Predicting the Energy of the Water Exchange Reaction and Free Energy of Solvation for the Uranyl Ion in Aqueous Solution
The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provid...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 110; no. 28; pp. 8840 - 8856 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.07.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4 2+ + H2O ↔ UO2(H2O)5 2+. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of −1.19 ± 0.42 kcal/mol (within 1−3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8 2+, UO2(H2O)4(H2O)10 2+, UO2(H2O)4(H2O)11 2+, UO2(H2O)5(H2O)7 2+, and UO2(H2O)5(H2O)10 2+, were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4 2+ and UO2(H2O)5 2+. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range −5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of −1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔG exchange from −2.2 to −0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of −410 ± 5 kcal/mol, consistent with the best experimental value of −421 ± 15 kcal/mol. |
---|---|
AbstractList | The structures and vibrational frequencies of UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO₂(H₂O)₄ ²⁺ + H₂O T UO₂(H₂O)₅ ²⁺. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 plus or minus 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO₂2(H₂2O)₄(H₂2O)₈ ²⁺, UO₂(H₂O)₄(H₂O)sub10 ²⁺, UO₂(H₂O)₄(H₂O)sub11 ²⁺, UO₂(H₂O)₅- (H₂O)₇ ²⁺, and UO₂(H₂O)5(H₂O)sub10 ²⁺, were calculated and are in better agreement with experiment as compared to reactions involving only UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔGexchange from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 plus or minus 5 kcal/mol, consistent with the best experimental value of -421 plus or minus 15 kcal/mol. The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4 2+ + H2O ↔ UO2(H2O)5 2+. The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of −1.19 ± 0.42 kcal/mol (within 1−3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8 2+, UO2(H2O)4(H2O)10 2+, UO2(H2O)4(H2O)11 2+, UO2(H2O)5(H2O)7 2+, and UO2(H2O)5(H2O)10 2+, were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4 2+ and UO2(H2O)5 2+. The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range −5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of −1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of ΔG exchange from −2.2 to −0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of −410 ± 5 kcal/mol, consistent with the best experimental value of −421 ± 15 kcal/mol. The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol. The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol. |
Author | Dixon, David. A Gutowski, Keith E |
Author_xml | – sequence: 1 givenname: Keith E surname: Gutowski fullname: Gutowski, Keith E – sequence: 2 givenname: David. A surname: Dixon fullname: Dixon, David. A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16836448$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/921590$$D View this record in Osti.gov |
BookMark | eNptkUtv1DAUhS1URB-w4A-gsACpi7R-JHaybEfTh1RKRadCYmM5zs1Mhow92A6a-fd1JqUg1JVf3zk6PvcQ7RlrAKH3BJ8QTMnpco05KXKyeIUOSE5xmlOS78U9Lso056zcR4feLzHGhNHsDdonvGA8y4oDtLlzULc6tGaehAUkUwNuvk1sszt9VwFcMt3ohTJzSL6BiqQ1iTJ1cuHgX_zedr_V7rGxbid-cMpsu-Q6XrUmOfvVg-39wPUD9ha9blTn4d3TeoQeLqazyVV68_XyenJ2k6qcsJAyWlWqEGVDCNVUs7ppKlqSLH5NZCWQDPK6bIQoRV1BzbgqONOUNzQXouAC2BH6OPpaH1rpdRtAL7Q1BnSQZeypxJH5PDJrZ2NMH-Sq9Rq6Tpkhs-TRtCB8AD88gX21glquXbtSbiv_9BmB4xHQznrvoPmLYDnMSj7PKrKn_7Ex3K7C4FTbvahIR0XrA2yerZX7KblgIpezu3t5y85_ZF9mEzmk-TTySnu5tL0zsekXfB8BOZiwRw |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c00461 crossref_primary_10_3390_min4030690 crossref_primary_10_1021_jp904862a crossref_primary_10_1002_cphc_200800034 crossref_primary_10_1021_jp074937z crossref_primary_10_1021_jp108061s crossref_primary_10_1021_es203284s crossref_primary_10_1016_j_comptc_2010_10_043 crossref_primary_10_1039_c0cp01406k crossref_primary_10_1039_c3cp52444b crossref_primary_10_1021_acs_jpca_9b10649 crossref_primary_10_1021_jp8018974 crossref_primary_10_1039_B715337F crossref_primary_10_1021_ct500530q crossref_primary_10_1021_jp3002405 crossref_primary_10_1021_cr300212f crossref_primary_10_1021_jp804957s crossref_primary_10_1021_jp100572f crossref_primary_10_1021_jp109665a crossref_primary_10_1021_jp300193j crossref_primary_10_1021_jp9065373 crossref_primary_10_1002_jcc_21521 crossref_primary_10_1021_jp1092509 crossref_primary_10_1021_jp405473b crossref_primary_10_1021_acs_jpca_4c02902 crossref_primary_10_1039_b806407e crossref_primary_10_1039_D3DT03413E crossref_primary_10_1016_j_gca_2007_10_002 crossref_primary_10_1007_s00894_024_05839_x crossref_primary_10_1039_C5DT01110H crossref_primary_10_1080_07366299_2013_775884 crossref_primary_10_1016_j_poly_2016_10_055 crossref_primary_10_1021_ja804742f crossref_primary_10_1016_j_comptc_2014_10_032 crossref_primary_10_1139_V08_182 crossref_primary_10_1021_ic800750g crossref_primary_10_1021_acs_jpcc_7b08479 crossref_primary_10_1021_ic900066z crossref_primary_10_1002_anie_200702872 crossref_primary_10_1021_ic202660d crossref_primary_10_1016_j_gca_2019_10_015 crossref_primary_10_1021_jp065403l crossref_primary_10_1021_ct400459y crossref_primary_10_1021_ic200221a crossref_primary_10_1021_acs_jpca_4c02879 crossref_primary_10_1021_jp405470k crossref_primary_10_1063_1_4971432 crossref_primary_10_1021_ic702162r crossref_primary_10_1016_j_chemgeo_2010_02_012 crossref_primary_10_1021_jacs_7b03251 crossref_primary_10_1021_jp903750r crossref_primary_10_1021_acs_jpca_1c05950 crossref_primary_10_1039_C9DT04484A crossref_primary_10_1039_D2DT02535C crossref_primary_10_1021_acs_jpca_8b00177 crossref_primary_10_1039_c3dt50814e crossref_primary_10_1021_ar800271r crossref_primary_10_1021_jp0662855 crossref_primary_10_1021_ic100623y crossref_primary_10_1021_ic200204p crossref_primary_10_1039_C6RA14906E crossref_primary_10_1021_ic7015403 crossref_primary_10_1021_acs_jctc_7b01018 crossref_primary_10_1021_ic7018633 crossref_primary_10_1021_ic902496u crossref_primary_10_1016_j_tet_2018_04_016 crossref_primary_10_1021_jp804373p crossref_primary_10_1557_opl_2012_181 crossref_primary_10_1002_chem_200601890 crossref_primary_10_1016_j_jorganchem_2017_09_021 crossref_primary_10_1021_acs_inorgchem_5b00264 crossref_primary_10_1186_1752_153X_3_10 crossref_primary_10_1021_jp070433p crossref_primary_10_1063_1_3244041 crossref_primary_10_1021_jp077309q crossref_primary_10_1021_acs_inorgchem_5b01627 crossref_primary_10_1021_ic201679e crossref_primary_10_1021_ic3001625 crossref_primary_10_1021_acs_jpca_9b08433 crossref_primary_10_1063_1_3549571 crossref_primary_10_1021_acs_jpca_4c04037 crossref_primary_10_1016_j_gca_2024_01_019 crossref_primary_10_1016_j_jhazmat_2023_131309 crossref_primary_10_1021_acs_inorgchem_8b00345 crossref_primary_10_1039_C9CP00142E crossref_primary_10_1140_epjd_e2007_00151_4 crossref_primary_10_1039_C8CP07230B crossref_primary_10_1007_s00214_011_0920_1 crossref_primary_10_1021_jp809123q crossref_primary_10_1021_acs_inorgchem_7b00396 crossref_primary_10_1021_jp1000804 crossref_primary_10_1021_jp405708e crossref_primary_10_1021_ct300296k crossref_primary_10_1021_jp066420d crossref_primary_10_1039_c1cp22320h crossref_primary_10_1039_B914222C crossref_primary_10_1021_acs_jctc_9b00605 crossref_primary_10_1021_jp5118272 crossref_primary_10_1021_ic501869y crossref_primary_10_1021_jp710334b crossref_primary_10_1016_j_supflu_2016_03_005 crossref_primary_10_1039_C4DT02104E crossref_primary_10_1007_s00214_008_0417_8 crossref_primary_10_1039_C4DT02443E crossref_primary_10_1021_ic102448q crossref_primary_10_1039_c1dt10796h crossref_primary_10_1063_1_2884861 crossref_primary_10_1021_ct700062x crossref_primary_10_1021_jp804856z crossref_primary_10_1002_chem_202304068 crossref_primary_10_1039_D4CC01030B crossref_primary_10_1021_jp8076408 crossref_primary_10_1039_C8CC05382K crossref_primary_10_1021_acs_inorgchem_5b00365 crossref_primary_10_1021_jp3028275 crossref_primary_10_1021_jp802665d crossref_primary_10_1039_C4RA08264H crossref_primary_10_1007_s00214_015_1641_7 crossref_primary_10_1021_ic701607e crossref_primary_10_1021_acs_jpca_1c01854 crossref_primary_10_1021_acs_jpca_3c06123 crossref_primary_10_1021_jp5045089 crossref_primary_10_1039_D4DT02887B crossref_primary_10_1088_1674_0068_22_04_395_400 crossref_primary_10_1021_acsearthspacechem_1c00410 crossref_primary_10_1039_D2DT00849A crossref_primary_10_1039_C6DT03009B crossref_primary_10_1039_D0DT04345A crossref_primary_10_1021_ic9017689 crossref_primary_10_1021_jp904816d crossref_primary_10_1021_jasms_9b00078 crossref_primary_10_1021_jp404594p crossref_primary_10_1039_b706332f crossref_primary_10_1002_rcm_4162 crossref_primary_10_1021_acs_inorgchem_3c00847 crossref_primary_10_1021_bm700609r crossref_primary_10_1002_cphc_201100458 crossref_primary_10_1016_j_molliq_2021_115621 crossref_primary_10_1021_ic201265s crossref_primary_10_1002_ange_200702872 crossref_primary_10_1007_s00214_009_0627_8 crossref_primary_10_1021_acs_jpca_2c06205 crossref_primary_10_1021_ja064592i crossref_primary_10_1021_ct700317p crossref_primary_10_1021_jp903470n crossref_primary_10_1021_acs_jctc_0c00089 crossref_primary_10_1021_ic302785m crossref_primary_10_1039_C3DT52413B crossref_primary_10_1021_acs_inorgchem_2c03986 crossref_primary_10_1016_j_jct_2011_11_028 crossref_primary_10_1039_D1NJ01849C crossref_primary_10_1021_acs_jpca_8b06863 crossref_primary_10_1021_ja5087563 crossref_primary_10_1039_c0cp00953a crossref_primary_10_1021_jp111551t crossref_primary_10_1021_jp1010956 crossref_primary_10_1016_j_gca_2015_03_002 crossref_primary_10_1039_c2cs15354h crossref_primary_10_1039_D0NR06854C crossref_primary_10_1016_j_cplett_2008_11_015 crossref_primary_10_1021_acs_jpca_5b03712 crossref_primary_10_1021_acs_jcim_2c00153 crossref_primary_10_1039_C7QI00389G |
Cites_doi | 10.1021/ja00261a028 10.1021/ic990929o 10.1021/ic035450h 10.1016/S0924-2031(00)00067-9 10.1081/SS-100100689 10.1021/jp994395o 10.1021/jp047197s 10.1139/v80-189 10.1063/1.474671 10.1021/cr9904009 10.1016/S0166-1280(00)00526-1 10.1021/cr00033a002 10.1021/ja0483544 10.1021/jp0259622 10.1021/jp983543s 10.1021/jp962338e 10.1006/jssc.2001.9407 10.1002/1522-2675(20001108)83:11<3006::AID-HLCA3006>3.0.CO;2-P 10.1366/000370274774332812 10.1016/S0010-8545(00)80346-X 10.1021/j150605a019 10.1016/0301-4622(94)00051-4 10.1021/jp0447340 10.1002/qua.20359 10.1039/b204253n 10.1021/ja054186j 10.1016/S0168-1273(05)80050-9 10.1063/1.447824 10.1107/S0108270193013745 10.1016/S0009-2614(03)00227-6 10.1021/ja039101y 10.1126/science.1116723 10.1021/ja015935+ 10.1002/jcc.10056 10.1063/1.464906 10.1021/jp012404z 10.1016/S1387-3806(03)00095-2 10.1021/ic035177j 10.1002/anie.199608911 10.1021/ja00051a041 10.1107/S0909049598018202 10.1021/jp0273833 10.1063/1.466847 10.1021/jp960488j 10.1021/ja00007a022 10.1351/pac200274101895 10.1021/jp990042d 10.1016/S0168-1273(05)80051-0 10.1016/S0010-8545(00)80325-2 10.1016/0022-5088(83)90177-7 10.1524/ract.1998.83.4.189 10.1021/ja031695h 10.1021/jp994022n 10.1063/1.2001632 10.1021/ja00033a068 10.1021/ja0526719 10.1021/cr00034a002 10.1139/v92-079 10.1002/1521-3773(20010202)40:3<591::AID-ANIE591>3.0.CO;2-0 10.1021/jp9716997 10.1063/1.1587122 10.1021/jp0260402 10.1021/j100785a001 10.1021/jp952860l 10.1016/S0009-2614(00)01470-6 10.1021/jp951011v 10.1021/ja00544a007 10.1002/(SICI)1096-987X(19990115)20:1<70::AID-JCC9>3.0.CO;2-F 10.1007/s00216-005-3322-1 10.1021/jp972072r 10.1007/BF01119780 |
ContentType | Journal Article |
Copyright | Copyright © 2006 American Chemical Society |
Copyright_xml | – notice: Copyright © 2006 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | BSCLL AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/jp061851h |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 8856 |
ExternalDocumentID | 921590 16836448 10_1021_jp061851h ark_67375_TPS_N3BZ4MTC_8 b467593538 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 186 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABDTD ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 OHM PZZ RNS ROL TAE TN5 UI2 UKR UPT UQL VF5 VG9 VQA VQP W1F WH7 X XFK YZZ ZCG ZHY --- -~X .DC 6TJ ABJNI ABQRX ACBEA ADHLV AHGAQ BSCLL CUPRZ GGK XSW YQT ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ ANPPW CITATION NPM VXZ 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a513t-32bba879f112c2c3dffb2914108749e14e5d9f7797dbed36a863c26f2577867e3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 |
IngestDate | Fri May 19 00:38:04 EDT 2023 Fri Jul 11 06:42:56 EDT 2025 Wed Feb 19 01:43:28 EST 2025 Tue Jul 01 00:36:23 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Wed Oct 30 09:48:46 EDT 2024 Fri Feb 05 20:53:46 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a513t-32bba879f112c2c3dffb2914108749e14e5d9f7797dbed36a863c26f2577867e3 |
Notes | istex:79F79DC9F5D87C6A5C25948F6F56680C1DFCECC7 ark:/67375/TPS-N3BZ4MTC-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 |
PMID | 16836448 |
PQID | 68638160 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_921590 proquest_miscellaneous_68638160 pubmed_primary_16836448 crossref_primary_10_1021_jp061851h crossref_citationtrail_10_1021_jp061851h istex_primary_ark_67375_TPS_N3BZ4MTC_8 acs_journals_10_1021_jp061851h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-07-20 |
PublicationDateYYYYMMDD | 2006-07-20 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2006 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Pavlov M. (jp061851hb00022/jp061851hb00022_1) 1998; 102 Wahlgren U. (jp061851hb00008/jp061851hb00008_2) 1999; 103 Åberg M. (jp061851hb00012/jp061851hb00012_1) 1983; 22 Cosentino U. (jp061851hb00024/jp061851hb00024_1) 2000; 104 Asthagiri D. (jp061851hb00021/jp061851hb00021_1) 2004; 126 Dang L. X. (jp061851hb00076/jp061851hb00076_2) 1997; 106 Hagberg D. (jp061851hb00041/jp061851hb00041_1) 2005; 127 Zhan C.-G. (jp061851hb00079/jp061851hb00079_2) 1998; 109 Crawford M. J. (jp061851hb00005/jp061851hb00005_5) 2005; 44 Rotzinger F. P. (jp061851hb00027/jp061851hb00027_1) 2000; 83 Neuefeind J. (jp061851hb00004/jp061851hb00004_4) 2004; 43 Clark D. L. (jp061851hb00004/jp061851hb00004_2) 1995; 95 Zhan C.-G. (jp061851hb00026/jp061851hb00026_3) 2003; 107 Fuchs M. S. K. (jp061851hb00036/jp061851hb00036_1) 2002; 86 Marcus Y. (jp061851hb00050/jp061851hb00050_1) 1975; 47 Reed A. E. (jp061851hb00066/jp061851hb00066_4) 1985; 83 Hay P. J. (jp061851hb00031/jp061851hb00031_1) 2000; 104 Dunning T. H., Jr. (jp061851hb00056/jp061851hb00056_1) 1989; 90 Fanghänel T. (jp061851hb00004/jp061851hb00004_1) 2002; 74 Westphal E. (jp061851hb00021/jp061851hb00021_2) 2005; 123 Fine (jp061851hb00057/jp061851hb00057_1) 1998; 108 Feyereisen M. W. (jp061851hb00077/jp061851hb00077_1) 1996; 100 Alcock N. W. (jp061851hb00014/jp061851hb00014_1) 1977; 893 Barone V. (jp061851hb00065/jp061851hb00065_2) 1997; 107 Casellato U. (jp061851hb00004/jp061851hb00004_3) 1981; 36 Alexander V. (jp061851hb00005/jp061851hb00005_1) 1995; 95 Sessler J. L. (jp061851hb00005/jp061851hb00005_2) 2001; 40 Taylor J. C. (jp061851hb00005/jp061851hb00005_6) 1976; 20 Reed A. E. (jp061851hb00066/jp061851hb00066_5) 1985; 83 Vallet V. (jp061851hb00010/jp061851hb00010_3) 2004; 126 Kaltsoyannis N. (jp061851hb00019/jp061851hb00019_1) 2003; 32 Reed A. E. (jp061851hb00066/jp061851hb00066_3) 1983; 78 Dang L. X. (jp061851hb00076/jp061851hb00076_1) 1998; 102 Hemmingsen L. (jp061851hb00006/jp061851hb00006_1) 2000; 104 Tsushima S. (jp061851hb00035/jp061851hb00035_1) 2001; 334 Burns P. C. (jp061851hb00002/jp061851hb00002_2) 1997; 35 Spencer S. (jp061851hb00028/jp061851hb00028_1) 1999; 103 Foster J. P. (jp061851hb00066/jp061851hb00066_2) 1980; 102 Tsushima S. (jp061851hb00033/jp061851hb00033_1) 2000; 529 Asthagiri D. (jp061851hb00022/jp061851hb00022_3) 2003; 371 Sullens T. A. (jp061851hb00003/jp061851hb00003_1) 2004; 126 Sémon L. (jp061851hb00008/jp061851hb00008_1) 2001; 2 Wrobleski D. A. (jp061851hb00005/jp061851hb00005_3) 1986; 108 Farkas I. (jp061851hb00010/jp061851hb00010_1) 2000; 39 Curutchet C. (jp061851hb00071/jp061851hb00071_1) 2005; 109 Barone V. (jp061851hb00062/jp061851hb00062_1) 1998; 102 Gutowski K. E. (jp061851hb00002/jp061851hb00002_1) Pacios L. F. (jp061851hb00046/jp061851hb00046_1) 1985; 82 Cao X. (jp061851hb00054/jp061851hb00054_1) 2003; 118 Vosko S. H. (jp061851hb00053/jp061851hb00053_1) 1980; 58 Bondi A. (jp061851hb00065/jp061851hb00065_4) 1964; 68 Reed A. E. (jp061851hb00066/jp061851hb00066_1) 1988; 88 Neuefeind J. (jp061851hb00018/jp061851hb00018_1) 2004; 109 Casellato U. (jp061851hb00004/jp061851hb00004_6) 1978; 26 Choppin G. R. (jp061851hb00001/jp061851hb00001_4) 1998; 4 jp061851hb00047/jp061851hb00047_1 Shamov G. A. (jp061851hb00048/jp061851hb00048_1) 2005; 10961 Zhan C.-G. (jp061851hb00026/jp061851hb00026_1) 2001; 105 Martinez J. M. (jp061851hb00030/jp061851hb00030_1) 2002; 106 Gibson H. K. (jp061851hb00051/jp061851hb00051_1) 2005; 109 Bühl M. (jp061851hb00042/jp061851hb00042_1) 2005; 127 jp061851hb00040/jp061851hb00040_1 Moskaleva L. V. (jp061851hb00043/jp061851hb00043_1) 2004; 43 Hummer G. (jp061851hb00074/jp061851hb00074_3) 1996; 100 Hay P. J. (jp061851hb00019/jp061851hb00019_4) 2000; 26 Ben-Naim A. (jp061851hb00074/jp061851hb00074_1) 1984; 81 Cao Z. (jp061851hb00044/jp061851hb00044_1) 2005; 123 Evans W. J. (jp061851hb00005/jp061851hb00005_4) 2005; 309 Pauling L. (jp061851hb00065/jp061851hb00065_3) 1960 Asthagiri D. (jp061851hb00025/jp061851hb00025_1) 2003; 119 de Jong W. A. (jp061851hb00019/jp061851hb00019_2) 2005; 109 Allen P. G. (jp061851hb00017/jp061851hb00017_1) 1997; 36 Zhan C.-G. (jp061851hb00026/jp061851hb00026_4) 2004; 108 Marcus Y. (jp061851hb00074/jp061851hb00074_2) 1994; 51 Takanao Y. (jp061851hb00070/jp061851hb00070_1) 2005; 1 Schreckenbach G. (jp061851hb00019/jp061851hb00019_3) 1999; 20 Privalov T. (jp061851hb00058/jp061851hb00058_1) 2002; 106 Alexeev Y. (jp061851hb00073/jp061851hb00073_2) 2005; 102 Miertš S. (jp061851hb00061/jp061851hb00061_1) 1981; 55 García-Hernández M. (jp061851hb00068/jp061851hb00068_1) 2002; 23 Hay P. J. (jp061851hb00032/jp061851hb00032_1) 1998; 109 Katz A. K. (jp061851hb00022/jp061851hb00022_4) 1996; 118 Vallet V. (jp061851hb00010/jp061851hb00010_2) 2001; 123 Cornehl H. H. (jp061851hb00039/jp061851hb00039_1) 1996; 35 Aprà E. (jp061851hb00060/jp061851hb00060_1) 2000; 128 Locock A. J. (jp061851hb00004/jp061851hb00004_5) 2002; 163 Jones L. H. (jp061851hb00011/jp061851hb00011_3) 1952; 21 jp061851hb00004/jp061851hb00004_8 Klamt A. (jp061851hb00064/jp061851hb00064_1) 1993; 799 Martin R. L. (jp061851hb00074/jp061851hb00074_4) 1998; 102 Rappe A. K. (jp061851hb00065/jp061851hb00065_1) 1992; 114 Dixon D. A. (jp061851hb00073/jp061851hb00073_1) 2003; 227 Marcos E. S. (jp061851hb00022/jp061851hb00022_2) 1991; 95 Poirer R. (jp061851hb00038/jp061851hb00038_1) 1985 Quilès F. (jp061851hb00011/jp061851hb00011_4) 2000; 23 Zhan C.-G. (jp061851hb00079/jp061851hb00079_1) 1998; 108 Zhan C.-G. (jp061851hb00026/jp061851hb00026_2) 2002; 106 Ermler W. C. (jp061851hb00045/jp061851hb00045_1) 1991; 40 Godbout N. (jp061851hb00055/jp061851hb00055_1) 1992; 70 Küchle W. (jp061851hb00049/jp061851hb00049_1) 1994; 100 Deshayes L. (jp061851hb00016/jp061851hb00016_1) 1994; 50 Clavaguéra-Sarrio C. (jp061851hb00007/jp061851hb00007_1) 2003; 107 Toth L. M. (jp061851hb00011/jp061851hb00011_1) 1981; 85 Dang L. X. (jp061851hb00076/jp061851hb00076_3) 1991; 113 Hay P. J. (jp061851hb00029/jp061851hb00029_1) 1983; 79 Zhan C.-G. (jp061851hb00079/jp061851hb00079_3) 1999; 110 jp061851hb00001/jp061851hb00001_2 Minami T. (jp061851hb00037/jp061851hb00037_1) 1995; 90 jp061851hb00001/jp061851hb00001_5 jp061851hb00001/jp061851hb00001_1 Soderholm L. (jp061851hb00018/jp061851hb00018_2) 2005; 383 Tomasi J. (jp061851hb00020/jp061851hb00020_1) 2005; 105 Bardin N. (jp061851hb00013/jp061851hb00013_1) 1998; 83 Frisch M. J. (jp061851hb00059/jp061851hb00059_1) 2004 Becke A. D. (jp061851hb00052/jp061851hb00052_1) 1993; 98 Foresman J. B. (jp061851hb00063/jp061851hb00063_1) 1996; 100 Johnson B. G. (jp061851hb00067/jp061851hb00067_1) 1993; 98 Martínez J. M. (jp061851hb00023/jp061851hb00023_1) 1997; 101 Zhan C.-G. (jp061851hb00079/jp061851hb00079_4) 2000; 104 Lee T. J. (jp061851hb00069/jp061851hb00069_1) 1989; 75 Choppin G. R. (jp061851hb00001/jp061851hb00001_3) 1983; 93 Sarsfield M. J. (jp061851hb00003/jp061851hb00003_2) 2004; 126 Campbell L. (jp061851hb00009/jp061851hb00009_1) 1999; 6 Clark D. L. (jp061851hb00004/jp061851hb00004_7) 1998; 37 Fischer A. (jp061851hb00015/jp061851hb00015_1) 2003; 629 Basile L. J. (jp061851hb00011/jp061851hb00011_2) 1974; 28 Ortiz J. V. (jp061851hb00034/jp061851hb00034_1) 1992; 114 |
References_xml | – volume: 108 start-page: 175 year: 1986 ident: jp061851hb00005/jp061851hb00005_3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00261a028 – volume: 39 start-page: 805 year: 2000 ident: jp061851hb00010/jp061851hb00010_1 publication-title: Inorg. Chem. doi: 10.1021/ic990929o – volume: 37 start-page: 5 year: 1998 ident: jp061851hb00004/jp061851hb00004_7 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 10961 start-page: 10974 year: 2005 ident: jp061851hb00048/jp061851hb00048_1 publication-title: J. Phys. Chem. A – volume: 43 start-page: 4090 year: 2004 ident: jp061851hb00043/jp061851hb00043_1 publication-title: Inorg. Chem. doi: 10.1021/ic035450h – volume: 23 start-page: 241 year: 2000 ident: jp061851hb00011/jp061851hb00011_4 publication-title: Vibr. Spectrosc. doi: 10.1016/S0924-2031(00)00067-9 – ident: jp061851hb00001/jp061851hb00001_5 doi: 10.1081/SS-100100689 – volume: 104 start-page: 4101 year: 2000 ident: jp061851hb00006/jp061851hb00006_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp994395o – volume: 109 start-page: 3574 year: 2005 ident: jp061851hb00071/jp061851hb00071_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp047197s – volume: 58 start-page: 1211 year: 1980 ident: jp061851hb00053/jp061851hb00053_1 publication-title: Can. J. Chem. doi: 10.1139/v80-189 – volume: 108 start-page: 192 year: 1998 ident: jp061851hb00079/jp061851hb00079_1 publication-title: J. Chem. Phys. – volume: 107 start-page: 3221 year: 1997 ident: jp061851hb00065/jp061851hb00065_2 publication-title: J. Chem. Phys. doi: 10.1063/1.474671 – volume: 105 start-page: 3094 year: 2005 ident: jp061851hb00020/jp061851hb00020_1 publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 90 start-page: 1023 year: 1989 ident: jp061851hb00056/jp061851hb00056_1 publication-title: J. Chem. Phys. – volume: 529 start-page: 25 year: 2000 ident: jp061851hb00033/jp061851hb00033_1 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/S0166-1280(00)00526-1 – volume: 95 start-page: 48 year: 1995 ident: jp061851hb00004/jp061851hb00004_2 publication-title: Chem. Rev. doi: 10.1021/cr00033a002 – volume: 126 start-page: 7767 year: 2004 ident: jp061851hb00010/jp061851hb00010_3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0483544 – ident: jp061851hb00004/jp061851hb00004_8 – volume: 106 start-page: 9744 year: 2002 ident: jp061851hb00026/jp061851hb00026_2 publication-title: J. Phys. Chem. A doi: 10.1021/jp0259622 – volume: 103 start-page: 1837 year: 1999 ident: jp061851hb00028/jp061851hb00028_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp983543s – volume: 101 start-page: 4448 year: 1997 ident: jp061851hb00023/jp061851hb00023_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp962338e – volume: 78 start-page: 4073 year: 1983 ident: jp061851hb00066/jp061851hb00066_3 publication-title: J. Chem. Phys. – volume: 2 start-page: 598 year: 2001 ident: jp061851hb00008/jp061851hb00008_1 publication-title: Chem. Phys. Chem. – volume: 40 start-page: 846 year: 1991 ident: jp061851hb00045/jp061851hb00045_1 publication-title: Int. J. Quanum Chem. – volume: 86 start-page: 501 year: 2002 ident: jp061851hb00036/jp061851hb00036_1 publication-title: Int. J. Quantum Chem. – volume: 110 start-page: 1622 year: 1999 ident: jp061851hb00079/jp061851hb00079_3 publication-title: J. Chem. Phys. – ident: jp061851hb00040/jp061851hb00040_1 – volume: 163 start-page: 280 year: 2002 ident: jp061851hb00004/jp061851hb00004_5 publication-title: J. Solid State Chem. doi: 10.1006/jssc.2001.9407 – volume: 83 start-page: 3020 year: 2000 ident: jp061851hb00027/jp061851hb00027_1 publication-title: Helv. Chim. Acta doi: 10.1002/1522-2675(20001108)83:11<3006::AID-HLCA3006>3.0.CO;2-P – volume: 28 start-page: 145 year: 1974 ident: jp061851hb00011/jp061851hb00011_2 publication-title: Appl. Spectrosc. doi: 10.1366/000370274774332812 – volume: 26 start-page: 159 year: 1978 ident: jp061851hb00004/jp061851hb00004_6 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)80346-X – volume: 36 start-page: 4683 year: 1997 ident: jp061851hb00017/jp061851hb00017_1 publication-title: Inorg. Chem. – volume: 85 start-page: 549 year: 1981 ident: jp061851hb00011/jp061851hb00011_1 publication-title: J. Phys. Chem. doi: 10.1021/j150605a019 – volume: 51 start-page: 127 year: 1994 ident: jp061851hb00074/jp061851hb00074_2 publication-title: Biophys. Chem. doi: 10.1016/0301-4622(94)00051-4 – volume: 109 start-page: 2781 year: 2005 ident: jp061851hb00051/jp061851hb00051_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0447340 – volume: 102 start-page: 784 year: 2005 ident: jp061851hb00073/jp061851hb00073_2 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20359 – volume: 32 start-page: 16 year: 2003 ident: jp061851hb00019/jp061851hb00019_1 publication-title: Chem. Soc. Rev. doi: 10.1039/b204253n – volume-title: Handbook of Gaussian Basis Sets year: 1985 ident: jp061851hb00038/jp061851hb00038_1 – volume: 83 start-page: 746 year: 1985 ident: jp061851hb00066/jp061851hb00066_4 publication-title: J. Chem. Phys. – volume: 127 start-page: 13507 year: 2005 ident: jp061851hb00042/jp061851hb00042_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054186j – ident: jp061851hb00001/jp061851hb00001_1 doi: 10.1016/S0168-1273(05)80050-9 – volume: 36 start-page: 265 year: 1981 ident: jp061851hb00004/jp061851hb00004_3 publication-title: J. Coord. Chem. – volume: 81 start-page: 2027 year: 1984 ident: jp061851hb00074/jp061851hb00074_1 publication-title: J. Chem. Phys. doi: 10.1063/1.447824 – volume: 98 start-page: 5652 year: 1993 ident: jp061851hb00052/jp061851hb00052_1 publication-title: J. Chem. Phys. – volume: 118 start-page: 496 year: 2003 ident: jp061851hb00054/jp061851hb00054_1 publication-title: J. Chem. Phys. – volume: 50 start-page: 1544 year: 1994 ident: jp061851hb00016/jp061851hb00016_1 publication-title: Acta Crystallogr., Sect. C doi: 10.1107/S0108270193013745 – volume: 893 start-page: 896 year: 1977 ident: jp061851hb00014/jp061851hb00014_1 publication-title: J. Chem. Soc., Dalton Trans. – volume: 1 start-page: 77 year: 2005 ident: jp061851hb00070/jp061851hb00070_1 publication-title: J. Chem. Theory Comput. – volume: 371 start-page: 619 year: 2003 ident: jp061851hb00022/jp061851hb00022_3 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00227-6 – volume: 22 start-page: 3989 year: 1983 ident: jp061851hb00012/jp061851hb00012_1 publication-title: Inorg. Chem. – volume: 126 start-page: 1037 year: 2004 ident: jp061851hb00003/jp061851hb00003_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039101y – volume: 126 start-page: 1289 year: 2004 ident: jp061851hb00021/jp061851hb00021_1 publication-title: J. Am. Chem. Soc. – volume-title: Chemistry of the Actinide and Transactinide Elements ident: jp061851hb00002/jp061851hb00002_1 – volume: 309 start-page: 1838 year: 2005 ident: jp061851hb00005/jp061851hb00005_4 publication-title: Science doi: 10.1126/science.1116723 – volume: 123 start-page: 12008 year: 2001 ident: jp061851hb00010/jp061851hb00010_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja015935+ – volume: 23 start-page: 846 year: 2002 ident: jp061851hb00068/jp061851hb00068_1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10056 – volume: 79 start-page: 5482 year: 1983 ident: jp061851hb00029/jp061851hb00029_1 publication-title: J. Chem. Phys. – volume: 35 start-page: 1570 year: 1997 ident: jp061851hb00002/jp061851hb00002_2 publication-title: Can. Miner. – volume: 44 start-page: 7878 year: 2005 ident: jp061851hb00005/jp061851hb00005_5 publication-title: Angew. Chem., Int. Ed. – volume: 98 start-page: 5626 year: 1993 ident: jp061851hb00067/jp061851hb00067_1 publication-title: J. Chem. Phys. doi: 10.1063/1.464906 – volume: 106 start-page: 1123 year: 2002 ident: jp061851hb00030/jp061851hb00030_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp012404z – volume: 227 start-page: 438 year: 2003 ident: jp061851hb00073/jp061851hb00073_1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(03)00095-2 – volume: 43 start-page: 2426 year: 2004 ident: jp061851hb00004/jp061851hb00004_4 publication-title: Inorg. Chem. doi: 10.1021/ic035177j – volume: 35 start-page: 894 year: 1996 ident: jp061851hb00039/jp061851hb00039_1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199608911 – volume: 106 start-page: 8159 year: 1997 ident: jp061851hb00076/jp061851hb00076_2 publication-title: J. Chem. Phys. – volume: 114 start-page: 10035 year: 1992 ident: jp061851hb00065/jp061851hb00065_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a041 – volume: 6 start-page: 312 year: 1999 ident: jp061851hb00009/jp061851hb00009_1 publication-title: J. Synchroton Rad. doi: 10.1107/S0909049598018202 – volume: 55 start-page: 129 year: 1981 ident: jp061851hb00061/jp061851hb00061_1 publication-title: Chem. Phys. – volume: 107 start-page: 3060 year: 2003 ident: jp061851hb00007/jp061851hb00007_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0273833 – volume: 100 start-page: 7542 year: 1994 ident: jp061851hb00049/jp061851hb00049_1 publication-title: J Chem. Phys. doi: 10.1063/1.466847 – volume: 100 start-page: 16104 year: 1996 ident: jp061851hb00063/jp061851hb00063_1 publication-title: J. Phys. Chem. doi: 10.1021/jp960488j – volume: 4 start-page: 101 year: 1998 ident: jp061851hb00001/jp061851hb00001_4 publication-title: J. Aquatic Geochem. – volume: 113 start-page: 2486 year: 1991 ident: jp061851hb00076/jp061851hb00076_3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00007a022 – volume: 74 start-page: 1970 year: 2002 ident: jp061851hb00004/jp061851hb00004_1 publication-title: Pure Appl. Chem. doi: 10.1351/pac200274101895 – volume: 103 start-page: 8264 year: 1999 ident: jp061851hb00008/jp061851hb00008_2 publication-title: J. Phys. Chem. A doi: 10.1021/jp990042d – ident: jp061851hb00001/jp061851hb00001_2 doi: 10.1016/S0168-1273(05)80051-0 – volume: 20 start-page: 273 year: 1976 ident: jp061851hb00005/jp061851hb00005_6 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)80325-2 – volume: 102 start-page: 3573 year: 1998 ident: jp061851hb00074/jp061851hb00074_4 publication-title: J. Phys. Chem. A – volume: 93 start-page: 330 year: 1983 ident: jp061851hb00001/jp061851hb00001_3 publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(83)90177-7 – volume: 83 start-page: 194 year: 1998 ident: jp061851hb00013/jp061851hb00013_1 publication-title: Radiochim. Acta doi: 10.1524/ract.1998.83.4.189 – volume: 105 start-page: 11540 year: 2001 ident: jp061851hb00026/jp061851hb00026_1 publication-title: J. Phys. Chem. A – volume: 108 year: 1998 ident: jp061851hb00057/jp061851hb00057_1 publication-title: J. Chem. Phys. – volume: 82 start-page: 2671 year: 1985 ident: jp061851hb00046/jp061851hb00046_1 publication-title: J. Chem. Phys. – volume: 109 start-page: 2739 year: 2004 ident: jp061851hb00018/jp061851hb00018_1 publication-title: J. Phys. Chem. A – volume: 118 start-page: 5763 year: 1996 ident: jp061851hb00022/jp061851hb00022_4 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 1740 year: 1985 ident: jp061851hb00066/jp061851hb00066_5 publication-title: J. Chem. Phys. – volume: 109 start-page: 10558 year: 1998 ident: jp061851hb00079/jp061851hb00079_2 publication-title: J. Chem. Phys. – volume: 126 start-page: 2677 year: 2004 ident: jp061851hb00003/jp061851hb00003_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja031695h – volume: 75 start-page: 98 year: 1989 ident: jp061851hb00069/jp061851hb00069_1 publication-title: Theor. Chim. Acta – volume: 104 start-page: 8007 year: 2000 ident: jp061851hb00024/jp061851hb00024_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp994022n – volume: 95 start-page: 8932 year: 1991 ident: jp061851hb00022/jp061851hb00022_2 publication-title: J. Phys. Chem. – volume: 104 start-page: 6270 year: 2000 ident: jp061851hb00031/jp061851hb00031_1 publication-title: J. Phys. Chem. A – volume: 799 start-page: 805 year: 1993 ident: jp061851hb00064/jp061851hb00064_1 publication-title: J. Chem. Soc., Perkin Trans. 2 – volume: 102 start-page: 624 year: 1998 ident: jp061851hb00076/jp061851hb00076_1 publication-title: J. Phys. Chem. B – volume: 123 start-page: 074508 year: 2005 ident: jp061851hb00021/jp061851hb00021_2 publication-title: J. Chem. Phys. doi: 10.1063/1.2001632 – volume: 108 start-page: 2029 year: 2004 ident: jp061851hb00026/jp061851hb00026_4 publication-title: J. Phys. Chem. A – volume: 114 start-page: 2737 year: 1992 ident: jp061851hb00034/jp061851hb00034_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00033a068 – volume: 123 start-page: 114321 year: 2005 ident: jp061851hb00044/jp061851hb00044_1 publication-title: J. Chem. Phys. – volume: 127 start-page: 14256 year: 2005 ident: jp061851hb00041/jp061851hb00041_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0526719 – volume: 95 start-page: 342 year: 1995 ident: jp061851hb00005/jp061851hb00005_1 publication-title: Chem. Rev. doi: 10.1021/cr00034a002 – volume: 26 start-page: 391 year: 2000 ident: jp061851hb00019/jp061851hb00019_4 publication-title: Los Alamos Sci. – volume: 70 start-page: 571 year: 1992 ident: jp061851hb00055/jp061851hb00055_1 publication-title: Can. J. Chem. doi: 10.1139/v92-079 – volume: 40 start-page: 594 year: 2001 ident: jp061851hb00005/jp061851hb00005_2 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/1521-3773(20010202)40:3<591::AID-ANIE591>3.0.CO;2-0 – volume: 109 start-page: 11577 year: 2005 ident: jp061851hb00019/jp061851hb00019_2 publication-title: J. Phys. Chem. A – volume: 102 start-page: 2001 year: 1998 ident: jp061851hb00062/jp061851hb00062_1 publication-title: J. Phys. Chem A doi: 10.1021/jp9716997 – volume: 119 start-page: 2708 year: 2003 ident: jp061851hb00025/jp061851hb00025_1 publication-title: J. Chem. Phys. doi: 10.1063/1.1587122 – volume: 104 start-page: 7678 year: 2000 ident: jp061851hb00079/jp061851hb00079_4 publication-title: J. Phys. Chem. A – volume: 106 start-page: 11282 year: 2002 ident: jp061851hb00058/jp061851hb00058_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0260402 – volume-title: The Nature of the Chemical Bond year: 1960 ident: jp061851hb00065/jp061851hb00065_3 – volume: 68 start-page: 451 year: 1964 ident: jp061851hb00065/jp061851hb00065_4 publication-title: J. Phys. Chem. doi: 10.1021/j100785a001 – volume: 100 start-page: 2997 year: 1996 ident: jp061851hb00077/jp061851hb00077_1 publication-title: J. Phys. Chem. doi: 10.1021/jp952860l – volume: 334 start-page: 373 year: 2001 ident: jp061851hb00035/jp061851hb00035_1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01470-6 – volume: 109 start-page: 3881 year: 1998 ident: jp061851hb00032/jp061851hb00032_1 publication-title: J. Chem. Phys. – volume: 88 start-page: 926 year: 1988 ident: jp061851hb00066/jp061851hb00066_1 publication-title: Chem. Rev. – volume: 21 start-page: 544 year: 1952 ident: jp061851hb00011/jp061851hb00011_3 publication-title: J. Chem. Phys. – volume: 629 start-page: 1016 year: 2003 ident: jp061851hb00015/jp061851hb00015_1 publication-title: Z. Anorg. Allg. Chem. – volume: 100 start-page: 1215 year: 1996 ident: jp061851hb00074/jp061851hb00074_3 publication-title: J. Phys. Chem. doi: 10.1021/jp951011v – volume: 107 start-page: 4417 year: 2003 ident: jp061851hb00026/jp061851hb00026_3 publication-title: J. Phys. Chem. B – volume: 47 start-page: 501 year: 1975 ident: jp061851hb00050/jp061851hb00050_1 publication-title: J. Inorg. Nucl. Chem. – volume: 102 start-page: 7218 year: 1980 ident: jp061851hb00066/jp061851hb00066_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00544a007 – volume: 20 start-page: 90 year: 1999 ident: jp061851hb00019/jp061851hb00019_3 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19990115)20:1<70::AID-JCC9>3.0.CO;2-F – volume: 128 start-page: 283 year: 2000 ident: jp061851hb00060/jp061851hb00060_1 publication-title: Comput. Phys. Commun. – volume-title: Gaussian 03, revision B.05 year: 2004 ident: jp061851hb00059/jp061851hb00059_1 – volume: 383 start-page: 55 year: 2005 ident: jp061851hb00018/jp061851hb00018_2 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-005-3322-1 – volume: 102 start-page: 228 year: 1998 ident: jp061851hb00022/jp061851hb00022_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp972072r – volume: 90 start-page: 39 year: 1995 ident: jp061851hb00037/jp061851hb00037_1 publication-title: Theo. Chim. Acta doi: 10.1007/BF01119780 – ident: jp061851hb00047/jp061851hb00047_1 |
SSID | ssj0001324 |
Score | 2.2933326 |
Snippet | The structures and vibrational frequencies of UO2(H2O)4 2+ and UO2(H2O)5 2+ have been calculated using density functional theory and are in reasonable... The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable... The structures and vibrational frequencies of UO₂(H₂O)₄ ²⁺ and UO₂(H₂O)₅ ²⁺ have been calculated using density functional theory and are in reasonable... |
SourceID | osti proquest pubmed crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8840 |
SubjectTerms | AQUEOUS SOLUTIONS DENSITY FUNCTIONAL METHOD Environmental Molecular Sciences Laboratory FREE ENERGY HYDRATION ISOMERIZATION RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY REACTION HEAT SOLVATION URANYL COMPOUNDS |
Title | Predicting the Energy of the Water Exchange Reaction and Free Energy of Solvation for the Uranyl Ion in Aqueous Solution |
URI | http://dx.doi.org/10.1021/jp061851h https://api.istex.fr/ark:/67375/TPS-N3BZ4MTC-8/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/16836448 https://www.proquest.com/docview/68638160 https://www.osti.gov/biblio/921590 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfG9gAv4xs6tmEBQrxkS-LEH4-ltBpImybaiokXy5-CrUqmNJUKf_3OSdMNscFjkrMU3519v_N9GKF3OvbWUG4j-B5HmaYkUkzEkdG5VT5JtM1CcfLxCT2aZl_O8rMN9PaOCH6aHJ5fgskBXPDjHtpKKWfBw-oPxuvtFtyprM2iF1EO9rZrH3RzaDA9Zv6H6dkKXFzCRlzCUrobXjZmZvQQfeqKddrskouDRa0PzO-_ezf-awaP0PYKZuJ-qxeP0YYrnqD7g-52t6doeVqFEE1IesaAAfGwqQHEpW-evgECrfBw2ZYF46-uLX_AqrB4VLmb5ONy1p7qYoC_zeApmL9fM_wZXv0scB_mWy7muDt_e4amo-FkcBStbmGIVJ6QOiKp1oozAYJLTWqI9V6nIqSHcpYJl2Qut8IzJpjVzhKqOCUmpR72AsYpc-Q52izKwr1EmHuW5D44NdRlLE5VBvJSxCQ-od5T30P7ICa5WkVz2QTIU3BQOgb20IdOgtKsepiHqzRmt5G-WZNeto07biN636jBmkJVFyHTjeVycjqWJ-Tj9-x4MpC8h3aCnkiAJaG3rglJSKaWAgCTiHvodac9EqQYIi6qCKyVFHjBEwoUL1qluv4VyklwjXf-N-VX6EF76sNgQ9tFm3W1cHuAg2q936yDK5yoAFY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgexgvg_G1DrZZCCFeMpI4sZPHrmrVwVpNtBUTL5bt2AJWJVOSSoW_nrOTdBsagsck58g-n32_830YobfSN5miSebBd9-LJCWeYKnvKRlnwgSBzCKbnDyZ0vEi-ngZX7ZlcmwuDHSigj9Vzol_U10g-PDjGjQPwINvD9E2gJDQGlr9wWyz64JVFTXB9KkXg9rtqgjdbmo1kKruaKBty8w17McFrKi_o0ynbUaPm2uLXD9dkMnVyaqWJ-rXHyUc_28gT9BuCzpxv5GSPfRA50_RzqC76-0ZWl-U1mFjQ6AxIEI8dBmBuDDu6Qvg0RIP102SMP6sm2QILPIMj0p9m3xWLJszXgxg2DVegDL8ucRn8Op7jvsw7GJV4e407jlajIbzwdhr72TwRByQ2iOhlCJhKUxjqEJFMmNkmNpg0YRFqQ4iHWepYSxlmdQZoSKhRIXUwM7AEso0eYG28iLX-wgnhgWxsSYO1RHzQxHBtAmiAhNQY6jpoSPgH2_XVMWduzwEc6VjYA-97yaSq7aiub1YY3kf6ZsN6XVTxuM-ondOGjYUoryycW8s5vOLGZ-S06_RZD7gSQ8dWHHhAFJspV1lQ5JUzVOAT6nfQ8edEHGYRet_EbllLafAiySgQPGyka2brtCEWEP54F9DPkY74_nknJ-fTT-9Qo-a8yAGW91rtFWXK30ICKmWR25p_AbNzgi3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk2Av43NbB2wWQoiXjCRO7OSxlFYbsFLRVky8WP7UYFVSJalU-Os556MMNASPSc6RfT77fuf7MEIvpG-1oon24LvvRZIST7DU95SMtbBBIHXkkpPPx_R0Hr27iC9aQ9HlwkAnSvhTWTvx3apeattWGAhef1uC9gGIcHkbbTt3nTO2-oPpZucFyypqAupTLwbV21USut7UaSFV_qaFth1D17An57Cq_o40a40zuoc-bvpaB5pcnawqeaJ-_FHG8f8Hcx_ttuAT9xtpeYBumewhujvo7nx7hNaTwjluXCg0BmSIh3VmIM5t_fQZcGmBh-smWRh_Mk1SBBaZxqPCXCef5ovmrBcDKK4bz0Epfl_gM3j1NcN9GHq-KnF3KvcYzUfD2eDUa-9m8EQckMojoZQiYSlMZ6hCRbS1Mkxd0GjCotQEkYl1ahlLmZZGEyoSSlRILewQLKHMkD20leWZOUA4sSyIrTN1qImYH4oIpk4QFdiAWkttDx0BD3m7tkpeu81DMFs6BvbQq24yuWorm7sLNhY3kT7fkC6bch43Eb2sJWJDIYorF__GYj6bTPmYvPkSnc8GPOmhQycyHMCKq7irXGiSqngKMCr1e-i4EyQOs-j8MCJzrOUUeJEEFCj2G_n61RWaEGcwH_5ryMfozuTtiH84G79_gnaaYyEGO95TtFUVK_MMgFIlj-rV8RN14ws6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+energy+of+the+water+exchange+reaction+and+free+energy+of+solvation+for+the+uranyl+ion+in+aqueous+solution&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Gutowski%2C+Keith+E&rft.au=Dixon%2C+David+A&rft.date=2006-07-20&rft.issn=1089-5639&rft.volume=110&rft.issue=28&rft.spage=8840&rft_id=info:doi/10.1021%2Fjp061851h&rft_id=info%3Apmid%2F16836448&rft.externalDocID=16836448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |