Topological delocalization of two-dimensional massless Dirac fermions
The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which e.g., underlies the theoretical description of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.08.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which e.g., underlies the theoretical description of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing \(g\). We also provide an argument based on the spectral flows under twisting boundary conditions, which shows that none of states of the massless Dirac Hamiltonian can be localized. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0705.1607 |