Predicting the Energy of the Water Exchange Reaction and Free Energy of Solvation for the Uranyl Ion in Aqueous Solution

The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provid...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 110; no. 28; pp. 8840 - 8856
Main Authors Gutowski, Keith E, Dixon, David. A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4 2+ + H2O ↔ UO2(H2O)5 2+. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of −1.19 ± 0.42 kcal/mol (within 1−3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters:  UO2(H2O)4(H2O)8 2+, UO2(H2O)4(H2O)10 2+, UO2(H2O)4(H2O)11 2+, UO2(H2O)5(H2O)7 2+, and UO2(H2O)5(H2O)10 2+, were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4 2+ and UO2(H2O)5 2+. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range −5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of −1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔG exchange from −2.2 to −0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of −410 ± 5 kcal/mol, consistent with the best experimental value of −421 ± 15 kcal/mol.
AbstractList The structures and vibrational frequencies of UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO₂(H₂O)₄ ²⁺ + H₂O T UO₂(H₂O)₅ ²⁺. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 plus or minus 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO₂2(H₂2O)₄(H₂2O)₈ ²⁺, UO₂(H₂O)₄(H₂O)sub10 ²⁺, UO₂(H₂O)₄(H₂O)sub11 ²⁺, UO₂(H₂O)₅- (H₂O)₇ ²⁺, and UO₂(H₂O)5(H₂O)sub10 ²⁺, were calculated and are in better agreement with experiment as compared to reactions involving only UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔGexchange from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 plus or minus 5 kcal/mol, consistent with the best experimental value of -421 plus or minus 15 kcal/mol.
The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4 2+ + H2O ↔ UO2(H2O)5 2+. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of −1.19 ± 0.42 kcal/mol (within 1−3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters:  UO2(H2O)4(H2O)8 2+, UO2(H2O)4(H2O)10 2+, UO2(H2O)4(H2O)11 2+, UO2(H2O)5(H2O)7 2+, and UO2(H2O)5(H2O)10 2+, were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4 2+ and UO2(H2O)5 2+. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range −5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of −1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔG exchange from −2.2 to −0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of −410 ± 5 kcal/mol, consistent with the best experimental value of −421 ± 15 kcal/mol.
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.
Author Dixon, David. A
Gutowski, Keith E
Author_xml – sequence: 1
  givenname: Keith E
  surname: Gutowski
  fullname: Gutowski, Keith E
– sequence: 2
  givenname: David. A
  surname: Dixon
  fullname: Dixon, David. A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16836448$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/921590$$D View this record in Osti.gov
BookMark eNptkUtv1DAUhS1URB-w4A-gsACpi7R-JHaybEfTh1RKRadCYmM5zs1Mhow92A6a-fd1JqUg1JVf3zk6PvcQ7RlrAKH3BJ8QTMnpco05KXKyeIUOSE5xmlOS78U9Lso056zcR4feLzHGhNHsDdonvGA8y4oDtLlzULc6tGaehAUkUwNuvk1sszt9VwFcMt3ohTJzSL6BiqQ1iTJ1cuHgX_zedr_V7rGxbid-cMpsu-Q6XrUmOfvVg-39wPUD9ha9blTn4d3TeoQeLqazyVV68_XyenJ2k6qcsJAyWlWqEGVDCNVUs7ppKlqSLH5NZCWQDPK6bIQoRV1BzbgqONOUNzQXouAC2BH6OPpaH1rpdRtAL7Q1BnSQZeypxJH5PDJrZ2NMH-Sq9Rq6Tpkhs-TRtCB8AD88gX21glquXbtSbiv_9BmB4xHQznrvoPmLYDnMSj7PKrKn_7Ex3K7C4FTbvahIR0XrA2yerZX7KblgIpezu3t5y85_ZF9mEzmk-TTySnu5tL0zsekXfB8BOZiwRw
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c00461
crossref_primary_10_3390_min4030690
crossref_primary_10_1021_jp904862a
crossref_primary_10_1002_cphc_200800034
crossref_primary_10_1021_jp074937z
crossref_primary_10_1021_jp108061s
crossref_primary_10_1021_es203284s
crossref_primary_10_1016_j_comptc_2010_10_043
crossref_primary_10_1039_c0cp01406k
crossref_primary_10_1039_c3cp52444b
crossref_primary_10_1021_acs_jpca_9b10649
crossref_primary_10_1021_jp8018974
crossref_primary_10_1039_B715337F
crossref_primary_10_1021_ct500530q
crossref_primary_10_1021_jp3002405
crossref_primary_10_1021_cr300212f
crossref_primary_10_1021_jp804957s
crossref_primary_10_1021_jp100572f
crossref_primary_10_1021_jp109665a
crossref_primary_10_1021_jp300193j
crossref_primary_10_1021_jp9065373
crossref_primary_10_1002_jcc_21521
crossref_primary_10_1021_jp1092509
crossref_primary_10_1021_jp405473b
crossref_primary_10_1021_acs_jpca_4c02902
crossref_primary_10_1039_b806407e
crossref_primary_10_1039_D3DT03413E
crossref_primary_10_1016_j_gca_2007_10_002
crossref_primary_10_1007_s00894_024_05839_x
crossref_primary_10_1039_C5DT01110H
crossref_primary_10_1080_07366299_2013_775884
crossref_primary_10_1016_j_poly_2016_10_055
crossref_primary_10_1021_ja804742f
crossref_primary_10_1016_j_comptc_2014_10_032
crossref_primary_10_1139_V08_182
crossref_primary_10_1021_ic800750g
crossref_primary_10_1021_acs_jpcc_7b08479
crossref_primary_10_1021_ic900066z
crossref_primary_10_1002_anie_200702872
crossref_primary_10_1021_ic202660d
crossref_primary_10_1016_j_gca_2019_10_015
crossref_primary_10_1021_jp065403l
crossref_primary_10_1021_ct400459y
crossref_primary_10_1021_ic200221a
crossref_primary_10_1021_acs_jpca_4c02879
crossref_primary_10_1021_jp405470k
crossref_primary_10_1063_1_4971432
crossref_primary_10_1021_ic702162r
crossref_primary_10_1016_j_chemgeo_2010_02_012
crossref_primary_10_1021_jacs_7b03251
crossref_primary_10_1021_jp903750r
crossref_primary_10_1021_acs_jpca_1c05950
crossref_primary_10_1039_C9DT04484A
crossref_primary_10_1039_D2DT02535C
crossref_primary_10_1021_acs_jpca_8b00177
crossref_primary_10_1039_c3dt50814e
crossref_primary_10_1021_ar800271r
crossref_primary_10_1021_jp0662855
crossref_primary_10_1021_ic100623y
crossref_primary_10_1021_ic200204p
crossref_primary_10_1039_C6RA14906E
crossref_primary_10_1021_ic7015403
crossref_primary_10_1021_acs_jctc_7b01018
crossref_primary_10_1021_ic7018633
crossref_primary_10_1021_ic902496u
crossref_primary_10_1016_j_tet_2018_04_016
crossref_primary_10_1021_jp804373p
crossref_primary_10_1557_opl_2012_181
crossref_primary_10_1002_chem_200601890
crossref_primary_10_1016_j_jorganchem_2017_09_021
crossref_primary_10_1021_acs_inorgchem_5b00264
crossref_primary_10_1186_1752_153X_3_10
crossref_primary_10_1021_jp070433p
crossref_primary_10_1063_1_3244041
crossref_primary_10_1021_jp077309q
crossref_primary_10_1021_acs_inorgchem_5b01627
crossref_primary_10_1021_ic201679e
crossref_primary_10_1021_ic3001625
crossref_primary_10_1021_acs_jpca_9b08433
crossref_primary_10_1063_1_3549571
crossref_primary_10_1021_acs_jpca_4c04037
crossref_primary_10_1016_j_gca_2024_01_019
crossref_primary_10_1016_j_jhazmat_2023_131309
crossref_primary_10_1021_acs_inorgchem_8b00345
crossref_primary_10_1039_C9CP00142E
crossref_primary_10_1140_epjd_e2007_00151_4
crossref_primary_10_1039_C8CP07230B
crossref_primary_10_1007_s00214_011_0920_1
crossref_primary_10_1021_jp809123q
crossref_primary_10_1021_acs_inorgchem_7b00396
crossref_primary_10_1021_jp1000804
crossref_primary_10_1021_jp405708e
crossref_primary_10_1021_ct300296k
crossref_primary_10_1021_jp066420d
crossref_primary_10_1039_c1cp22320h
crossref_primary_10_1039_B914222C
crossref_primary_10_1021_acs_jctc_9b00605
crossref_primary_10_1021_jp5118272
crossref_primary_10_1021_ic501869y
crossref_primary_10_1021_jp710334b
crossref_primary_10_1016_j_supflu_2016_03_005
crossref_primary_10_1039_C4DT02104E
crossref_primary_10_1007_s00214_008_0417_8
crossref_primary_10_1039_C4DT02443E
crossref_primary_10_1021_ic102448q
crossref_primary_10_1039_c1dt10796h
crossref_primary_10_1063_1_2884861
crossref_primary_10_1021_ct700062x
crossref_primary_10_1021_jp804856z
crossref_primary_10_1002_chem_202304068
crossref_primary_10_1039_D4CC01030B
crossref_primary_10_1021_jp8076408
crossref_primary_10_1039_C8CC05382K
crossref_primary_10_1021_acs_inorgchem_5b00365
crossref_primary_10_1021_jp3028275
crossref_primary_10_1021_jp802665d
crossref_primary_10_1039_C4RA08264H
crossref_primary_10_1007_s00214_015_1641_7
crossref_primary_10_1021_ic701607e
crossref_primary_10_1021_acs_jpca_1c01854
crossref_primary_10_1021_acs_jpca_3c06123
crossref_primary_10_1021_jp5045089
crossref_primary_10_1039_D4DT02887B
crossref_primary_10_1088_1674_0068_22_04_395_400
crossref_primary_10_1021_acsearthspacechem_1c00410
crossref_primary_10_1039_D2DT00849A
crossref_primary_10_1039_C6DT03009B
crossref_primary_10_1039_D0DT04345A
crossref_primary_10_1021_ic9017689
crossref_primary_10_1021_jp904816d
crossref_primary_10_1021_jasms_9b00078
crossref_primary_10_1021_jp404594p
crossref_primary_10_1039_b706332f
crossref_primary_10_1002_rcm_4162
crossref_primary_10_1021_acs_inorgchem_3c00847
crossref_primary_10_1021_bm700609r
crossref_primary_10_1002_cphc_201100458
crossref_primary_10_1016_j_molliq_2021_115621
crossref_primary_10_1021_ic201265s
crossref_primary_10_1002_ange_200702872
crossref_primary_10_1007_s00214_009_0627_8
crossref_primary_10_1021_acs_jpca_2c06205
crossref_primary_10_1021_ja064592i
crossref_primary_10_1021_ct700317p
crossref_primary_10_1021_jp903470n
crossref_primary_10_1021_acs_jctc_0c00089
crossref_primary_10_1021_ic302785m
crossref_primary_10_1039_C3DT52413B
crossref_primary_10_1021_acs_inorgchem_2c03986
crossref_primary_10_1016_j_jct_2011_11_028
crossref_primary_10_1039_D1NJ01849C
crossref_primary_10_1021_acs_jpca_8b06863
crossref_primary_10_1021_ja5087563
crossref_primary_10_1039_c0cp00953a
crossref_primary_10_1021_jp111551t
crossref_primary_10_1021_jp1010956
crossref_primary_10_1016_j_gca_2015_03_002
crossref_primary_10_1039_c2cs15354h
crossref_primary_10_1039_D0NR06854C
crossref_primary_10_1016_j_cplett_2008_11_015
crossref_primary_10_1021_acs_jpca_5b03712
crossref_primary_10_1021_acs_jcim_2c00153
crossref_primary_10_1039_C7QI00389G
Cites_doi 10.1021/ja00261a028
10.1021/ic990929o
10.1021/ic035450h
10.1016/S0924-2031(00)00067-9
10.1081/SS-100100689
10.1021/jp994395o
10.1021/jp047197s
10.1139/v80-189
10.1063/1.474671
10.1021/cr9904009
10.1016/S0166-1280(00)00526-1
10.1021/cr00033a002
10.1021/ja0483544
10.1021/jp0259622
10.1021/jp983543s
10.1021/jp962338e
10.1006/jssc.2001.9407
10.1002/1522-2675(20001108)83:11<3006::AID-HLCA3006>3.0.CO;2-P
10.1366/000370274774332812
10.1016/S0010-8545(00)80346-X
10.1021/j150605a019
10.1016/0301-4622(94)00051-4
10.1021/jp0447340
10.1002/qua.20359
10.1039/b204253n
10.1021/ja054186j
10.1016/S0168-1273(05)80050-9
10.1063/1.447824
10.1107/S0108270193013745
10.1016/S0009-2614(03)00227-6
10.1021/ja039101y
10.1126/science.1116723
10.1021/ja015935+
10.1002/jcc.10056
10.1063/1.464906
10.1021/jp012404z
10.1016/S1387-3806(03)00095-2
10.1021/ic035177j
10.1002/anie.199608911
10.1021/ja00051a041
10.1107/S0909049598018202
10.1021/jp0273833
10.1063/1.466847
10.1021/jp960488j
10.1021/ja00007a022
10.1351/pac200274101895
10.1021/jp990042d
10.1016/S0168-1273(05)80051-0
10.1016/S0010-8545(00)80325-2
10.1016/0022-5088(83)90177-7
10.1524/ract.1998.83.4.189
10.1021/ja031695h
10.1021/jp994022n
10.1063/1.2001632
10.1021/ja00033a068
10.1021/ja0526719
10.1021/cr00034a002
10.1139/v92-079
10.1002/1521-3773(20010202)40:3<591::AID-ANIE591>3.0.CO;2-0
10.1021/jp9716997
10.1063/1.1587122
10.1021/jp0260402
10.1021/j100785a001
10.1021/jp952860l
10.1016/S0009-2614(00)01470-6
10.1021/jp951011v
10.1021/ja00544a007
10.1002/(SICI)1096-987X(19990115)20:1<70::AID-JCC9>3.0.CO;2-F
10.1007/s00216-005-3322-1
10.1021/jp972072r
10.1007/BF01119780
ContentType Journal Article
Copyright Copyright © 2006 American Chemical Society
Copyright_xml – notice: Copyright © 2006 American Chemical Society
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID BSCLL
AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/jp061851h
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 8856
ExternalDocumentID 921590
16836448
10_1021_jp061851h
ark_67375_TPS_N3BZ4MTC_8
b467593538
Genre Journal Article
GroupedDBID -
.K2
02
123
186
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABDTD
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
OHM
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
UQL
VF5
VG9
VQA
VQP
W1F
WH7
X
XFK
YZZ
ZCG
ZHY
---
-~X
.DC
6TJ
ABJNI
ABQRX
ACBEA
ADHLV
AHGAQ
BSCLL
CUPRZ
GGK
XSW
YQT
~02
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
ANPPW
CITATION
NPM
VXZ
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a513t-32bba879f112c2c3dffb2914108749e14e5d9f7797dbed36a863c26f2577867e3
IEDL.DBID ACS
ISSN 1089-5639
IngestDate Fri May 19 00:38:04 EDT 2023
Fri Jul 11 06:42:56 EDT 2025
Wed Feb 19 01:43:28 EST 2025
Tue Jul 01 00:36:23 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Wed Oct 30 09:48:46 EDT 2024
Fri Feb 05 20:53:46 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a513t-32bba879f112c2c3dffb2914108749e14e5d9f7797dbed36a863c26f2577867e3
Notes istex:79F79DC9F5D87C6A5C25948F6F56680C1DFCECC7
ark:/67375/TPS-N3BZ4MTC-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PMID 16836448
PQID 68638160
PQPubID 23479
PageCount 17
ParticipantIDs osti_scitechconnect_921590
proquest_miscellaneous_68638160
pubmed_primary_16836448
crossref_primary_10_1021_jp061851h
crossref_citationtrail_10_1021_jp061851h
istex_primary_ark_67375_TPS_N3BZ4MTC_8
acs_journals_10_1021_jp061851h
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-20
PublicationDateYYYYMMDD 2006-07-20
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-20
  day: 20
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2006
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pavlov M. (jp061851hb00022/jp061851hb00022_1) 1998; 102
Wahlgren U. (jp061851hb00008/jp061851hb00008_2) 1999; 103
Åberg M. (jp061851hb00012/jp061851hb00012_1) 1983; 22
Cosentino U. (jp061851hb00024/jp061851hb00024_1) 2000; 104
Asthagiri D. (jp061851hb00021/jp061851hb00021_1) 2004; 126
Dang L. X. (jp061851hb00076/jp061851hb00076_2) 1997; 106
Hagberg D. (jp061851hb00041/jp061851hb00041_1) 2005; 127
Zhan C.-G. (jp061851hb00079/jp061851hb00079_2) 1998; 109
Crawford M. J. (jp061851hb00005/jp061851hb00005_5) 2005; 44
Rotzinger F. P. (jp061851hb00027/jp061851hb00027_1) 2000; 83
Neuefeind J. (jp061851hb00004/jp061851hb00004_4) 2004; 43
Clark D. L. (jp061851hb00004/jp061851hb00004_2) 1995; 95
Zhan C.-G. (jp061851hb00026/jp061851hb00026_3) 2003; 107
Fuchs M. S. K. (jp061851hb00036/jp061851hb00036_1) 2002; 86
Marcus Y. (jp061851hb00050/jp061851hb00050_1) 1975; 47
Reed A. E. (jp061851hb00066/jp061851hb00066_4) 1985; 83
Hay P. J. (jp061851hb00031/jp061851hb00031_1) 2000; 104
Dunning T. H., Jr. (jp061851hb00056/jp061851hb00056_1) 1989; 90
Fanghänel T. (jp061851hb00004/jp061851hb00004_1) 2002; 74
Westphal E. (jp061851hb00021/jp061851hb00021_2) 2005; 123
Fine (jp061851hb00057/jp061851hb00057_1) 1998; 108
Feyereisen M. W. (jp061851hb00077/jp061851hb00077_1) 1996; 100
Alcock N. W. (jp061851hb00014/jp061851hb00014_1) 1977; 893
Barone V. (jp061851hb00065/jp061851hb00065_2) 1997; 107
Casellato U. (jp061851hb00004/jp061851hb00004_3) 1981; 36
Alexander V. (jp061851hb00005/jp061851hb00005_1) 1995; 95
