Impact of fluorine on the thermal stability of phlogopite
Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the mantle is a vast storehouse of H2O and other volatiles, the impact of coexisting volatiles on the thermal stabilities of OH and the lattice o...
Saved in:
Published in | The American mineralogist Vol. 107; no. 5; pp. 815 - 825 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Mineralogical Society of America
01.05.2022
Walter de Gruyter GmbH |
Series | American Mineralogist |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the mantle is a vast storehouse of H2O and other volatiles, the impact of coexisting volatiles on the thermal stabilities of OH and the lattice of the host mineral is still poorly understood. Phlogopite is one of the few hydrous minerals capable of carrying both water and halogens into the mantle. Previous observations from both experiments and textural relationships in natural samples have indicated that F-rich phlogopite can be stable under ultrahigh-temperature conditions. Here, the impact of F on the thermal stability of phlogopite was investigated via XRD, Raman, and IR spectroscopy from room temperature to 1000 to 1200°C. Based on the experimental results from F-poor and F-rich natural phlogopites, we show that about 4 wt% F can increase the breakdown temperature of phlogopite by 100°C under ambient pressure. The impact mechanism mainly involves preventing OH and lattice softening at high temperatures. This study reveals the links between F and the behavior of OH and phlogopite lattice, which is important for constraining volatile cycling, as well as the role of F in the physical and chemical properties of the upper mantle. |
---|---|
AbstractList | Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the mantle is a vast storehouse of H2O and other volatiles, the impact of coexisting volatiles on the thermal stabilities of OH and the lattice of the host mineral is still poorly understood. Phlogopite is one of the few hydrous minerals capable of carrying both water and halogens into the mantle. Previous observations from both experiments and textural relationships in natural samples have indicated that F-rich phlogopite can be stable under ultrahigh-temperature conditions. Here, the impact of F on the thermal stability of phlogopite was investigated via XRD, Raman, and IR spectroscopy from room temperature to 1000 to 1200 °C. Based on the experimental results from F-poor and F-rich natural phlogopites, we show that about 4 wt% F can increase the breakdown temperature of phlogopite by 100 °C under ambient pressure. The impact mechanism mainly involves preventing OH and lattice softening at high temperatures. This study reveals the links between F and the behavior of OH and phlogopite lattice, which is important for constraining volatile cycling, as well as the role of F in the physical and chemical properties of the upper mantle. Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the mantle is a vast storehouse of H2O and other volatiles, the impact of coexisting volatiles on the thermal stabilities of OH and the lattice of the host mineral is still poorly understood. Phlogopite is one of the few hydrous minerals capable of carrying both water and halogens into the mantle. Previous observations from both experiments and textural relationships in natural samples have indicated that F-rich phlogopite can be stable under ultrahigh-temperature conditions. Here, the impact of F on the thermal stability of phlogopite was investigated via XRD, Raman, and IR spectroscopy from room temperature to 1000 to 1200°C. Based on the experimental results from F-poor and F-rich natural phlogopites, we show that about 4 wt% F can increase the breakdown temperature of phlogopite by 100°C under ambient pressure. The impact mechanism mainly involves preventing OH and lattice softening at high temperatures. This study reveals the links between F and the behavior of OH and phlogopite lattice, which is important for constraining volatile cycling, as well as the role of F in the physical and chemical properties of the upper mantle. Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the mantle is a vast storehouse of H O and other volatiles, the impact of coexisting volatiles on the thermal stabilities of OH and the lattice of the host mineral is still poorly understood. Phlogopite is one of the few hydrous minerals capable of carrying both water and halogens into the mantle. Previous observations from both experiments and textural relationships in natural samples have indicated that F-rich phlogopite can be stable under ultrahigh-temperature conditions. Here, the impact of F on the thermal stability of phlogopite was investigated via XRD, Raman, and IR spectroscopy from room temperature to 1000 to 1200 °C. Based on the experimental results from F-poor and F-rich natural phlogopites, we show that about 4 wt% F can increase the breakdown temperature of phlogopite by 100 °C under ambient pressure. The impact mechanism mainly involves preventing OH and lattice softening at high temperatures. This study reveals the links between F and the behavior of OH and phlogopite lattice, which is important for constraining volatile cycling, as well as the role of F in the physical and chemical properties of the upper mantle. |
Author | Xia Qunke, Xia Qunke Wang Zhongping, Wang Zhongping Ingrin, Jannick Sun Jiaqi, Sun Jiaqi Yang Yan, Yang Yan |
Author_xml | – sequence: 1 fullname: Sun Jiaqi, Sun Jiaqi – sequence: 2 fullname: Yang Yan, Yang Yan – sequence: 3 fullname: Ingrin, Jannick – sequence: 4 fullname: Wang Zhongping, Wang Zhongping – sequence: 5 fullname: Xia Qunke, Xia Qunke |
BackLink | https://hal.univ-lille.fr/hal-03663704$$DView record in HAL |
BookMark | eNp1kFFLwzAQx4NMcE7f_AAFn0Srl6RZG3ySoW4w8EXBt5B11y0jbWqaOfbtbamoiD6EC8fvd9z9j8mgchUSckbhmlGe3egyZsBYnIGgB2RIZSJiDiwdkCEA8BggeT0ix02zgRbjQg6JnJW1zkPkiqiwW-dNhZGrorDG7vlS26gJemGsCfsOqtfWrVxtAp6Qw0LbBk8_64i8PNw_T6bx_OlxNrmbx1pQFuIUlhnTSIFRiQlKDTgGiSzFtBACKZcFLjjKhcypzNsmSkBIoEDICiYWfEQu-rlrbVXtTan9Xjlt1PRurroe8PGYp5C805Y979nau7ctNkFt3NZX7XqKjYXkjKXt3SNy1VO5d03jsfgaS0F1QSpdqi5I1QXZ4uwXnpugg3FV8NrY_6TbXtppG9AvceW3-_bzvdBfGoVUZFS09mVvr9A1ucEqx53zdvnjnE4BLjlN-QegF5iW |
CitedBy_id | crossref_primary_10_1016_j_jseaes_2024_106461 crossref_primary_10_14489_glc_2023_02_pp_009_018 crossref_primary_10_2138_am_2023_8981 crossref_primary_10_1016_j_lithos_2024_107874 crossref_primary_10_3390_cryst14040336 crossref_primary_10_1144_sjg2023_013 crossref_primary_10_1016_j_clay_2023_107166 crossref_primary_10_5940_jcrsj_66_220 |
Cites_doi | 10.2138/am-2016-5630 10.1180/minmag.1989.053.370.04 10.1016/j.epsl.2018.10.009 10.1016/S0012-821X(97)00117-9 10.1016/0012-821X(75)90208-3 10.2138/rmg.2006.62.11 10.1007/BF03354882 10.2138/am.2012.3824 10.1016/j.gca.2017.08.020 10.2138/am.2010.3523 10.1016/j.gca.2017.03.043 10.1346/CCMN.1990.0380403 10.2138/am-1996-1-225 10.1016/0016-7037(91)90386-J 10.1038/201495a0 10.1088/0022-3719/6/6/022 10.1007/s00410-011-0672-x 10.1007/BF00202028 10.1127/ejm/5/1/0007 10.1016/S0012-8252(99)00006-9 10.1127/ejm/7/6/1381 10.1093/petroj/40.4.629 10.1007/BF00371132 10.2138/am-2017-6094 10.1016/S0016-7037(00)00393-8 10.1016/j.epsl.2013.01.006 10.1016/j.vibspec.2006.04.010 10.1007/s00410-019-1614-2 10.1016/j.epsl.2014.01.020 10.1021/ja01348a011 10.1127/0935-1221/2009/0021-1903 10.1346/CCMN.1998.0460513 10.1016/j.chemgeo.2016.05.032 10.1007/s00410-016-1252-x 10.1007/978-3-0348-5775-8_58 10.1016/j.jpcs.2008.05.009 10.1126/science.255.5050.1391 10.1016/j.chemgeo.2012.09.006 10.1180/minmag.1994.58A.1.214 10.1016/j.epsl.2011.05.038 10.1007/978-3-319-61667-4_14 10.1016/j.epsl.2015.07.051 10.1016/0016-7037(87)90307-3 10.1093/petrology/egm031 10.1134/S1087659611040043 10.1007/s002690000098 10.2138/am-2004-1008 10.1016/j.lithos.2020.105859 10.2138/am-2001-11-1209 10.1130/G38788.1 10.1007/s00531-012-0782-3 10.1127/ejm/9/3/0501 10.1016/j.epsl.2019.02.022 10.2138/am.2011.3772 10.1127/0935-1221/2006/0018-0379 10.1038/nature13080 10.2138/am-1999-1-209 10.1134/S0016702909110081 10.1016/j.epsl.2016.02.054 10.1016/0883-2927(92)90031-W 10.1007/BF01167104 10.2138/am-1999-5-633 10.1016/j.gca.2009.05.054 10.1093/petrology/egi062 10.1016/j.epsl.2017.11.011 10.1007/s00269-005-0045-y 10.1016/0012-821X(78)90130-9 10.2138/am.2005.1498 10.1007/BF02871897 10.1029/2010JB007922 10.1016/j.chemgeo.2010.12.009 |
ContentType | Journal Article |
Copyright | GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America 2022 Mineralogical Society of America Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America – notice: 2022 Mineralogical Society of America – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TN F1W H96 L.G 1XC VOOES |
DOI | 10.2138/am-2022-8051 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1945-3027 |
EndPage | 825 |
ExternalDocumentID | oai_HAL_hal_03663704v1 10_2138_am_2022_8051 10_2138_am_2022_80511075815 2022_039317 |
GroupedDBID | -DZ -~X .DC 0R~ 23M 4.4 5GY 6J9 7XC 8FE 8FH 8G5 AAAEU AAFPC AAGVJ AAKRG AALGR AAPJK AAQCX AASQH AAWFE AAXCG AAXMT ABABW ABAQN ABEFU ABFKT ABJNI ABPLS ABPPZ ABVMU ABWLS ACEFL ACGFS ACGOD ACNCT ACPMA ACZBO ADEQT ADFRT ADGQD ADGYE ADOZN AEGVQ AEICA AENEX AEQDQ AERZL AFBAA AFCXV AFKRA AFRAH AFYRI AGBEV AGWTP AHVWV AHXUK AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN ATCPS AZQEC BAKPI BBCWN BBDJO BCIFA BENPR BHPHI BPHCQ CS3 DBYYV EBS EJD FRP GOHGZ GUQSH H13 HCIFZ HZ~ IY9 KDIRW LK5 M2O M2P M7R MV1 O9- OK1 PADUT PATMY PCBAR PQQKQ PROAC PYCSY QD8 R05 RGW RMN RNS SLJYH TAE TN5 UK5 WH7 WTRAM XJT ZCA ~02 ACDEB ACUND AECWL AFBDD AIWOI AAYXX CITATION 7TN ADNPR F1W H96 L.G 1XC UMC VOOES |
ID | FETCH-LOGICAL-a512t-70d82ae10219e4e9a0e609e27e7f55e139feb3e9b9c19ce7fe90e040fe08f25b3 |
ISSN | 0003-004X |
IngestDate | Fri May 09 12:11:51 EDT 2025 Sat Aug 16 15:31:54 EDT 2025 Tue Jul 01 03:21:04 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Thu Jul 10 10:35:00 EDT 2025 Tue Oct 29 04:53:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | phlogopite mantle thermal stability Fluorine water |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a512t-70d82ae10219e4e9a0e609e27e7f55e139feb3e9b9c19ce7fe90e040fe08f25b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1256-7568 |
OpenAccessLink | https://hal.univ-lille.fr/hal-03663704 |
PQID | 2659322722 |
PQPubID | 4640 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03663704v1 proquest_journals_2659322722 crossref_primary_10_2138_am_2022_8051 crossref_citationtrail_10_2138_am_2022_8051 walterdegruyter_journals_10_2138_am_2022_80511075815 geoscienceworld_journals_2022_039317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationSeriesTitle | American Mineralogist |
PublicationTitle | The American mineralogist |
PublicationYear | 2022 |
Publisher | Mineralogical Society of America Walter de Gruyter GmbH |
Publisher_xml | – name: Mineralogical Society of America – name: Walter de Gruyter GmbH |
References | Palya (2022050205052437600_B46) 2011; 281 Klemme (2022050205052437600_B32) 2018 Crépisson (2022050205052437600_B7) 2014; 390 Grützner (2022050205052437600_B19) 2017; 208 Rimsaite (2022050205052437600_B54) 1970; 25 Dymek (2022050205052437600_B9) 1983; 68 Grützner (2022050205052437600_B18) 2017; 45 Zhang (2022050205052437600_B79) 2016; 101 Libowitzky (2022050205052437600_B38) 1999; 130 Edgar (2022050205052437600_B10) 1991; 44 Holloway (2022050205052437600_B28) 1975; 25 Zema (2022050205052437600_B78) 2010; 95 Dooley (2022050205052437600_B8) 1996; 81 Robert (2022050205052437600_B57) 1988; 288 Chon (2022050205052437600_B5) 2006; 33 Robert (2022050205052437600_B58) 1993; 5 Piccinini (2022050205052437600_B51) 2006; 42 Oba (2022050205052437600_B43) 1990; 99 John (2022050205052437600_B30) 2011; 308 Vedder (2022050205052437600_B68) 1964; 49 Rywak (2022050205052437600_B60) 1996; 23 Lacalamita (2022050205052437600_B35) 2011; 96 Rieder (2022050205052437600_B53) 1998; 46 Li (2022050205052437600_B36) 2016; 171 Vedder (2022050205052437600_B69) 1969; 54 Hall (2022050205052437600_B22) 1999; 45 Tutti (2022050205052437600_B66) 2000; 27 Bebout (2022050205052437600_B1) 1997; 151 Chibisov (2022050205052437600_B4) 2011; 37 2022050205052437600_B71 Gaines (2022050205052437600_B17) 1964; 201 Papin (2022050205052437600_B47) 1997; 9 Peterson (2022050205052437600_B50) 1991; 76 Grützner (2022050205052437600_B20) 2018; 482 Roberge (2022050205052437600_B56) 2015; 429 Rimsaite (2022050205052437600_B55) 1972 Hansen (2022050205052437600_B24) 2007; 48 Beyer (2022050205052437600_B3) 2016; 437 Tlili (2022050205052437600_B64) 1989; 53 Kendrick (2022050205052437600_B31) 2013; 365 Scordari (2022050205052437600_B62) 2006; 18 Pauling (2022050205052437600_B48) 1932; 54 Fritschle (2022050205052437600_B15) 2013; 353 Halama (2022050205052437600_B21) 2014; 103 McKeown (2022050205052437600_B41) 1999; 84 Williams (2022050205052437600_B72) 1992; 7 Li (2022050205052437600_B37) 2017; 217 Robert (2022050205052437600_B59) 1999; 84 Sadofsky (2022050205052437600_B61) 2000; 64 Konzett (2022050205052437600_B33) 1999; 40 van Keken (2022050205052437600_B67) 2011; 116 Flemetakis (2022050205052437600_B12) 2021; 380-381 Frey (2022050205052437600_B14) 1978; 38 Ogorodova (2022050205052437600_B44) 2009; 47 Yang (2022050205052437600_B75) 2017; 102 Clemens (2022050205052437600_B6) 1987; 51 Prost (2022050205052437600_B52) 1990; 38 Yoshino (2022050205052437600_B77) 2018; 504 Xu (2022050205052437600_B74) 2005; 25 Bell (2022050205052437600_B2) 1992; 255 Ventruti (2022050205052437600_B70) 2009; 21 Tutti (2022050205052437600_B65) 2008; 69 Hammouda (2022050205052437600_B23) 1995; 7 Loh (2022050205052437600_B40) 1973; 6 Williams (2022050205052437600_B73) 2012; 97 Hughes (2022050205052437600_B29) 2019; 174 Liu (2022050205052437600_B39) 2019; 513 Motoyoshi (2022050205052437600_B42) 2001; 86 Pearson (2022050205052437600_B49) 2014; 507 Frost (2022050205052437600_B16) 2006; 62 Pagé (2022050205052437600_B45) 2016; 442 Yokochi (2022050205052437600_B76) 2009; 73 Hensen (2022050205052437600_B27) 1994; 58A Tacker (2022050205052437600_B63) 2004; 89 Foley (2022050205052437600_B13) 1991; 55 Henry (2022050205052437600_B26) 2005; 90 Harlov (2022050205052437600_B25) 2006; 47 Erlank (2022050205052437600_B11) 1987 Konzett (2022050205052437600_B34) 2012; 163 |
References_xml | – volume: 101 start-page: 1873 year: 2016 ident: 2022050205052437600_B79 article-title: Optical phonons, OH vibrations, and structural modifications of phlogopite at high temperatures: An in-situ infrared spectroscopic study publication-title: American Mineralogist doi: 10.2138/am-2016-5630 – volume: 53 start-page: 165 year: 1989 ident: 2022050205052437600_B64 article-title: A Raman Microprobe Study of Natural Micas publication-title: Mineralogical Magazine doi: 10.1180/minmag.1989.053.370.04 – volume: 504 start-page: 106 year: 2018 ident: 2022050205052437600_B77 article-title: Fluorine solubility in bridgmanite: A potential fluorine reservoir in the Earth’s mantle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2018.10.009 – volume: 288 start-page: 196 year: 1988 ident: 2022050205052437600_B57 article-title: Generalization of the correlation between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: a single model for trioctahedral and dioctahedral micas publication-title: American Journal of Science – volume: 151 start-page: 77 year: 1997 ident: 2022050205052437600_B1 article-title: Nitrogen isotope tracers of high-temperature fluid-rock interactions: Case study of the Catalina Schist, California publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(97)00117-9 – volume: 25 start-page: 44 year: 1975 ident: 2022050205052437600_B28 article-title: Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 Kbar publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(75)90208-3 – volume: 62 start-page: 243 year: 2006 ident: 2022050205052437600_B16 article-title: The stability of hydrous mantle phases publication-title: Reviews in Mineralogy and Geochemistry doi: 10.2138/rmg.2006.62.11 – volume: 130 start-page: 1047 year: 1999 ident: 2022050205052437600_B38 article-title: Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals publication-title: Monatshefte Für Chemie / Chemical Monthly doi: 10.1007/BF03354882 – volume: 68 start-page: 880 year: 1983 ident: 2022050205052437600_B9 article-title: Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland publication-title: American Mineralogist – volume: 97 start-page: 241 year: 2012 ident: 2022050205052437600_B73 article-title: The high-pressure behavior of micas: vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa publication-title: American Mineralogist doi: 10.2138/am.2012.3824 – volume: 217 start-page: 16 year: 2017 ident: 2022050205052437600_B37 article-title: Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2017.08.020 – volume: 95 start-page: 1458 year: 2010 ident: 2022050205052437600_B78 article-title: Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions publication-title: American Mineralogist doi: 10.2138/am.2010.3523 – volume: 208 start-page: 160 year: 2017 ident: 2022050205052437600_B19 article-title: The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2017.03.043 – volume: 38 start-page: 351 year: 1990 ident: 2022050205052437600_B52 article-title: Far-infrared study of potassium in micas publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1990.0380403 – volume: 81 start-page: 202 year: 1996 ident: 2022050205052437600_B8 article-title: Fluid-absent melting of F-rich phlogopite + rutile + quartz publication-title: American Mineralogist doi: 10.2138/am-1996-1-225 – volume: 55 start-page: 2689 year: 1991 ident: 2022050205052437600_B13 article-title: High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(91)90386-J – volume: 201 start-page: 495 year: 1964 ident: 2022050205052437600_B17 article-title: Dehydroxylation of muscovite publication-title: Nature doi: 10.1038/201495a0 – volume: 6 start-page: 1091 year: 1973 ident: 2022050205052437600_B40 article-title: Optical vibrations in sheet silicates publication-title: Journal of Physics C: Solid State Physics doi: 10.1088/0022-3719/6/6/022 – volume: 163 start-page: 277 year: 2012 ident: 2022050205052437600_B34 article-title: The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-011-0672-x – volume: 23 start-page: 418 year: 1996 ident: 2022050205052437600_B60 article-title: The crystal chemistry and thermal stability of sol-gel prepared fluoride-substituted talc publication-title: Physics and Chemistry of Minerals doi: 10.1007/BF00202028 – volume: 5 start-page: 7 year: 1993 ident: 2022050205052437600_B58 article-title: Fluorine in micas: crystal-chemical control of the OH-F distribution between trioctahedral and dioctahedral sites publication-title: European Journal of Mineralogy doi: 10.1127/ejm/5/1/0007 – volume: 45 start-page: 145 year: 1999 ident: 2022050205052437600_B22 article-title: Ammonium in granites and its petrogenetic significance publication-title: Earth-Science Reviews doi: 10.1016/S0012-8252(99)00006-9 – volume: 7 start-page: 1381 year: 1995 ident: 2022050205052437600_B23 article-title: Synthesis of fluorphlogopite single crystals. Applications to experimental studies publication-title: European Journal of Mineralogy doi: 10.1127/ejm/7/6/1381 – volume: 40 start-page: 629 year: 1999 ident: 2022050205052437600_B33 article-title: The stability of hydrous potassic phases in lherzolitic mantle-an experimental study to 9.5 GPa in simplified and natural bulk compositions publication-title: Journal of Petrology doi: 10.1093/petroj/40.4.629 – volume: 25 start-page: 225 year: 1970 ident: 2022050205052437600_B54 article-title: Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00371132 – volume: 102 start-page: 2244 year: 2017 ident: 2022050205052437600_B75 article-title: The fate of ammonium in phengite at high temperature publication-title: American Mineralogist doi: 10.2138/am-2017-6094 – volume: 64 start-page: 2835 year: 2000 ident: 2022050205052437600_B61 article-title: Ammonium partitioning and nitrogen-isotope fractionation among coexisting micas during high-temperature fluid-rock interactions: Examples from the New England Appalachians publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(00)00393-8 – volume: 365 start-page: 86 year: 2013 ident: 2022050205052437600_B31 article-title: Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2013.01.006 – volume: 42 start-page: 59 year: 2006 ident: 2022050205052437600_B51 article-title: Synchrotron radiation FT-IR micro-spectroscopy of fluorophlogopite in the O-H stretching region publication-title: Vibrational Spectroscopy doi: 10.1016/j.vibspec.2006.04.010 – volume: 174 start-page: 1 year: 2019 ident: 2022050205052437600_B29 article-title: Fluorine partitioning between humite-group minerals and aqueous fluids: implications for volatile storage in the upper mantle publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-019-1614-2 – volume: 390 start-page: 287 year: 2014 ident: 2022050205052437600_B7 article-title: Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2014.01.020 – volume: 54 start-page: 3570 year: 1932 ident: 2022050205052437600_B48 article-title: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms publication-title: Journal of the American Chemical Society doi: 10.1021/ja01348a011 – volume: 21 start-page: 385 year: 2009 ident: 2022050205052437600_B70 article-title: High-temperature treatment, hydrogen behaviour and cation partitioning of a Fe-Ti bearing volcanic phlogopite by in situ neutron powder diffraction and FTIR spectroscopy publication-title: European Journal of Mineralogy doi: 10.1127/0935-1221/2009/0021-1903 – volume: 46 start-page: 586 year: 1998 ident: 2022050205052437600_B53 article-title: Nomenclature of the micas publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1998.0460513 – volume: 437 start-page: 88 year: 2016 ident: 2022050205052437600_B3 article-title: Fluorine partitioning between eclogitic garnet, clinopyroxene, and melt at upper mantle conditions publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2016.05.032 – volume: 171 start-page: 37 year: 2016 ident: 2022050205052437600_B36 article-title: Unusually high electrical conductivity of phlogopite: the possible role of fluorine and geophysical implications publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-016-1252-x – start-page: 683 volume-title: Thermal Analysis year: 1972 ident: 2022050205052437600_B55 article-title: DTA, TG, IR and isotopic analyses and properties of phlogopite, biotite muscovite and lepidolite in temperature range of metamorphic reactions doi: 10.1007/978-3-0348-5775-8_58 – volume: 69 start-page: 2535 year: 2008 ident: 2022050205052437600_B65 article-title: Temperature-induced phase transition in phlogopite revealed by Raman spectroscopy publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/j.jpcs.2008.05.009 – volume: 255 start-page: 1391 year: 1992 ident: 2022050205052437600_B2 article-title: Water in Earth’s mantle: The role of nominally anhydrous minerals publication-title: Science doi: 10.1126/science.255.5050.1391 – volume: 76 start-page: 470 year: 1991 ident: 2022050205052437600_B50 article-title: The effects of fluorine on the vapor-absent melting of phlogopite + quartz: Implications for deep-crustal processes publication-title: American Mineralogist – volume: 353 start-page: 267 year: 2013 ident: 2022050205052437600_B15 article-title: Petrological characterization of the mantle source of Mediterranean lamproites: Indications from major and trace elements of phlogopite publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2012.09.006 – volume: 58A start-page: 410 year: 1994 ident: 2022050205052437600_B27 article-title: Experimental study of dehydration melting of F-bearing biotite in model pelitic compositions publication-title: Mineralogical Magazine doi: 10.1180/minmag.1994.58A.1.214 – volume: 308 start-page: 65 year: 2011 ident: 2022050205052437600_B30 article-title: Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2011.05.038 – start-page: 847 volume-title: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes year: 2018 ident: 2022050205052437600_B32 article-title: Halogens in the Earth’s mantle: What we know and what we don’t doi: 10.1007/978-3-319-61667-4_14 – volume: 429 start-page: 25 year: 2015 ident: 2022050205052437600_B56 article-title: Is the transition zone a deep reservoir for fluorine? publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2015.07.051 – volume: 51 start-page: 2569 year: 1987 ident: 2022050205052437600_B6 article-title: Phlogopite: High temperature solution calorimetry, thermodynamic properties, Al-Si and stacking disorder, and phase equilibria publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(87)90307-3 – volume: 48 start-page: 1641 year: 2007 ident: 2022050205052437600_B24 article-title: Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India publication-title: Journal of Petrology doi: 10.1093/petrology/egm031 – volume: 37 start-page: 441 year: 2011 ident: 2022050205052437600_B4 article-title: Effect of Fluorine Additions on the Stability of Mg3Si4O10(OH)2: Computer Simulation publication-title: Glass Physics and Chemistry doi: 10.1134/S1087659611040043 – volume: 25 start-page: 213 year: 2005 ident: 2022050205052437600_B74 article-title: Mineralogical study on fluorphlogopite from the Bayan Obo ore deposit publication-title: Acta Mineralogica Sinica – volume: 27 start-page: 599 year: 2000 ident: 2022050205052437600_B66 article-title: High-temperature study and thermal expansion of phlogopite publication-title: Physics and Chemistry of Minerals doi: 10.1007/s002690000098 – volume: 89 start-page: 1411 year: 2004 ident: 2022050205052437600_B63 article-title: Hydroxyl ordering in igneous apatite publication-title: American Mineralogist doi: 10.2138/am-2004-1008 – volume: 380-381 start-page: 105859 year: 2021 ident: 2022050205052437600_B12 article-title: Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments publication-title: Lithos doi: 10.1016/j.lithos.2020.105859 – volume: 86 start-page: 1404 year: 2001 ident: 2022050205052437600_B42 article-title: F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica publication-title: American Mineralogist doi: 10.2138/am-2001-11-1209 – volume: 45 start-page: 443 year: 2017 ident: 2022050205052437600_B18 article-title: The role of F-clinohumite in volatile recycling processes in subduction zones publication-title: Geology doi: 10.1130/G38788.1 – volume: 103 start-page: 2081 year: 2014 ident: 2022050205052437600_B21 article-title: Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle publication-title: International Journal of Earth Sciences doi: 10.1007/s00531-012-0782-3 – volume: 9 start-page: 501 year: 1997 ident: 2022050205052437600_B47 article-title: Intersite OH-F distribution in an Al-rich synthetic phlogopite publication-title: European Journal of Mineralogy doi: 10.1127/ejm/9/3/0501 – volume: 513 start-page: 95 year: 2019 ident: 2022050205052437600_B39 article-title: Intimate link between ammonium loss of phengite and the deep Earth’s water cycle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2019.02.022 – volume: 96 start-page: 1381 year: 2011 ident: 2022050205052437600_B35 article-title: Substitution mechanisms and implications for the estimate of water fugacity for Ti-rich phlogopite from Mt. Vulture, Potenza, Italy publication-title: American Mineralogist doi: 10.2138/am.2011.3772 – volume: 18 start-page: 379 year: 2006 ident: 2022050205052437600_B62 article-title: Ti-rich phlogopite from Mt. Vulture (Potenza, Italy) investigated by a multianalytical approach: substitutional mechanisms and orientation of the OH dipoles publication-title: European Journal of Mineralogy doi: 10.1127/0935-1221/2006/0018-0379 – volume: 507 start-page: 221 year: 2014 ident: 2022050205052437600_B49 article-title: Hydrous mantle transition zone indicated by ringwoodite included within diamond publication-title: Nature doi: 10.1038/nature13080 – volume: 84 start-page: 86 year: 1999 ident: 2022050205052437600_B59 article-title: Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles publication-title: American Mineralogist doi: 10.2138/am-1999-1-209 – ident: 2022050205052437600_B71 – volume: 47 start-page: 1137 year: 2009 ident: 2022050205052437600_B44 article-title: Thermodynamic properties of natural tetraferriphlogopite publication-title: Geochemistry International doi: 10.1134/S0016702909110081 – volume: 442 start-page: 133 year: 2016 ident: 2022050205052437600_B45 article-title: Halogen (F, Cl, Br, I) behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2016.02.054 – volume: 49 start-page: 736 year: 1964 ident: 2022050205052437600_B68 article-title: Correlations between infrared spectrum and chemical composition of mica publication-title: American Mineralogist – volume: 7 start-page: 123 year: 1992 ident: 2022050205052437600_B72 article-title: Diagenesis of ammonium during hydrocarbon maturation and migration, Wilcox Group, Louisiana, U.S.A publication-title: Applied Geochemistry doi: 10.1016/0883-2927(92)90031-W – volume: 44 start-page: 125 year: 1991 ident: 2022050205052437600_B10 article-title: Fluorine-bearing phases in lamproites publication-title: Mineralogy and Petrology doi: 10.1007/BF01167104 – volume: 54 start-page: 482 year: 1969 ident: 2022050205052437600_B69 article-title: Dehydroxylation and rehydroxylation, oxidation and reduction of micas publication-title: American Mineralogist – volume: 84 start-page: 970 year: 1999 ident: 2022050205052437600_B41 article-title: Raman spectra and vibrational analysis of the trioctahedral mica phlogopite publication-title: American Mineralogist doi: 10.2138/am-1999-5-633 – start-page: 221 volume-title: Mantle Metasomatism year: 1987 ident: 2022050205052437600_B11 article-title: Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa – volume: 73 start-page: 4843 year: 2009 ident: 2022050205052437600_B76 article-title: Nitrogen in peridotite xenoliths: Lithophile behavior and magmatic isotope fractionation publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2009.05.054 – volume: 47 start-page: 3 year: 2006 ident: 2022050205052437600_B25 article-title: The role of advective fluid flow and diffusion during localized, solid-state dehydration: Söndrum Stenhuggeriet, Halmstad, SW Sweden publication-title: Journal of Petrology doi: 10.1093/petrology/egi062 – volume: 482 start-page: 236 year: 2018 ident: 2022050205052437600_B20 article-title: The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2017.11.011 – volume: 33 start-page: 289 year: 2006 ident: 2022050205052437600_B5 article-title: Structural changes and oxidation of ferroan phlogopite with increasing temperature: In situ neutron powder diffraction and Fourier transform infrared spectroscopy publication-title: Physics and Chemistry of Minerals doi: 10.1007/s00269-005-0045-y – volume: 38 start-page: 129 year: 1978 ident: 2022050205052437600_B14 article-title: Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(78)90130-9 – volume: 90 start-page: 316 year: 2005 ident: 2022050205052437600_B26 article-title: The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms publication-title: American Mineralogist doi: 10.2138/am.2005.1498 – volume: 99 start-page: 81 year: 1990 ident: 2022050205052437600_B43 article-title: Experimental study on the tremohte-pargasite join at variable temperatures under 10 kbar publication-title: Journal of Earth System Science doi: 10.1007/BF02871897 – volume: 116 year: 2011 ident: 2022050205052437600_B67 article-title: Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide publication-title: Journal of Geophysical Research doi: 10.1029/2010JB007922 – volume: 281 start-page: 211 year: 2011 ident: 2022050205052437600_B46 article-title: Storage and mobility of organic nitrogen and carbon in the continental crust: Evidence from partially melted metasedimentary rocks, Mt. Stafford, Australia publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2010.12.009 |
SSID | ssj0022359 |
Score | 2.4313774 |
Snippet | Knowledge of volatile cycling is vital to understanding the evolution of the planet and the life it supports. Although it has been gradually accepted that the... |
SourceID | hal proquest crossref walterdegruyter geoscienceworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 815 |
SubjectTerms | Analytical methods Astrophysics Chemical properties Chemical Sciences Chemicophysical properties Condensed Matter Cycles Earth Sciences Experimental Halogens in Honor of Jim Webster experimental studies Fluorine geochemical cycle Geochemistry Geophysics Halogens High temperature infrared spectra Infrared spectroscopy lattice mantle Material chemistry Materials Science mica group Minerals phlogopite Physics Planetary evolution Pressure Raman spectra related to mantle Room temperature Sciences of the Universe sheet silicates silicates spectra stability Temperature thermal properties Thermal stability Ultrahigh temperature Upper mantle Volatile compounds Volatiles water water of crystallization X-ray diffraction data |
Title | Impact of fluorine on the thermal stability of phlogopite |
URI | https://pubs.geoscienceworld.org/ammin/article/107/5/815/613393/Impact-of-fluorine-on-the-thermal-stability-of https://www.degruyter.com/doi/10.2138/am-2022-8051 https://www.proquest.com/docview/2659322722 https://hal.univ-lille.fr/hal-03663704 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgV0hcKp6isKAILadVIHEejo8FLVsQcOpC4RLlMWkrbZNSUla7v56Z2HHSqkgLh0aVZTuP-TKeieebYew4lIgDIcDOPCey_Uy6dgRRalOuKTcN_SQPiZz8-Us4Pvc_ToNpF8rbsEvq9HV2vZdX8j9SxTaUK7Fk_0GyZlJswP8oXzyihPF4Ixl_MBTH4mJDkXSgv_3TDzUuUUFUHu5mH301R0VXrRb1VvjPpOOWlCfLRZOF2tCC1H6R4m8skp8LoyT0Z-bvPXCVs7Uu7UV1kDJDAfqm-_6YV-Vs1S6V-ksDOqkmrs9oT8_Gxz9Va4dSmNIPbNr73NKoqpCthk7Q04-R4m62S63iPO9qce42OduTpd1cReTolLRbybJ3FjETWohODY2Pk2VMo2MafZsdcvQiUA0ejs7enn41Hjn3AmlKKuKNKWYEjX_TP_uWzTKYgU4zCk1SWzRK5hRD23NQBpdNqEMOs_Xmqm631huLZXKPDbSrYY0Ubu6zW1A-YHfOmlLOVw-ZVOixqsJq0WNVpYXIsTR6LIMe6tSh5xE7f386eTe2dSENO0F7rraFk0c8AariLsEHmTgQOhK4AFEEAaATUEDqgUxl5soMG0E6gNq9ACcqeJB6j9lBWZXwhFlhQSnaBMgI7boEfXs0aXEZyARkfp5zd8hO2kcVZzrLPBU7uYj3CWbIXpneK5Vd5S_9jneeeqxfw1-qEzHMXTFkL1EUZibKnD4efYqpDQ210BOO_xvnOmol1ZskDNCR4YLzIfN3pNf12ndpiPUAUf30hnfyjN3tXq0jdlCvN_Aczdo6faHB-QdnXZ5W |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVAguKa-K0BYs1J6QG3v92N0DhxTaJjTtqUW5GXs9biSSOGrtVuFX8Vf4R531ixDggtQDB1-s2dVq57PnG3v2G4BdXxIOOEdTOZYwXSVtU6CITK01ZUe-G8a-Ppx8eub3L9xPI2-0Bt_rszC6rDLGy6t8kZUKqd04Vbn-UFZrDTDbEd1wSu6lNEoQprrjbDqpyipPcHFLSdv1-8FH8vAeY0eH5x_6ZtVXwAwpvGUmt2LBQtRNrSW6KEMLfUsi48gTz0PiRAmlmCgjqWyp6CZKCwnsCVoiYV7k0LwPYF1o3ZcWrPeODw4_N0keczzZdOmz3FFZbP_bon8Jg-1LrJQrsdBJpTg31mWZS5y3fVv8PW-2ZikIHm3Aj3r7ytqXr_t5Fu2rbyvKkv_T_j6BdsXIjV75CD2FNZw9g4fHRcfjxXOQg-IcqZEmRjLJdbkiGunMIN6sLwprE4MIdlFivNBG8zGNS-fE5F_Axb2sexNas3SGL8HwE61kxlEKoj8hpcDE_OhtqTgqN46Z3YF3tfsDVYmx654gk4CSMu2BIJwG2gOB9kAH9hrreSlC8he73RUkBdUb6bo00gexbd6BtwSvZiYtMN7vDQN9j_iM73DLvaG5tmv0LU3ie8T3GWesA-4KIn9a_WlpNlFTYXuv_m3YG3jUPz8dBsPB2ckWPC6gWRSdbkMru8pxh4hhFr2unkUDvtw3PO8APIBrrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVCAu4S1SClioPSE3u-vH7h44BNo0oaXiQFFurh_jViKNo9ZuFf4Uf4WfxKxfhAAXpB44-GLNrlY7nz3f2LPfAGz5mnAgJdqxw5TtxprbClVkG60pHvlumPjmcPKHI3907L6feJM1-NachTFllQmeXhSLvFJI7SdZXJgPZY3WgOCO6ofn5F5KoxRhqj9P0rqq8gAX15SzXb4Z75KDt4UY7n16N7LrtgJ2SNEttyVLlAjR9LTW6KIOGfpMo5AoU89DokQpZZioIx1zHdNN1AwJ6ykylQovcmjeW7CuXM5UB9YH-2_3Prc5nnA83TbpY-6kqrX_bc2_RMHuKdbClVjKpFKYOzNVmUuUt3td_jxvd2YpBg7vwfdm96rSly87RR7txF9XhCX_o-29D92aj1uD6gF6AGs4ewi398t-x4tHoMflKVIrS610WphiRbSymUWs2VwU1KYW0euywHhhjOZnNC6bE49_DMc3su4n0JllM3wKlp8aHTOJWhH5CSkBJt5H78pYYuwmieA9eN14P4hrKXbTEWQaUEpmHBCE54FxQGAc0IPt1npeSZD8xW5rBUhB_T66rIzMMWwue_CK0NXOZOTFR4PDwNwjNuM7krlXNNdmA76lSXyP2L6QQvTAXQHkT6s_LY0TMVXc2_i3YS_hzsfdYXA4Pjp4BndLYJYVp5vQyS8KfE6sMI9e1E-iBSc3jc4fZmVqVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+fluorine+on+the+thermal+stability+of+phlogopite&rft.jtitle=The+American+mineralogist&rft.au=Sun%2C+Jiaqi&rft.au=Yang%2C+Yan&rft.au=Ingrin%2C+Jannick&rft.au=Wang%2C+Zhongping&rft.date=2022-05-01&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=107&rft.issue=5&rft.spage=815&rft.epage=825&rft_id=info:doi/10.2138%2Fam-2022-8051&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2022_8051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon |