References
- 9.3 Electrodynamic Harvester Architectures -- 9.4 Modeling and Optimization -- 9.4.1 Modeling -- 9.4.1.1 Lumped Element Method -- 9.4.1.2 Finite Element Method -- 9.4.1.3 Combination of Lumped Element Model and Finite Element Model -- 9.4.2 Optimization -- 9.5 Design and Fabrication -- 9.5.1 Design of Electrodynamic Harvesters -- 9.5.2 Fabrication of Electrodynamic Harvesters -- 9.6 Summary -- References -- Chapter 10 Piezoelectric MEMS Energy Harvesters -- 10.1 Introduction -- 10.1.1 The General Governing Equation -- 10.1.2 Design Consideration -- 10.2 Development of Piezoelectric MEMS Energy Harvesters -- 10.2.1 Overview -- 10.2.2 Fabrication Technologies -- 10.2.3 Characterization -- 10.2.3.1 Frequency Response -- 10.2.3.2 Output Power of Piezoelectric MEMS Energy Harvesters -- 10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters -- 10.3.1 Output Power -- 10.3.2 Frequency Response -- 10.3.3 Piezoelectric Material -- 10.4 Summary -- References -- Chapter 11 Vibration Energy Harvesting from Wideband and Time-Varying Frequencies -- 11.1 Introduction -- 11.1.1 Motivation -- 11.1.2 Classification of Devices -- 11.1.3 General Comments -- 11.2 Active Schemes for Tunable Resonant Devices -- 11.2.1 Stiffness Modification for Frequency Tuning -- 11.2.1.1 Modify L -- 11.2.1.2 Modify E -- 11.2.1.3 Modify k eff Using Axial Force -- 11.2.1.4 Modify k eff Using an External Spring -- 11.2.1.5 Modify k eff Using an Electrical External Spring -- 11.2.2 Mass Modification for Frequency Tuning -- 11.3 Passive Schemes for Tunable Resonant Devices -- 11.3.1 Modify m eff by Coupling Mass Position with Beam Excitation -- 11.3.2 Modify k eff by Coupling Axial Force with Centrifugal Force from Rotation -- 11.3.3 Modify L by Using Centrifugal Force to Toggle Beam Clamp Position -- 11.4 Wideband Devices -- 11.4.1 Multimodal Designs -- 11.4.2 Nonlinear Designs
- 11.5 Summary and Future Research Directions
- Chapter 5 Power Conditioning for Energy Harvesting - Theory and Architecture -- 5.1 Introduction -- 5.2 The Function of Power Conditioning -- 5.2.1 Interface to the Harvester -- 5.2.2 Circuits with Resistive Input Impedance -- 5.2.3 Circuits with Reactive Input Impedance -- 5.2.4 Circuits with Nonlinear Input Impedance -- 5.2.5 Peak Rectifiers -- 5.2.6 Piezoelectric Pre-biasing -- 5.2.7 Control -- 5.2.7.1 Voltage Regulation -- 5.2.7.2 Peak Power Controllers -- 5.2.8 System Architectures -- 5.2.8.1 Start-Up -- 5.2.9 Highly Dynamic Load Power -- 5.3 Summary -- References -- Chapter 6 Thermoelectric Materials for Energy Harvesting -- 6.1 Introduction -- 6.2 Performance Considerations in Materials Selection: zT -- 6.2.1 Properties of Chalcogenides (Group 16) -- 6.2.2 Properties of Crystallogens (Group 14) -- 6.2.3 Properties of Pnictides (Group 15) -- 6.2.4 Properties of Skutterudites -- 6.3 Influence of Scale on Material Selection and Synthesis -- 6.3.1 Thermal Conductance Mismatch -- 6.3.2 Domination of Electrical Contact Resistances -- 6.3.3 Domination of Bypass Heat Flow -- 6.3.4 Challenges in Thermoelectric Property Measurement -- 6.4 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches -- 6.5 Thermal Expansion and Its Role in Materials Selection -- 6.6 Raw Material Cost Considerations -- 6.7 Material Synthesis with Particular Relevance to Micro Energy Harvesting -- 6.7.1 Electroplating, Electrophoresis, Dielectrophoresis -- 6.7.2 Thin and Thick Film Deposition -- 6.8 Summary -- References -- Chapter 7 Piezoelectric Materials for Energy Harvesting -- 7.1 Introduction -- 7.2 What Is Piezoelectricity? -- 7.3 Thermodynamics: the Right Way to Describe Piezoelectricity -- 7.4 Material Figure of Merit: the Electromechanical Coupling Factor -- 7.4.1 Special Considerations for Energy Harvesting -- 7.5 Perovskite Materials
- 7.5.1 Structure -- 7.5.1.1 Ferroelectricity in Perovskites -- 7.5.1.2 Piezoelectricity in Perovskites: Poling Required -- 7.5.2 PZT Phase Diagram -- 7.5.3 Ceramics -- 7.5.3.1 Fabrication Process -- 7.5.3.2 Typical Examples for Energy Harvesting -- 7.5.4 Bulk Single Crystals -- 7.5.4.1 Perovskites -- 7.5.4.2 Energy Harvesting with Perovskites Bulk Single Crystals -- 7.5.5 Polycrystalline Perovskites Thin Films -- 7.5.5.1 Fabrication Processes -- 7.5.5.2 Energy Harvesting with Poly-PZT Films -- 7.5.6 Single-Crystal Thin Films -- 7.5.6.1 Fabrication Process -- 7.5.6.2 Energy Harvesting with SC Perovskite Films -- 7.5.7 Lead-Free -- 7.5.7.1 Energy Harvesting with Lead-Free Materials -- 7.6 Wurtzites -- 7.6.1 Structure -- 7.6.2 Thin Films and Energy Harvesting -- 7.6.3 Doping -- 7.7 PVDFs -- 7.7.1 Structure -- 7.7.2 Synthesis -- 7.7.3 Energy Harvesters with PVDF -- 7.8 Nanomaterials -- 7.9 Typical Values for the Main Piezoelectric Materials -- 7.10 Summary -- References -- Chapter 8 Electrostatic/Electret-Based Harvesters -- 8.1 Introduction -- 8.2 Electrostatic/Electret Conversion Cycle -- 8.3 Electrostatic/Electret Generator Models -- 8.3.1 Configuration of Electrostatic/Electret Generator -- 8.3.2 Electrode Design for Electrostatic/Electret Generator -- 8.4 Electrostatic Generators -- 8.4.1 Design and Fabrication Methods -- 8.4.2 Generator Examples -- 8.5 Electrets and Electret Generator Model -- 8.5.1 Electrets -- 8.5.2 Electret Materials -- 8.5.3 Charging Technologies -- 8.5.4 Electret Generator Model -- 8.6 Electret Generators -- 8.7 Summary -- References -- Chapter 9 Electrodynamic Vibrational Energy Harvesting -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Energy Storage, Dissipation, and Conversion -- 9.2.2 Electrodynamic Physics -- 9.2.2.1 Faraday's Law -- 9.2.2.2 Lorentz Force -- 9.2.3 Simplified Electrodynamic Equations