Sessler J. L. (jp061851hb00005/jp061851hb00005_2) 2001; 40
Taylor J. C. (jp061851hb00005/jp061851hb00005_6) 1976; 20
Reed A. E. (jp061851hb00066/jp061851hb00066_5) 1985; 83
Vallet V. (jp061851hb00010/jp061851hb00010_3) 2004; 126
Kaltsoyannis N. (jp061851hb00019/jp061851hb00019_1) 2003; 32
Reed A. E. (jp061851hb00066/jp061851hb00066_3) 1983; 78
Dang L. X. (jp061851hb00076/jp061851hb00076_1) 1998; 102
Hemmingsen L. (jp061851hb00006/jp061851hb00006_1) 2000; 104
Tsushima S. (jp061851hb00035/jp061851hb00035_1) 2001; 334
Burns P. C. (jp061851hb00002/jp061851hb00002_2) 1997; 35
Spencer S. (jp061851hb00028/jp061851hb00028_1) 1999; 103
Foster J. P. (jp061851hb00066/jp061851hb00066_2) 1980; 102
Tsushima S. (jp061851hb00033/jp061851hb00033_1) 2000; 529
Asthagiri D. (jp061851hb00022/jp061851hb00022_3) 2003; 371
Sullens T. A. (jp061851hb00003/jp061851hb00003_1) 2004; 126
Sémon L. (jp061851hb00008/jp061851hb00008_1) 2001; 2
Wrobleski D. A. (jp061851hb00005/jp061851hb00005_3) 1986; 108
Farkas I. (jp061851hb00010/jp061851hb00010_1) 2000; 39
Curutchet C. (jp061851hb00071/jp061851hb00071_1) 2005; 109
Barone V. (jp061851hb00062/jp061851hb00062_1) 1998; 102
Gutowski K. E. (jp061851hb00002/jp061851hb00002_1)
Pacios L. F. (jp061851hb00046/jp061851hb00046_1) 1985; 82
Cao X. (jp061851hb00054/jp061851hb00054_1) 2003; 118
Vosko S. H. (jp061851hb00053/jp061851hb00053_1) 1980; 58
Bondi A. (jp061851hb00065/jp061851hb00065_4) 1964; 68
Reed A. E. (jp061851hb00066/jp061851hb00066_1) 1988; 88
Neuefeind J. (jp061851hb00018/jp061851hb00018_1) 2004; 109
Casellato U. (jp061851hb00004/jp061851hb00004_6) 1978; 26
Choppin G. R. (jp061851hb00001/jp061851hb00001_4) 1998; 4
jp061851hb00047/jp061851hb00047_1
Shamov G. A. (jp061851hb00048/jp061851hb00048_1) 2005; 10961
Zhan C.-G. (jp061851hb00026/jp061851hb00026_1) 2001; 105
Martinez J. M. (jp061851hb00030/jp061851hb00030_1) 2002; 106
Gibson H. K. (jp061851hb00051/jp061851hb00051_1) 2005; 109
Bühl M. (jp061851hb00042/jp061851hb00042_1) 2005; 127
jp061851hb00040/jp061851hb00040_1
Moskaleva L. V. (jp061851hb00043/jp061851hb00043_1) 2004; 43
Hummer G. (jp061851hb00074/jp061851hb00074_3) 1996; 100
Hay P. J. (jp061851hb00019/jp061851hb00019_4) 2000; 26
Ben-Naim A. (jp061851hb00074/jp061851hb00074_1) 1984; 81
Cao Z. (jp061851hb00044/jp061851hb00044_1) 2005; 123
Evans W. J. (jp061851hb00005/jp061851hb00005_4) 2005; 309
Pauling L. (jp061851hb00065/jp061851hb00065_3) 1960
Asthagiri D. (jp061851hb00025/jp061851hb00025_1) 2003; 119
de Jong W. A. (jp061851hb00019/jp061851hb00019_2) 2005; 109
Allen P. G. (jp061851hb00017/jp061851hb00017_1) 1997; 36
Zhan C.-G. (jp061851hb00026/jp061851hb00026_4) 2004; 108
Marcus Y. (jp061851hb00074/jp061851hb00074_2) 1994; 51
Takanao Y. (jp061851hb00070/jp061851hb00070_1) 2005; 1
Schreckenbach G. (jp061851hb00019/jp061851hb00019_3) 1999; 20
Privalov T. (jp061851hb00058/jp061851hb00058_1) 2002; 106
Alexeev Y. (jp061851hb00073/jp061851hb00073_2) 2005; 102
Miertš S. (jp061851hb00061/jp061851hb00061_1) 1981; 55
García-Hernández M. (jp061851hb00068/jp061851hb00068_1) 2002; 23
Hay P. J. (jp061851hb00032/jp061851hb00032_1) 1998; 109
Katz A. K. (jp061851hb00022/jp061851hb00022_4) 1996; 118
Vallet V. (jp061851hb00010/jp061851hb00010_2) 2001; 123
Cornehl H. H. (jp061851hb00039/jp061851hb00039_1) 1996; 35
Aprà E. (jp061851hb00060/jp061851hb00060_1) 2000; 128
Locock A. J. (jp061851hb00004/jp061851hb00004_5) 2002; 163
Jones L. H. (jp061851hb00011/jp061851hb00011_3) 1952; 21
jp061851hb00004/jp061851hb00004_8
Klamt A. (jp061851hb00064/jp061851hb00064_1) 1993; 799
Martin R. L. (jp061851hb00074/jp061851hb00074_4) 1998; 102
Rappe A. K. (jp061851hb00065/jp061851hb00065_1) 1992; 114
Dixon D. A. (jp061851hb00073/jp061851hb00073_1) 2003; 227
Marcos E. S. (jp061851hb00022/jp061851hb00022_2) 1991; 95
Poirer R. (jp061851hb00038/jp061851hb00038_1) 1985
Quilès F. (jp061851hb00011/jp061851hb00011_4) 2000; 23
Zhan C.-G. (jp061851hb00079/jp061851hb00079_1) 1998; 108
Zhan C.-G. (jp061851hb00026/jp061851hb00026_2) 2002; 106
Ermler W. C. (jp061851hb00045/jp061851hb00045_1) 1991; 40
Godbout N. (jp061851hb00055/jp061851hb00055_1) 1992; 70
Küchle W. (jp061851hb00049/jp061851hb00049_1) 1994; 100
Deshayes L. (jp061851hb00016/jp061851hb00016_1) 1994; 50
Clavaguéra-Sarrio C. (jp061851hb00007/jp061851hb00007_1) 2003; 107
Toth L. M. (jp061851hb00011/jp061851hb00011_1) 1981; 85
Dang L. X. (jp061851hb00076/jp061851hb00076_3) 1991; 113
Hay P. J. (jp061851hb00029/jp061851hb00029_1) 1983; 79
Zhan C.-G. (jp061851hb00079/jp061851hb00079_3) 1999; 110
jp061851hb00001/jp061851hb00001_2
Minami T. (jp061851hb00037/jp061851hb00037_1) 1995; 90
jp061851hb00001/jp061851hb00001_5
jp061851hb00001/jp061851hb00001_1
Soderholm L. (jp061851hb00018/jp061851hb00018_2) 2005; 383
Tomasi J. (jp061851hb00020/jp061851hb00020_1) 2005; 105
Bardin N. (jp061851hb00013/jp061851hb00013_1) 1998; 83
Frisch M. J. (jp061851hb00059/jp061851hb00059_1) 2004
Becke A. D. (jp061851hb00052/jp061851hb00052_1) 1993; 98
Foresman J. B. (jp061851hb00063/jp061851hb00063_1) 1996; 100
Johnson B. G. (jp061851hb00067/jp061851hb00067_1) 1993; 98
Martínez J. M. (jp061851hb00023/jp061851hb00023_1) 1997; 101
Zhan C.-G. (jp061851hb00079/jp061851hb00079_4) 2000; 104
Lee T. J. (jp061851hb00069/jp061851hb00069_1) 1989; 75
Choppin G. R. (jp061851hb00001/jp061851hb00001_3) 1983; 93
Sarsfield M. J. (jp061851hb00003/jp061851hb00003_2) 2004; 126
Campbell L. (jp061851hb00009/jp061851hb00009_1) 1999; 6
Clark D. L. (jp061851hb00004/jp061851hb00004_7) 1998; 37
Fischer A. (jp061851hb00015/jp061851hb00015_1) 2003; 629
Basile L. J. (jp061851hb00011/jp061851hb00011_2) 1974; 28
Ortiz J. V. (jp061851hb00034/jp061851hb00034_1) 1992; 114
References_xml – volume: 108
  start-page: 175
  year: 1986
  ident: jp061851hb00005/jp061851hb00005_3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00261a028
– volume: 39
  start-page: 805
  year: 2000
  ident: jp061851hb00010/jp061851hb00010_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic990929o
– volume: 37
  start-page: 5
  year: 1998
  ident: jp061851hb00004/jp061851hb00004_7
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 10961
  start-page: 10974
  year: 2005
  ident: jp061851hb00048/jp061851hb00048_1
  publication-title: J. Phys. Chem. A
– volume: 43
  start-page: 4090
  year: 2004
  ident: jp061851hb00043/jp061851hb00043_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic035450h
– volume: 23
  start-page: 241
  year: 2000
  ident: jp061851hb00011/jp061851hb00011_4
  publication-title: Vibr. Spectrosc.
  doi: 10.1016/S0924-2031(00)00067-9
– ident: jp061851hb00001/jp061851hb00001_5
  doi: 10.1081/SS-100100689
– volume: 104
  start-page: 4101
  year: 2000
  ident: jp061851hb00006/jp061851hb00006_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp994395o
– volume: 109
  start-page: 3574
  year: 2005
  ident: jp061851hb00071/jp061851hb00071_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047197s
– volume: 58
  start-page: 1211
  year: 1980
  ident: jp061851hb00053/jp061851hb00053_1
  publication-title: Can. J. Chem.
  doi: 10.1139/v80-189
– volume: 108
  start-page: 192
  year: 1998
  ident: jp061851hb00079/jp061851hb00079_1
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 3221
  year: 1997
  ident: jp061851hb00065/jp061851hb00065_2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474671
– volume: 105
  start-page: 3094
  year: 2005
  ident: jp061851hb00020/jp061851hb00020_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 90
  start-page: 1023
  year: 1989
  ident: jp061851hb00056/jp061851hb00056_1
  publication-title: J. Chem. Phys.
– volume: 529
  start-page: 25
  year: 2000
  ident: jp061851hb00033/jp061851hb00033_1
  publication-title: J. Mol. Struct. (THEOCHEM)
  doi: 10.1016/S0166-1280(00)00526-1
– volume: 95
  start-page: 48
  year: 1995
  ident: jp061851hb00004/jp061851hb00004_2
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a002
– volume: 126
  start-page: 7767
  year: 2004
  ident: jp061851hb00010/jp061851hb00010_3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0483544
– ident: jp061851hb00004/jp061851hb00004_8
– volume: 106
  start-page: 9744
  year: 2002
  ident: jp061851hb00026/jp061851hb00026_2
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0259622
– volume: 103
  start-page: 1837
  year: 1999
  ident: jp061851hb00028/jp061851hb00028_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp983543s
– volume: 101
  start-page: 4448
  year: 1997
  ident: jp061851hb00023/jp061851hb00023_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp962338e
– volume: 78
  start-page: 4073
  year: 1983
  ident: jp061851hb00066/jp061851hb00066_3
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 598
  year: 2001
  ident: jp061851hb00008/jp061851hb00008_1
  publication-title: Chem. Phys. Chem.
– volume: 40
  start-page: 846
  year: 1991
  ident: jp061851hb00045/jp061851hb00045_1
  publication-title: Int. J. Quanum Chem.
– volume: 86
  start-page: 501
  year: 2002
  ident: jp061851hb00036/jp061851hb00036_1
  publication-title: Int. J. Quantum Chem.
– volume: 110
  start-page: 1622
  year: 1999
  ident: jp061851hb00079/jp061851hb00079_3
  publication-title: J. Chem. Phys.
– ident: jp061851hb00040/jp061851hb00040_1
– volume: 163
  start-page: 280
  year: 2002
  ident: jp061851hb00004/jp061851hb00004_5
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.2001.9407
– volume: 83
  start-page: 3020
  year: 2000
  ident: jp061851hb00027/jp061851hb00027_1
  publication-title: Helv. Chim. Acta
  doi: 10.1002/1522-2675(20001108)83:11<3006::AID-HLCA3006>3.0.CO;2-P
– volume: 28
  start-page: 145
  year: 1974
  ident: jp061851hb00011/jp061851hb00011_2
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370274774332812
– volume: 26
  start-page: 159
  year: 1978
  ident: jp061851hb00004/jp061851hb00004_6
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80346-X
– volume: 36
  start-page: 4683
  year: 1997
  ident: jp061851hb00017/jp061851hb00017_1
  publication-title: Inorg. Chem.
– volume: 85
  start-page: 549
  year: 1981
  ident: jp061851hb00011/jp061851hb00011_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150605a019
– volume: 51
  start-page: 127
  year: 1994
  ident: jp061851hb00074/jp061851hb00074_2
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(94)00051-4
– volume: 109
  start-page: 2781
  year: 2005
  ident: jp061851hb00051/jp061851hb00051_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0447340
– volume: 102
  start-page: 784
  year: 2005
  ident: jp061851hb00073/jp061851hb00073_2
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20359
– volume: 32
  start-page: 16
  year: 2003
  ident: jp061851hb00019/jp061851hb00019_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b204253n
– volume-title: Handbook of Gaussian Basis Sets
  year: 1985
  ident: jp061851hb00038/jp061851hb00038_1
– volume: 83
  start-page: 746
  year: 1985
  ident: jp061851hb00066/jp061851hb00066_4
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 13507
  year: 2005
  ident: jp061851hb00042/jp061851hb00042_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054186j
– ident: jp061851hb00001/jp061851hb00001_1
  doi: 10.1016/S0168-1273(05)80050-9
– volume: 36
  start-page: 265
  year: 1981
  ident: jp061851hb00004/jp061851hb00004_3
  publication-title: J. Coord. Chem.
– volume: 81
  start-page: 2027
  year: 1984
  ident: jp061851hb00074/jp061851hb00074_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447824
– volume: 98
  start-page: 5652
  year: 1993
  ident: jp061851hb00052/jp061851hb00052_1
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 496
  year: 2003
  ident: jp061851hb00054/jp061851hb00054_1
  publication-title: J. Chem. Phys.
– volume: 50
  start-page: 1544
  year: 1994
  ident: jp061851hb00016/jp061851hb00016_1
  publication-title: Acta Crystallogr., Sect. C
  doi: 10.1107/S0108270193013745
– volume: 893
  start-page: 896
  year: 1977
  ident: jp061851hb00014/jp061851hb00014_1
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 1
  start-page: 77
  year: 2005
  ident: jp061851hb00070/jp061851hb00070_1
  publication-title: J. Chem. Theory Comput.
– volume: 371
  start-page: 619
  year: 2003
  ident: jp061851hb00022/jp061851hb00022_3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00227-6
– volume: 22
  start-page: 3989
  year: 1983
  ident: jp061851hb00012/jp061851hb00012_1
  publication-title: Inorg. Chem.
– volume: 126
  start-page: 1037
  year: 2004
  ident: jp061851hb00003/jp061851hb00003_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039101y
– volume: 126
  start-page: 1289
  year: 2004
  ident: jp061851hb00021/jp061851hb00021_1
  publication-title: J. Am. Chem. Soc.
– volume-title: Chemistry of the Actinide and Transactinide Elements
  ident: jp061851hb00002/jp061851hb00002_1
– volume: 309
  start-page: 1838
  year: 2005
  ident: jp061851hb00005/jp061851hb00005_4
  publication-title: Science
  doi: 10.1126/science.1116723
– volume: 123
  start-page: 12008
  year: 2001
  ident: jp061851hb00010/jp061851hb00010_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015935+
– volume: 23
  start-page: 846
  year: 2002
  ident: jp061851hb00068/jp061851hb00068_1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10056
– volume: 79
  start-page: 5482
  year: 1983
  ident: jp061851hb00029/jp061851hb00029_1
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 1570
  year: 1997
  ident: jp061851hb00002/jp061851hb00002_2
  publication-title: Can. Miner.
– volume: 44
  start-page: 7878
  year: 2005
  ident: jp061851hb00005/jp061851hb00005_5
  publication-title: Angew. Chem., Int. Ed.
– volume: 98
  start-page: 5626
  year: 1993
  ident: jp061851hb00067/jp061851hb00067_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464906
– volume: 106
  start-page: 1123
  year: 2002
  ident: jp061851hb00030/jp061851hb00030_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012404z
– volume: 227
  start-page: 438
  year: 2003
  ident: jp061851hb00073/jp061851hb00073_1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(03)00095-2
– volume: 43
  start-page: 2426
  year: 2004
  ident: jp061851hb00004/jp061851hb00004_4
  publication-title: Inorg. Chem.
  doi: 10.1021/ic035177j
– volume: 35
  start-page: 894
  year: 1996
  ident: jp061851hb00039/jp061851hb00039_1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199608911
– volume: 106
  start-page: 8159
  year: 1997
  ident: jp061851hb00076/jp061851hb00076_2
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 10035
  year: 1992
  ident: jp061851hb00065/jp061851hb00065_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a041
– volume: 6
  start-page: 312
  year: 1999
  ident: jp061851hb00009/jp061851hb00009_1
  publication-title: J. Synchroton Rad.
  doi: 10.1107/S0909049598018202
– volume: 55
  start-page: 129
  year: 1981
  ident: jp061851hb00061/jp061851hb00061_1
  publication-title: Chem. Phys.
– volume: 107
  start-page: 3060
  year: 2003
  ident: jp061851hb00007/jp061851hb00007_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0273833
– volume: 100
  start-page: 7542
  year: 1994
  ident: jp061851hb00049/jp061851hb00049_1
  publication-title: J Chem. Phys.
  doi: 10.1063/1.466847
– volume: 100
  start-page: 16104
  year: 1996
  ident: jp061851hb00063/jp061851hb00063_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960488j
– volume: 4
  start-page: 101
  year: 1998
  ident: jp061851hb00001/jp061851hb00001_4
  publication-title: J. Aquatic Geochem.
– volume: 113
  start-page: 2486
  year: 1991
  ident: jp061851hb00076/jp061851hb00076_3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00007a022
– volume: 74
  start-page: 1970
  year: 2002
  ident: jp061851hb00004/jp061851hb00004_1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200274101895
– volume: 103
  start-page: 8264
  year: 1999
  ident: jp061851hb00008/jp061851hb00008_2
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp990042d
– ident: jp061851hb00001/jp061851hb00001_2
  doi: 10.1016/S0168-1273(05)80051-0
– volume: 20
  start-page: 273
  year: 1976
  ident: jp061851hb00005/jp061851hb00005_6
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(00)80325-2
– volume: 102
  start-page: 3573
  year: 1998
  ident: jp061851hb00074/jp061851hb00074_4
  publication-title: J. Phys. Chem. A
– volume: 93
  start-page: 330
  year: 1983
  ident: jp061851hb00001/jp061851hb00001_3
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(83)90177-7
– volume: 83
  start-page: 194
  year: 1998
  ident: jp061851hb00013/jp061851hb00013_1
  publication-title: Radiochim. Acta
  doi: 10.1524/ract.1998.83.4.189
– volume: 105
  start-page: 11540
  year: 2001
  ident: jp061851hb00026/jp061851hb00026_1
  publication-title: J. Phys. Chem. A
– volume: 108
  year: 1998
  ident: jp061851hb00057/jp061851hb00057_1
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 2671
  year: 1985
  ident: jp061851hb00046/jp061851hb00046_1
  publication-title: J. Chem. Phys.
– volume: 109
  start-page: 2739
  year: 2004
  ident: jp061851hb00018/jp061851hb00018_1
  publication-title: J. Phys. Chem. A
– volume: 118
  start-page: 5763
  year: 1996
  ident: jp061851hb00022/jp061851hb00022_4
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 1740
  year: 1985
  ident: jp061851hb00066/jp061851hb00066_5
  publication-title: J. Chem. Phys.
– volume: 109
  start-page: 10558
  year: 1998
  ident: jp061851hb00079/jp061851hb00079_2
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 2677
  year: 2004
  ident: jp061851hb00003/jp061851hb00003_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031695h
– volume: 75
  start-page: 98
  year: 1989
  ident: jp061851hb00069/jp061851hb00069_1
  publication-title: Theor. Chim. Acta
– volume: 104
  start-page: 8007
  year: 2000
  ident: jp061851hb00024/jp061851hb00024_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp994022n
– volume: 95
  start-page: 8932
  year: 1991
  ident: jp061851hb00022/jp061851hb00022_2
  publication-title: J. Phys. Chem.
– volume: 104
  start-page: 6270
  year: 2000
  ident: jp061851hb00031/jp061851hb00031_1
  publication-title: J. Phys. Chem. A
– volume: 799
  start-page: 805
  year: 1993
  ident: jp061851hb00064/jp061851hb00064_1
  publication-title: J. Chem. Soc., Perkin Trans. 2
– volume: 102
  start-page: 624
  year: 1998
  ident: jp061851hb00076/jp061851hb00076_1
  publication-title: J. Phys. Chem. B
– volume: 123
  start-page: 074508
  year: 2005
  ident: jp061851hb00021/jp061851hb00021_2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2001632
– volume: 108
  start-page: 2029
  year: 2004
  ident: jp061851hb00026/jp061851hb00026_4
  publication-title: J. Phys. Chem. A
– volume: 114
  start-page: 2737
  year: 1992
  ident: jp061851hb00034/jp061851hb00034_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00033a068
– volume: 123
  start-page: 114321
  year: 2005
  ident: jp061851hb00044/jp061851hb00044_1
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 14256
  year: 2005
  ident: jp061851hb00041/jp061851hb00041_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0526719
– volume: 95
  start-page: 342
  year: 1995
  ident: jp061851hb00005/jp061851hb00005_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00034a002
– volume: 26
  start-page: 391
  year: 2000
  ident: jp061851hb00019/jp061851hb00019_4
  publication-title: Los Alamos Sci.
– volume: 70
  start-page: 571
  year: 1992
  ident: jp061851hb00055/jp061851hb00055_1
  publication-title: Can. J. Chem.
  doi: 10.1139/v92-079
– volume: 40
  start-page: 594
  year: 2001
  ident: jp061851hb00005/jp061851hb00005_2
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/1521-3773(20010202)40:3<591::AID-ANIE591>3.0.CO;2-0
– volume: 109
  start-page: 11577
  year: 2005
  ident: jp061851hb00019/jp061851hb00019_2
  publication-title: J. Phys. Chem. A
– volume: 102
  start-page: 2001
  year: 1998
  ident: jp061851hb00062/jp061851hb00062_1
  publication-title: J. Phys. Chem A
  doi: 10.1021/jp9716997
– volume: 119
  start-page: 2708
  year: 2003
  ident: jp061851hb00025/jp061851hb00025_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1587122
– volume: 104
  start-page: 7678
  year: 2000
  ident: jp061851hb00079/jp061851hb00079_4
  publication-title: J. Phys. Chem. A
– volume: 106
  start-page: 11282
  year: 2002
  ident: jp061851hb00058/jp061851hb00058_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0260402
– volume-title: The Nature of the Chemical Bond
  year: 1960
  ident: jp061851hb00065/jp061851hb00065_3
– volume: 68
  start-page: 451
  year: 1964
  ident: jp061851hb00065/jp061851hb00065_4
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100785a001
– volume: 100
  start-page: 2997
  year: 1996
  ident: jp061851hb00077/jp061851hb00077_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952860l
– volume: 334
  start-page: 373
  year: 2001
  ident: jp061851hb00035/jp061851hb00035_1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01470-6
– volume: 109
  start-page: 3881
  year: 1998
  ident: jp061851hb00032/jp061851hb00032_1
  publication-title: J. Chem. Phys.
– volume: 88
  start-page: 926
  year: 1988
  ident: jp061851hb00066/jp061851hb00066_1
  publication-title: Chem. Rev.
– volume: 21
  start-page: 544
  year: 1952
  ident: jp061851hb00011/jp061851hb00011_3
  publication-title: J. Chem. Phys.
– volume: 629
  start-page: 1016
  year: 2003
  ident: jp061851hb00015/jp061851hb00015_1
  publication-title: Z. Anorg. Allg. Chem.
– volume: 100
  start-page: 1215
  year: 1996
  ident: jp061851hb00074/jp061851hb00074_3
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp951011v
– volume: 107
  start-page: 4417
  year: 2003
  ident: jp061851hb00026/jp061851hb00026_3
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 501
  year: 1975
  ident: jp061851hb00050/jp061851hb00050_1
  publication-title: J. Inorg. Nucl. Chem.
– volume: 102
  start-page: 7218
  year: 1980
  ident: jp061851hb00066/jp061851hb00066_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00544a007
– volume: 20
  start-page: 90
  year: 1999
  ident: jp061851hb00019/jp061851hb00019_3
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<70::AID-JCC9>3.0.CO;2-F
– volume: 128
  start-page: 283
  year: 2000
  ident: jp061851hb00060/jp061851hb00060_1
  publication-title: Comput. Phys. Commun.
– volume-title: Gaussian 03, revision B.05
  year: 2004
  ident: jp061851hb00059/jp061851hb00059_1
– volume: 383
  start-page: 55
  year: 2005
  ident: jp061851hb00018/jp061851hb00018_2
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-005-3322-1
– volume: 102
  start-page: 228
  year: 1998
  ident: jp061851hb00022/jp061851hb00022_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp972072r
– volume: 90
  start-page: 39
  year: 1995
  ident: jp061851hb00037/jp061851hb00037_1
  publication-title: Theo. Chim. Acta
  doi: 10.1007/BF01119780
– ident: jp061851hb00047/jp061851hb00047_1
SSID ssj0001324
Score 2.2933326
Snippet The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable...
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable...
The structures and vibrational frequencies of UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺ have been calculated using density functional theory and are in reasonable...
SourceID osti
proquest
pubmed
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8840
SubjectTerms AQUEOUS SOLUTIONS
DENSITY FUNCTIONAL METHOD
Environmental Molecular Sciences Laboratory
FREE ENERGY
HYDRATION
ISOMERIZATION
RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
REACTION HEAT
SOLVATION
URANYL COMPOUNDS
Title Predicting the Energy of the Water Exchange Reaction and Free Energy of Solvation for the Uranyl Ion in Aqueous Solution
URI http://dx.doi.org/10.1021/jp061851h
https://api.istex.fr/ark:/67375/TPS-N3BZ4MTC-8/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/16836448
https://www.proquest.com/docview/68638160
https://www.osti.gov/biblio/921590
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfG9gAv4xs6tmEBQrxkS-LEH4-ltBpImybaiokXy5-CrUqmNJUKf_3OSdMNscFjkrMU3519v_N9GKF3OvbWUG4j-B5HmaYkUkzEkdG5VT5JtM1CcfLxCT2aZl_O8rMN9PaOCH6aHJ5fgskBXPDjHtpKKWfBw-oPxuvtFtyprM2iF1EO9rZrH3RzaDA9Zv6H6dkKXFzCRlzCUrobXjZmZvQQfeqKddrskouDRa0PzO-_ezf-awaP0PYKZuJ-qxeP0YYrnqD7g-52t6doeVqFEE1IesaAAfGwqQHEpW-evgECrfBw2ZYF46-uLX_AqrB4VLmb5ONy1p7qYoC_zeApmL9fM_wZXv0scB_mWy7muDt_e4amo-FkcBStbmGIVJ6QOiKp1oozAYJLTWqI9V6nIqSHcpYJl2Qut8IzJpjVzhKqOCUmpR72AsYpc-Q52izKwr1EmHuW5D44NdRlLE5VBvJSxCQ-od5T30P7ICa5WkVz2QTIU3BQOgb20IdOgtKsepiHqzRmt5G-WZNeto07biN636jBmkJVFyHTjeVycjqWJ-Tj9-x4MpC8h3aCnkiAJaG3rglJSKaWAgCTiHvodac9EqQYIi6qCKyVFHjBEwoUL1qluv4VyklwjXf-N-VX6EF76sNgQ9tFm3W1cHuAg2q936yDK5yoAFY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgexgvg_G1DrZZCCFeMpI4sZPHrmrVwVpNtBUTL5bt2AJWJVOSSoW_nrOTdBsagsck58g-n32_830YobfSN5miSebBd9-LJCWeYKnvKRlnwgSBzCKbnDyZ0vEi-ngZX7ZlcmwuDHSigj9Vzol_U10g-PDjGjQPwINvD9E2gJDQGlr9wWyz64JVFTXB9KkXg9rtqgjdbmo1kKruaKBty8w17McFrKi_o0ynbUaPm2uLXD9dkMnVyaqWJ-rXHyUc_28gT9BuCzpxv5GSPfRA50_RzqC76-0ZWl-U1mFjQ6AxIEI8dBmBuDDu6Qvg0RIP102SMP6sm2QILPIMj0p9m3xWLJszXgxg2DVegDL8ucRn8Op7jvsw7GJV4e407jlajIbzwdhr72TwRByQ2iOhlCJhKUxjqEJFMmNkmNpg0YRFqQ4iHWepYSxlmdQZoSKhRIXUwM7AEso0eYG28iLX-wgnhgWxsSYO1RHzQxHBtAmiAhNQY6jpoSPgH2_XVMWduzwEc6VjYA-97yaSq7aiub1YY3kf6ZsN6XVTxuM-ondOGjYUoryycW8s5vOLGZ-S06_RZD7gSQ8dWHHhAFJspV1lQ5JUzVOAT6nfQ8edEHGYRet_EbllLafAiySgQPGyka2brtCEWEP54F9DPkY74_nknJ-fTT-9Qo-a8yAGW91rtFWXK30ICKmWR25p_AbNzgi3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk2Av43NbB2wWQoiXjCRO7OSxlFYbsFLRVky8WP7UYFVSJalU-Os556MMNASPSc6RfT77fuf7MEIvpG-1oon24LvvRZIST7DU95SMtbBBIHXkkpPPx_R0Hr27iC9aQ9HlwkAnSvhTWTvx3apeattWGAhef1uC9gGIcHkbbTt3nTO2-oPpZucFyypqAupTLwbV21USut7UaSFV_qaFth1D17An57Cq_o40a40zuoc-bvpaB5pcnawqeaJ-_FHG8f8Hcx_ttuAT9xtpeYBumewhujvo7nx7hNaTwjluXCg0BmSIh3VmIM5t_fQZcGmBh-smWRh_Mk1SBBaZxqPCXCef5ovmrBcDKK4bz0Epfl_gM3j1NcN9GHq-KnF3KvcYzUfD2eDUa-9m8EQckMojoZQiYSlMZ6hCRbS1Mkxd0GjCotQEkYl1ahlLmZZGEyoSSlRILewQLKHMkD20leWZOUA4sSyIrTN1qImYH4oIpk4QFdiAWkttDx0BD3m7tkpeu81DMFs6BvbQq24yuWorm7sLNhY3kT7fkC6bch43Eb2sJWJDIYorF__GYj6bTPmYvPkSnc8GPOmhQycyHMCKq7irXGiSqngKMCr1e-i4EyQOs-j8MCJzrOUUeJEEFCj2G_n61RWaEGcwH_5ryMfozuTtiH84G79_gnaaYyEGO95TtFUVK_MMgFIlj-rV8RN14ws6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+energy+of+the+water+exchange+reaction+and+free+energy+of+solvation+for+the+uranyl+ion+in+aqueous+solution&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Gutowski%2C+Keith+E&rft.au=Dixon%2C+David+A&rft.date=2006-07-20&rft.issn=1089-5639&rft.volume=110&rft.issue=28&rft.spage=8840&rft_id=info:doi/10.1021%2Fjp061851h&rft_id=info%3Apmid%2F16836448&rft.externalDocID=16836448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon