Diverse Molecular Mechanisms Underlying Microbe-Inducing Male Killing in the Moth Homona magnanima

Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development....

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 89; no. 5; p. e0209522
Main Authors Arai, Hiroshi, Takamatsu, Takumi, Lin, Shiou-Ruei, Mizutani, Tetsuya, Omatsu, Tsutomu, Katayama, Yukie, Nakai, Madoka, Kunimi, Yasuhisa, Inoue, Maki N.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima , a moth, harbors two embryonic MK bacteria, namely, Wolbachia ( Alphaproteobacteria ) and Spiroplasma ( Mollicutes ), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma , but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex ( dsx ), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma , but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia , Spiroplasma , and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
AbstractList Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima , a moth, harbors two embryonic MK bacteria, namely, Wolbachia ( Alphaproteobacteria ) and Spiroplasma ( Mollicutes ), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma , but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex ( dsx ), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma , but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia , Spiroplasma , and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution.
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, ( ) and ( ), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of males. Reverse transcription-PCR demonstrated that and , but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of ( ), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; impaired the host dosage compensation system, whereas and OGVs did not. Moreover, and , but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., , , and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima , a moth, harbors two embryonic MK bacteria, namely, Wolbachia ( Alphaproteobacteria ) and Spiroplasma ( Mollicutes ), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma , but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex ( dsx ), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma , but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia , Spiroplasma , and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.
Author Arai, Hiroshi
Kunimi, Yasuhisa
Katayama, Yukie
Inoue, Maki N.
Lin, Shiou-Ruei
Nakai, Madoka
Mizutani, Tetsuya
Omatsu, Tsutomu
Takamatsu, Takumi
Author_xml – sequence: 1
  givenname: Hiroshi
  orcidid: 0000-0001-9912-3489
  surname: Arai
  fullname: Arai, Hiroshi
  organization: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
– sequence: 2
  givenname: Takumi
  surname: Takamatsu
  fullname: Takamatsu, Takumi
  organization: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 3
  givenname: Shiou-Ruei
  surname: Lin
  fullname: Lin, Shiou-Ruei
  organization: Tea Research and Extension Station, Council of Agriculture, Yangmei, Taoyuan, Taiwan
– sequence: 4
  givenname: Tetsuya
  surname: Mizutani
  fullname: Mizutani, Tetsuya
  organization: Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 5
  givenname: Tsutomu
  surname: Omatsu
  fullname: Omatsu, Tsutomu
  organization: Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 6
  givenname: Yukie
  surname: Katayama
  fullname: Katayama, Yukie
  organization: Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 7
  givenname: Madoka
  surname: Nakai
  fullname: Nakai, Madoka
  organization: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 8
  givenname: Yasuhisa
  surname: Kunimi
  fullname: Kunimi, Yasuhisa
  organization: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
– sequence: 9
  givenname: Maki N.
  orcidid: 0000-0002-9815-3480
  surname: Inoue
  fullname: Inoue, Maki N.
  organization: United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37098937$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFPHCEYhkmjqavtredmkl5q0rEfMMPCyTTWVqObXuqZwMDsYhiwMGPivy_jWltNPRE-Hp68X959tBNisAi9w3CEMeGflR2OgIBoa0JeoQUGweuWUraDFgBClGkDe2g_52sAaIDx12iPLgsl6HKB9Fd3a1O21Sp6201epWplu40KLg-5ugrGJn_nwrpauS5FbevzYKbufqC8rS6c9_PFhWrczJJxU53FIQZVDWodimZQb9Bur3y2bx_OA3T17fTnyVl9-eP7-cmXy1q1mI41tZhx3QpNG97wFlSjaWd6Q4WhWjO2BGUYbQXRPVW65wYUw6w1glpNuBD0AB1vvTeTHqzpbBiT8vImlQzpTkbl5NOX4DZyHW8lBkIx5rgYPj4YUvw12TzKweXOeq-CjVOWhANrWiYaUtAPz9DrOKVQ9isUwUxAw5aFOtxSKg_kL4FBztXJUp28r06S2fj-3_iPuf90VYBPW6AUkXOy_SPygo88wzs3qtHFeXnn___pNy4DtbU
CitedBy_id crossref_primary_10_1007_s00248_023_02290_y
crossref_primary_10_1038_s41437_024_00741_x
crossref_primary_10_1093_pnasnexus_pgae348
crossref_primary_10_1073_pnas_2312124120
Cites_doi 10.1007/s00248-020-01566-x
10.1111/j.1525-142X.2005.05007.x
10.1007/s00248-019-01469-6
10.3389/fmicb.2022.1075199
10.1016/0022-2011(79)90095-8
10.1371/journal.ppat.1005048
10.1007/s00248-018-1210-4
10.1038/ncomms12781
10.1126/science.1107182
10.1128/jb.176.2.388-394.1994
10.1111/ens.12497
10.1038/s41467-022-34488-y
10.1038/s41467-017-01663-5
10.1098/rsbl.2011.1114
10.1098/rspb.1999.0698
10.1016/j.ibmb.2015.10.001
10.1371/journal.ppat.1003956
10.1016/j.cub.2008.07.093
10.1016/j.gde.2010.01.007
10.1093/gbe/evu035
10.1038/nrmicro1969
10.1111/imb.12181
10.1098/rspb.2008.0013
10.1038/s41467-019-12175-9
10.1016/j.ibmb.2019.02.002
10.3390/cells11142161
10.1038/nature13315
10.1093/bioinformatics/btu170
10.1128/AEM.69.3.1428-1434.2003
10.1046/j.1365-2583.1999.810133.x
10.1101/2022.06.12.495854
10.1038/nrg3124
10.1098/rspb.2021.2781
10.1038/s41598-019-40863-5
10.1093/bioinformatics/bti610
10.1093/jhered/esx049
10.1093/gbe/evv156
10.3389/fmicb.2020.620623
10.3390/insects3010161
10.1038/s41586-018-0086-2
10.1007/s00427-003-0334-8
10.1038/sj.cdd.4400207
10.1371/journal.ppat.1007936
10.1007/BF02769875
10.1093/pnasnexus/pgac293
10.1038/nbt.3519
10.1038/hdy.1993.110
10.1093/gbe/evx039
10.1046/j.1365-2540.2001.00924.x
10.1098/rspb.2003.2604
10.1098/rsbl.2006.0584
10.1016/j.devcel.2014.11.021
10.1242/dev.029645
10.1098/rspb.2017.2167
10.3791/63737
10.1038/nbt.1883
10.3201/eid0604.000402
10.1073/pnas.1220372110
ContentType Journal Article
Copyright Copyright © 2023 Arai et al.
Copyright American Society for Microbiology May 2023
Copyright © 2023 Arai et al. 2023 Arai et al.
Copyright_xml – notice: Copyright © 2023 Arai et al.
– notice: Copyright American Society for Microbiology May 2023
– notice: Copyright © 2023 Arai et al. 2023 Arai et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/aem.02095-22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Rudi, Knut
Editor_xml – sequence: 1
  givenname: Knut
  surname: Rudi
  fullname: Rudi, Knut
ExternalDocumentID PMC10231181
02095-22
37098937
10_1128_aem_02095_22
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19J13123
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 21J00895
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22K14902
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
  grantid: 19J13123
– fundername: ;
  grantid: 21J00895
– fundername: ;
  grantid: 22K14902
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
Z5M
AAPBV
ABPTK
ABRJW
PQEST
TAF
ZA5
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-a513t-3e168b59b3484850a4b3cdfd39d3bb6670ad63592bf3abf8d0a6165d93eb28993
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:37:19 EDT 2025
Fri Jul 11 10:49:13 EDT 2025
Mon Jun 30 10:33:30 EDT 2025
Wed May 31 18:20:33 EDT 2023
Wed Feb 19 02:24:08 EST 2025
Tue Jul 01 04:29:31 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Partitiviridae
male killing
Spiroplasma
Wolbachia
endosymbionts
symbiosis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a513t-3e168b59b3484850a4b3cdfd39d3bb6670ad63592bf3abf8d0a6165d93eb28993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-9815-3480
0000-0001-9912-3489
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10231181
PMID 37098937
PQID 2821690467
PQPubID 42251
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10231181
proquest_miscellaneous_2806456942
proquest_journals_2821690467
asm2_journals_10_1128_aem_02095_22
pubmed_primary_37098937
crossref_primary_10_1128_aem_02095_22
crossref_citationtrail_10_1128_aem_02095_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and environmental microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
Suzuki, MG, Funaguma, S, Kanda, T, Tamura, T, Shimada, T (B38) 2005; 7
Katsuma, S, Hirota, K, Matsuda-Imai, N, Fukui, T, Muro, T, Nishino, K, Kosako, H, Shoji, K, Takanashi, H, Fujii, T, Arimura, S, Kiuchi, T (B42) 2022; 13
B23
Arai, H, Ishitsubo, Y, Nakai, M, Inoue, MN (B51) 2022; 181
Werren, JH, Hurst, GDD, Zhang, W, Breeuwer, R, Stouthamer, R, Majerus, ME (B7) 1994; 176
Fujita, R, Inoue, MN, Takamatsu, T, Arai, H, Nishino, M, Abe, N, Itokawa, K, Nakai, M, Urayama, S, Chiba, Y, Amoa-Bosompem, M, Kunimi, Y (B11) 2020; 11
Kiuchi, T, Koga, H, Kawamoto, M, Shoji, K, Sakai, H, Arai, Y, Ishihara, G, Kawaoka, S, Sugano, S, Shimada, T, Suzuki, Y, Suzuki, MG, Katsuma, S (B30) 2014; 509
Hornett, EA, Kageyama, D, Hurst, GDD (B2) 2022; 289
Arai, H, Inoue, MN, Kageyama, D (B34) 2022; 13
Lee, J, Kiuchi, T, Kawamoto, M, Shimada, T, Katsuma, S (B43) 2015; 24
Perlmutter, JI, Bordenstein, SR, Unckless, RL, LePage, DP, Metcalf, JA, Hill, T, Martinez, J, Jiggins, FM, Bordenstein, SR (B22) 2019; 15
Conrad, T, Akhtar, A (B26) 2012; 13
Smith, G, Chen, YR, Blissard, GW, Briscoe, AD (B27) 2014; 6
Sugimoto, TN, Ishikawa, Y (B15) 2012; 8
Werren, JH, Baldo, L, Clark, ME (B3) 2008; 6
Nakanishi, K, Hoshino, M, Nakai, M, Kunimi, Y (B36) 2008; 275
Arai, H, Lin, SR, Nakai, M, Kunimi, Y, Inoue, MN (B32) 2020; 79
Herran, B, Sugimoto, TN, Watanabe, K, Imanishi, S, Tsuchida, T, Matsuo, T, Ishikawa, Y, Kageyama, D (B48) 2023; 2
Staley, K, Blaschke, AJ, Chun, J (B57) 1997; 4
Gelbart, ME, Kuroda, MI (B25) 2009; 136
Arai, H, Ishitsubo, Y, Nakai, M, Inoue, MN (B58) 2022; 25
Arai, H, Hirano, T, Akizuki, N, Abe, A, Nakai, M, Kunimi, Y, Inoue, MN (B40) 2019; 77
Sugimoto, TN, Kayukawa, T, Shinoda, T, Ishikawa, Y, Tsuchida, T (B16) 2015; 66
Kawamoto, M, Jouraku, A, Toyoda, A, Yokoi, K, Minakuchi, Y, Katsuma, S, Fujiyama, A, Kiuchi, T, Yamamoto, K, Shimada, T (B55) 2019; 107
Conesa, A, Götz, S, García-Gómez, JM, Terol, J, Talón, M, Robles, M (B56) 2005; 21
Laverty, C, Lucci, J, Akhtar, A (B24) 2010; 20
Fukui, T, Kawamoto, M, Shoji, K, Kiuchi, T, Sugano, S, Shimada, T, Suzuki, Y, Katsuma, S (B14) 2015; 11
Andreadis, TG, Hall, DW (B10) 1979; 34
Bray, NL, Pimente, H, Melsted, P, Pachter, L (B54) 2016; 34
Wan, F, Yin, C, Tang, R, Chen, M, Wu, Q, Huang, C, Qian, W, Rota-Stabelli, O, Yang, N, Wang, S, Wang, G, Zhang, G, Guo, J, Gu, LA, Chen, L, Xing, L, Xi, Y, Liu, F, Lin, K, Guo, M, Liu, W, He, K, Tian, R, Jacquin-Joly, E, Franck, P, Siegwart, M, Ometto, L, Anfora, G, Blaxter, M, Meslin, C, Nguyen, P, Dalíková, M, Marec, F, Olivares, J, Maugin, S, Shen, J, Liu, J, Guo, J, Luo, J, Liu, B, Fan, W, Feng, L, Zhao, X, Peng, X, Wang, K, Liu, L, Zhan, H, Liu, W, Shi, G, Jiang, C (B46) 2019; 10
Harumoto, T, Fukatsu, T, Lemaitre, B (B19) 2018; 285
Morimoto, S, Nakai, M, Ono, A, Kunimi, Y (B35) 2001; 87
Harumoto, T, Anbutsu, H, Fukatsu, T (B50) 2014; 10
Tsugeno, Y, Koyama, H, Takamatsu, T, Nakai, M, Kunimi, Y, Inoue, MN (B33) 2017; 108
Charlat, S, Davies, N, Roderick, GK, Hurst, GDD (B49) 2007; 3
Kageyama, D, Traut, W (B13) 2004; 271
Anbutsu, H, Fukatsu, T (B41) 2003; 69
Ferree, PM, Avery, A, Azpurua, J, Wilkes, T, Werren, JH (B21) 2008; 18
Harumoto, T, Lemaitre, B (B18) 2018; 557
Veneti, Z, Bentley, JK, Koana, T, Braig, HR, Hurst, GDD (B20) 2005; 307
Suzuki, MG, Funaguma, S, Kanda, T, Tamura, T, Shimada, T (B37) 2003; 213
Gu, L, Walters, JR, Knipple, DC (B29) 2017; 9
Fraïsse, C, Picard, MAL, Vicoso, B (B45) 2017; 8
Nguyen, P, Sýkorová, M, Šíchová, J, Kůta, V, Dalíková, M, Frydrychová, RČ, Neven, LG, Sahara, K, Marec, F (B44) 2013; 110
Bolger, AM, Lohse, M, Usadel, B (B52) 2014; 30
Hurst, GD, Jiggins, FM (B5) 2000; 6
Majerus, ME, Hurst, GDD (B6) 1997; 42
Hurst, GDD, Jiggins, FM, von der Schulenburg, JHG, Bertrand, D, West, SA, Goriacheva, II, Zakharov, IA, Werren, JH, Stouthamer, R, Majerus, MEN (B8) 1999; 266
Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, Regev, A (B53) 2011; 29
Takamatsu, T, Arai, H, Abe, N, Nakai, M, Kunimi, Y, Inoue, MN (B12) 2021; 81
Hurst, GDD, Majerus, ME (B4) 1993; 71
Walters, JR, Hardcastle, TJ, Jiggins, CD (B28) 2015; 7
Kageyama, D, Narita, S, Watanabe, M (B1) 2012; 3
Harumoto, T, Anbutsu, H, Lemaitre, B, Fukatsu, T (B17) 2016; 7
Bi, H, Li, X, Xu, X, Wang, Y, Zhou, S, Huang, Y (B31) 2022; 11
Uchibori-Asano, M, Jouraku, A, Uchiyama, T, Yokoi, K, Akiduki, G, Suetsugu, Y, Kobayashi, T, Ozawa, A, Minami, S, Ishizuka, C, Nakagawa, Y, Daimon, T, Shinoda, T (B47) 2019; 9
Hurst, GDD, Schulenburg, JHG, Majerus, TMO, Bertrand, D, Zakharov, IA, Baungaard, J, Volkl, W, Stouthamer, R, Majerus, MEN (B9) 1999; 8
Clough, E, Jimenez, E, Kim, YA, Whitworth, C, Neville, MC, Hempel, LU, Pavlou, HJ, Chen, ZX, Sturgill, D, Dale, RK, Smith, HE, Przytycka, TM, Goodwin, SF, Doren, MV, Oliver, B (B39) 2014; 31
References_xml – ident: e_1_3_3_13_2
  doi: 10.1007/s00248-020-01566-x
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1525-142X.2005.05007.x
– ident: e_1_3_3_33_2
  doi: 10.1007/s00248-019-01469-6
– ident: e_1_3_3_35_2
  doi: 10.3389/fmicb.2022.1075199
– ident: e_1_3_3_11_2
  doi: 10.1016/0022-2011(79)90095-8
– ident: e_1_3_3_15_2
  doi: 10.1371/journal.ppat.1005048
– ident: e_1_3_3_41_2
  doi: 10.1007/s00248-018-1210-4
– ident: e_1_3_3_18_2
  doi: 10.1038/ncomms12781
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1107182
– ident: e_1_3_3_8_2
  doi: 10.1128/jb.176.2.388-394.1994
– ident: e_1_3_3_59_2
  doi: 10.1111/ens.12497
– ident: e_1_3_3_43_2
  doi: 10.1038/s41467-022-34488-y
– ident: e_1_3_3_46_2
  doi: 10.1038/s41467-017-01663-5
– ident: e_1_3_3_16_2
  doi: 10.1098/rsbl.2011.1114
– ident: e_1_3_3_9_2
  doi: 10.1098/rspb.1999.0698
– ident: e_1_3_3_17_2
  doi: 10.1016/j.ibmb.2015.10.001
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.ppat.1003956
– ident: e_1_3_3_22_2
  doi: 10.1016/j.cub.2008.07.093
– ident: e_1_3_3_25_2
  doi: 10.1016/j.gde.2010.01.007
– ident: e_1_3_3_28_2
  doi: 10.1093/gbe/evu035
– ident: e_1_3_3_4_2
  doi: 10.1038/nrmicro1969
– ident: e_1_3_3_44_2
  doi: 10.1111/imb.12181
– ident: e_1_3_3_37_2
  doi: 10.1098/rspb.2008.0013
– ident: e_1_3_3_47_2
  doi: 10.1038/s41467-019-12175-9
– ident: e_1_3_3_56_2
  doi: 10.1016/j.ibmb.2019.02.002
– ident: e_1_3_3_32_2
  doi: 10.3390/cells11142161
– ident: e_1_3_3_31_2
  doi: 10.1038/nature13315
– ident: e_1_3_3_53_2
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_3_3_42_2
  doi: 10.1128/AEM.69.3.1428-1434.2003
– ident: e_1_3_3_10_2
  doi: 10.1046/j.1365-2583.1999.810133.x
– ident: e_1_3_3_24_2
  doi: 10.1101/2022.06.12.495854
– ident: e_1_3_3_27_2
  doi: 10.1038/nrg3124
– ident: e_1_3_3_3_2
  doi: 10.1098/rspb.2021.2781
– ident: e_1_3_3_48_2
  doi: 10.1038/s41598-019-40863-5
– ident: e_1_3_3_57_2
  doi: 10.1093/bioinformatics/bti610
– ident: e_1_3_3_34_2
  doi: 10.1093/jhered/esx049
– ident: e_1_3_3_29_2
  doi: 10.1093/gbe/evv156
– ident: e_1_3_3_12_2
  doi: 10.3389/fmicb.2020.620623
– ident: e_1_3_3_2_2
  doi: 10.3390/insects3010161
– ident: e_1_3_3_19_2
  doi: 10.1038/s41586-018-0086-2
– ident: e_1_3_3_38_2
  doi: 10.1007/s00427-003-0334-8
– ident: e_1_3_3_58_2
  doi: 10.1038/sj.cdd.4400207
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.ppat.1007936
– ident: e_1_3_3_7_2
  doi: 10.1007/BF02769875
– ident: e_1_3_3_49_2
  doi: 10.1093/pnasnexus/pgac293
– ident: e_1_3_3_55_2
  doi: 10.1038/nbt.3519
– ident: e_1_3_3_5_2
  doi: 10.1038/hdy.1993.110
– ident: e_1_3_3_30_2
  doi: 10.1093/gbe/evx039
– ident: e_1_3_3_36_2
  doi: 10.1046/j.1365-2540.2001.00924.x
– ident: e_1_3_3_14_2
  doi: 10.1098/rspb.2003.2604
– ident: e_1_3_3_50_2
  doi: 10.1098/rsbl.2006.0584
– ident: e_1_3_3_40_2
  doi: 10.1016/j.devcel.2014.11.021
– ident: e_1_3_3_26_2
  doi: 10.1242/dev.029645
– ident: e_1_3_3_20_2
  doi: 10.1098/rspb.2017.2167
– ident: e_1_3_3_52_2
  doi: 10.3791/63737
– ident: e_1_3_3_54_2
  doi: 10.1038/nbt.1883
– ident: e_1_3_3_6_2
  doi: 10.3201/eid0604.000402
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.1220372110
– volume: 6
  start-page: 741
  year: 2008
  end-page: 751
  ident: B3
  article-title: Wolbachia: master manipulators of invertebrate biology
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1969
– volume: 10
  start-page: 4237
  year: 2019
  ident: B46
  article-title: A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12175-9
– volume: 13
  start-page: 1075199
  year: 2022
  ident: B34
  article-title: Male-killing mechanisms vary between Spiroplasma species
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.1075199
– volume: 289
  start-page: 20212781
  year: 2022
  ident: B2
  article-title: Sex determination systems as the interface between male-killing bacteria and their hosts
  publication-title: Proc Royal Soc B
  doi: 10.1098/rspb.2021.2781
– volume: 8
  start-page: 133
  year: 1999
  end-page: 139
  ident: B9
  article-title: Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria
  publication-title: Insect Mol Biol
  doi: 10.1046/j.1365-2583.1999.810133.x
– volume: 136
  start-page: 1399
  year: 2009
  end-page: 1410
  ident: B25
  article-title: Drosophila dosage compensation: a complex voyage to the X chromosome
  publication-title: Development
  doi: 10.1242/dev.029645
– volume: 10
  year: 2014
  ident: B50
  article-title: Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003956
– volume: 13
  start-page: 6764
  year: 2022
  ident: B42
  article-title: A Wolbachia factor for male killing in lepidopteran insects
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34488-y
– volume: 8
  start-page: 412
  year: 2012
  end-page: 415
  ident: B15
  article-title: A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2011.1114
– volume: 81
  start-page: 193
  year: 2021
  end-page: 202
  ident: B12
  article-title: Coexistence of two male-killers and their impact on the development of oriental tea tortrix Homona magnanima
  publication-title: Microb Ecol
  doi: 10.1007/s00248-020-01566-x
– volume: 271
  start-page: 251
  year: 2004
  end-page: 258
  ident: B13
  article-title: Opposite sex–specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2003.2604
– volume: 9
  start-page: 802
  year: 2017
  end-page: 816
  ident: B29
  article-title: Conserved patterns of sex chromosome dosage compensation in the Lepidoptera (WZ/ZZ): insights from a moth neo-Z chromosome
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evx039
– volume: 11
  year: 2015
  ident: B14
  article-title: The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005048
– volume: 108
  start-page: 553
  year: 2017
  end-page: 560
  ident: B33
  article-title: Identification of an early male-killing agent in the oriental tea tortrix, Homona magnanima
  publication-title: J Hered
  doi: 10.1093/jhered/esx049
– volume: 11
  start-page: 620623
  year: 2020
  ident: B11
  article-title: Late male-killing viruses in Homona magnanima identified as Osugoroshi viruses, novel members of Partitiviridae
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.620623
– volume: 3
  start-page: 154
  year: 2007
  end-page: 156
  ident: B49
  article-title: Disrupting the timing of Wolbachia-induced male-killing
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2006.0584
– volume: 9
  start-page: 4203
  year: 2019
  ident: B47
  article-title: Genome-wide identification of tebufenozide resistant genes in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae)
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40863-5
– volume: 4
  start-page: 66
  year: 1997
  end-page: 75
  ident: B57
  article-title: Apoptotic DNA fragmentation is detected by a semi-quantitative ligation-mediated PCR of blunt DNA ends
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400207
– volume: 25
  year: 2022
  ident: B58
  article-title: A simple method to disperse eggs from lepidopteran scalelike egg masses and to observe embryogenesis
  publication-title: Entomol Sci
  doi: 10.1111/ens.12497
– volume: 8
  start-page: 1486
  year: 2017
  ident: B45
  article-title: The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W
  publication-title: Nature Commun
  doi: 10.1038/s41467-017-01663-5
– volume: 557
  start-page: 252
  year: 2018
  end-page: 255
  ident: B18
  article-title: Male-killing toxin in a bacterial symbiont of Drosophila
  publication-title: Nature
  doi: 10.1038/s41586-018-0086-2
– volume: 31
  start-page: 761
  year: 2014
  end-page: 773
  ident: B39
  article-title: Sex-and tissue-specific functions of Drosophila doublesex transcription factor target genes
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.11.021
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: B52
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 13
  start-page: 123
  year: 2012
  end-page: 134
  ident: B26
  article-title: Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3124
– volume: 266
  start-page: 735
  year: 1999
  end-page: 740
  ident: B8
  article-title: Male–killing Wolbachia in two species of insect
  publication-title: Proc R Soc Lond B
  doi: 10.1098/rspb.1999.0698
– volume: 87
  start-page: 435
  year: 2001
  end-page: 440
  ident: B35
  article-title: Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae)
  publication-title: Heredity (Edinb)
  doi: 10.1046/j.1365-2540.2001.00924.x
– volume: 29
  start-page: 644
  year: 2011
  end-page: 652
  ident: B53
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 6
  start-page: 329
  year: 2000
  end-page: 336
  ident: B5
  article-title: Male-killing bacteria in insects: mechanisms, incidence, and implications
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid0604.000402
– volume: 24
  start-page: 561
  year: 2015
  end-page: 569
  ident: B43
  article-title: Identification and functional analysis of a Masculinizer orthologue in Trilocha varians (Lepidoptera: Bombycidae)
  publication-title: Insect Mol Biol
  doi: 10.1111/imb.12181
– volume: 71
  start-page: 81
  year: 1993
  end-page: 95
  ident: B4
  article-title: Why do maternally inherited microorganisms kill males?
  publication-title: Heredity
  doi: 10.1038/hdy.1993.110
– ident: B23
  article-title: Arai H , Anbutsu H , Nishikawa Y , Kogawa M , Ishii K , Hosokawa M , Lin SR , Ueda M , Nakai M , Kunimi Y , Harumoto T , Kageyama D , Takeyama H , Inoue MN . 2022 . Male-killing-associated bacteriophage WO identified from comparisons of Wolbachia endosymbionts of Homona magnanima . bioRxiv . doi: 10.1101/2022.06.12.495854 .
– volume: 15
  year: 2019
  ident: B22
  article-title: The phage gene wmk is a candidate for male killing by a bacterial endosymbiont
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007936
– volume: 307
  start-page: 1461
  year: 2005
  end-page: 1463
  ident: B20
  article-title: A functional dosage compensation complex required for male killing in Drosophila
  publication-title: Science
  doi: 10.1126/science.1107182
– volume: 181
  year: 2022
  ident: B51
  article-title: Mass-rearing and molecular studies in Tortricidae pest insects
  publication-title: J Vis Exp
  doi: 10.3791/63737
– volume: 42
  start-page: 13
  year: 1997
  end-page: 20
  ident: B6
  article-title: Ladybirds as a model system for the study of male-killing symbionts
  publication-title: Entomophaga
  doi: 10.1007/BF02769875
– volume: 7
  start-page: 12781
  year: 2016
  ident: B17
  article-title: Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis
  publication-title: Nat Commun
  doi: 10.1038/ncomms12781
– volume: 77
  start-page: 257
  year: 2019
  end-page: 266
  ident: B40
  article-title: Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae)
  publication-title: Microb Ecol
  doi: 10.1007/s00248-018-1210-4
– volume: 79
  start-page: 1011
  year: 2020
  end-page: 1020
  ident: B32
  article-title: Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima
  publication-title: Microb Ecol
  doi: 10.1007/s00248-019-01469-6
– volume: 509
  start-page: 633
  year: 2014
  end-page: 636
  ident: B30
  article-title: A single female-specific piRNA is the primary determiner of sex in the silkworm
  publication-title: Nature
  doi: 10.1038/nature13315
– volume: 213
  start-page: 345
  year: 2003
  end-page: 354
  ident: B37
  article-title: Analysis of the biological functions of a doublesex homologue in Bombyx mori
  publication-title: Dev Genes Evol
  doi: 10.1007/s00427-003-0334-8
– volume: 34
  start-page: 152
  year: 1979
  end-page: 157
  ident: B10
  article-title: Significance of transovarial infections of Amblyospora sp (Microspora: Thelohaniidae) in reaction to parasite maintenance in the mosquito Culex salinarius
  publication-title: J Invertebr Pathol
  doi: 10.1016/0022-2011(79)90095-8
– volume: 69
  start-page: 1428
  year: 2003
  end-page: 1434
  ident: B41
  article-title: Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.3.1428-1434.2003
– volume: 66
  start-page: 72
  year: 2015
  end-page: 76
  ident: B16
  article-title: Misdirection of dosage compensation underlies bidirectional sex-specific death in Wolbachia-infected Ostrinia scapulalis
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2015.10.001
– volume: 34
  start-page: 525
  year: 2016
  end-page: 527
  ident: B54
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3519
– volume: 21
  start-page: 3674
  year: 2005
  end-page: 3676
  ident: B56
  article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti610
– volume: 20
  start-page: 171
  year: 2010
  end-page: 178
  ident: B24
  article-title: The MSL complex: X chromosome and beyond
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2010.01.007
– volume: 3
  start-page: 161
  year: 2012
  end-page: 199
  ident: B1
  article-title: Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications
  publication-title: Insects
  doi: 10.3390/insects3010161
– volume: 7
  start-page: 58
  year: 2005
  end-page: 68
  ident: B38
  article-title: Role of the male BmDSX protein in the sexual differentiation of Bombyx mori
  publication-title: Evol Dev
  doi: 10.1111/j.1525-142X.2005.05007.x
– volume: 110
  start-page: 6931
  year: 2013
  end-page: 6936
  ident: B44
  article-title: Neo-sex chromosomes and adaptive potential in tortricid pests
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1220372110
– volume: 2
  start-page: pgac293
  year: 2023
  ident: B48
  article-title: Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia
  publication-title: Proc Natl Acad Sci USA Nexus
  doi: 10.1093/pnasnexus/pgac293
– volume: 7
  start-page: 2545
  year: 2015
  end-page: 2559
  ident: B28
  article-title: Sex chromosome dosage compensation in Heliconius butterflies: global yet still incomplete?
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv156
– volume: 285
  start-page: 20172167
  year: 2018
  ident: B19
  article-title: Common and unique strategies of male killing evolved in two distinct Drosophila symbionts
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2017.2167
– volume: 11
  start-page: 2161
  year: 2022
  ident: B31
  article-title: Masculinizer and doublesex as key factors regulate sexual dimorphism in Ostrinia furnacalis
  publication-title: Cells
  doi: 10.3390/cells11142161
– volume: 176
  start-page: 388
  year: 1994
  end-page: 394
  ident: B7
  article-title: Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata)
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.2.388-394.1994
– volume: 18
  start-page: 1409
  year: 2008
  end-page: 1414
  ident: B21
  article-title: A bacterium targets maternally inherited centrosomes to kill males in Nasonia
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.07.093
– volume: 275
  start-page: 1249
  year: 2008
  end-page: 1254
  ident: B36
  article-title: Novel RNA sequences associated with late male killing in Homona magnanima
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2008.0013
– volume: 107
  start-page: 53
  year: 2019
  end-page: 62
  ident: B55
  article-title: High-quality genome assembly of the silkworm, Bombyx mori
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2019.02.002
– volume: 6
  start-page: 526
  year: 2014
  end-page: 537
  ident: B27
  article-title: Complete dosage compensation and sex-biased gene expression in the moth Manduca sexta
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu035
SSID ssj0004068
Score 2.4782815
Snippet Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms....
Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0209522
SubjectTerms Alternative splicing
Animals
Apoptosis
Bacteria
Butterflies & moths
Dosage compensation
Embryos
Evolution
Female
Host-Microbial Interactions
Invertebrate Microbiology
Larva - microbiology
Male
Males
Microorganisms
Molecular modelling
Moths
Reproduction
Reverse transcription
Sex
Sex determination
Spiroplasma
Spiroplasma - genetics
Symbiosis
Transcriptomes
Viruses
Wolbachia
Wolbachia - genetics
Title Diverse Molecular Mechanisms Underlying Microbe-Inducing Male Killing in the Moth Homona magnanima
URI https://www.ncbi.nlm.nih.gov/pubmed/37098937
https://journals.asm.org/doi/10.1128/aem.02095-22
https://www.proquest.com/docview/2821690467
https://www.proquest.com/docview/2806456942
https://pubmed.ncbi.nlm.nih.gov/PMC10231181
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEDAeEJRfhYEMgqcoo7WT1HlEA1QYQQg6aW-VnTg0Gkkn0jxs_xL_JHdxnKRlk2AvUWVfYqv32T7bd98R8ir0EhHLOHUTzRJMYaZdmfjcnSjP91USxKnGQOHoSzA78j4d-8eDwe-e11K1Vvvx-YVxJVfRKpSBXjFK9j80234UCuA36BeeoGF4_pOO39VOFTgwmxy3TqQxkjcrc_R7SdBZE48CIvS6U9rFPB1xXQDLgnOYGT7uxtMxAp05sxV0Xjq5_FHAZ5o525LUNgYrHrX34uMw_CTr6Jw6BJlE1zOQK5dZd0JwIsFILqsaKPKkytuqz4bO4PsyW1Xut0q3FVF2Xq1N7ilnruHdM9k_rGDc3rNbeNlbqL5LarTdx2aqDkMX7Q2zUJnZGclPwT4N-tO3yUDUwNS_eFVgGOkgdb4PxnHouyYSugeQ07xGCJ9CA6Ehodli4f4aHSDJBYbpXiPXGexJ6v37x8MuCHccCEt5iv22URZMvOm3vEtu2mbACpBlzjYtor-2Odveuj3zZ36X3Gn2LfStAeE9MtDFkNwwmUzPhuSWDXAvh-R2j-PyPlENSGkLUtqBlHYgpdsgpQhS2oCUZgUFkFIEKTUgpS1IH5CjD-_nBzO3SezhSn_C1y7Xk0AoP1TcE57wx9JTPE7ShIcJVyoIpmOZgCEcMpVyqVKRjGUwCfwk5FrhAQF_SHaKVaEfEzoVSJkpYPFQ6NwQCC-VWsRj5ePWRrEReYn_8aIZteWi3vQysQCdLGqdLBgIOVYDi7ihxscMLT8vkX7dSp8aSphL5PasMrvmmWB4MQ3myYi8aKthSsd7OlnoVYUySCIZhB584pHRfduQxc6IiA1UtAJIF79ZU2TLmjbe4vfJ1V99Sna7Ub1Hdta_Kv0MjPK1el4Phj9ITOaB
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+Molecular+Mechanisms+Underlying+Microbe-Inducing+Male+Killing+in+the+Moth+Homona+magnanima&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Arai%2C+Hiroshi&rft.au=Takamatsu%2C+Takumi&rft.au=Lin%2C+Shiou-Ruei&rft.au=Mizutani%2C+Tetsuya&rft.date=2023-05-31&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=89&rft.issue=5&rft_id=info:doi/10.1128%2Faem.02095-22&rft_id=info%3Apmid%2F37098937&rft.externalDocID=PMC10231181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon