Global Modeled Sinking Characteristics of Biofouled Microplastic

Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timesca...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Oceans Vol. 126; no. 4; pp. e2020JC017098 - n/a
Main Authors Lobelle, Delphine, Kooi, Merel, Koelmans, Albert A., Laufkötter, Charlotte, Jongedijk, Cleo E., Kehl, Christian, van Sebille, Erik
Format Journal Article
LanguageEnglish
Published United States 01.04.2021
Subjects
Online AccessGet full text
ISSN2169-9275
2169-9291
DOI10.1029/2020JC017098

Cover

Loading…
Abstract Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stop sinking. We combine NEMO‐MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle‐tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size‐dependent as opposed to density‐dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories take the longest time to reach their first sinking depth (relative to larger particles). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 and 0.01 mm do not sink within the simulation time of 90 days. This suggests that in addition to the comparatively well‐known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1–0.01 mm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas in the equatorial Pacific they are more dependent on biofouling. The qualitative impacts of seasonality on sinking timescales are small, however, localized sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget. Plain Language Summary It is a well‐known global issue that the sea surface is polluted with microplastic, however, understanding when and how floating plastic can sink is still limited. Biofouling (algal attachment on an object’s surface) is one process that can cause microplastic’s density to be larger than its surrounding seawater and therefore sink. Microplastic experiments in the oceans are hard to execute so we generate simulations by releasing virtual particles globally at the sea surface. We include seawater and algal properties from a general circulation model and examine how long it takes for biofouled particles to sink. The smallest particles we use (0.1 microns) sink almost immediately globally, since a small number of attached algae is enough to increase their density. Coincidentally, in regions where plastic is known to accumulate due to currents converging (the five gyres), algae is scarce and hence larger particles (10 microns to 1 mm) remain afloat during our 90 days simulations. Our results also show that initial sizes of microplastic affect sinking timescales more than their initial density (where density represents different types of plastic). Our research aims to further understand how biofouling can affect sinking of microplastic globally, ultimately bringing us closer to understanding where plastic ends up in oceans. Key Points Sinking timescales of virtual particles subject to biofouling are more dependent on the initial size of particles than initial density Low algal presence in subtropical gyres and minimal biofouling can contribute to particles between 1 and 0.01 mm remaining at the surface Modeled biofouled particles of 0.1 microns start sinking almost immediately and show a global median sinking timescale of one day
AbstractList Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stop sinking. We combine NEMO‐MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle‐tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size‐dependent as opposed to density‐dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories take the longest time to reach their first sinking depth (relative to larger particles). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 and 0.01 mm do not sink within the simulation time of 90 days. This suggests that in addition to the comparatively well‐known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1–0.01 mm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas in the equatorial Pacific they are more dependent on biofouling. The qualitative impacts of seasonality on sinking timescales are small, however, localized sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget. Plain Language Summary It is a well‐known global issue that the sea surface is polluted with microplastic, however, understanding when and how floating plastic can sink is still limited. Biofouling (algal attachment on an object’s surface) is one process that can cause microplastic’s density to be larger than its surrounding seawater and therefore sink. Microplastic experiments in the oceans are hard to execute so we generate simulations by releasing virtual particles globally at the sea surface. We include seawater and algal properties from a general circulation model and examine how long it takes for biofouled particles to sink. The smallest particles we use (0.1 microns) sink almost immediately globally, since a small number of attached algae is enough to increase their density. Coincidentally, in regions where plastic is known to accumulate due to currents converging (the five gyres), algae is scarce and hence larger particles (10 microns to 1 mm) remain afloat during our 90 days simulations. Our results also show that initial sizes of microplastic affect sinking timescales more than their initial density (where density represents different types of plastic). Our research aims to further understand how biofouling can affect sinking of microplastic globally, ultimately bringing us closer to understanding where plastic ends up in oceans. Key Points Sinking timescales of virtual particles subject to biofouling are more dependent on the initial size of particles than initial density Low algal presence in subtropical gyres and minimal biofouling can contribute to particles between 1 and 0.01 mm remaining at the surface Modeled biofouled particles of 0.1 microns start sinking almost immediately and show a global median sinking timescale of one day
Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stop sinking. We combine NEMO-MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle-tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size-dependent as opposed to density-dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories take the longest time to reach their first sinking depth (relative to larger particles). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 and 0.01 mm do not sink within the simulation time of 90 days. This suggests that in addition to the comparatively well-known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1-0.01 mm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas in the equatorial Pacific they are more dependent on biofouling. The qualitative impacts of seasonality on sinking timescales are small, however, localized sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget.
Author Laufkötter, Charlotte
Kehl, Christian
Kooi, Merel
Lobelle, Delphine
Koelmans, Albert A.
van Sebille, Erik
Jongedijk, Cleo E.
Author_xml – sequence: 1
  givenname: Delphine
  orcidid: 0000-0003-1517-4815
  surname: Lobelle
  fullname: Lobelle, Delphine
  email: d.m.a.lobelle@uu.nl
  organization: Utrecht University
– sequence: 2
  givenname: Merel
  orcidid: 0000-0003-0092-5209
  surname: Kooi
  fullname: Kooi, Merel
  organization: Wageningen University
– sequence: 3
  givenname: Albert A.
  surname: Koelmans
  fullname: Koelmans, Albert A.
  organization: Wageningen University
– sequence: 4
  givenname: Charlotte
  surname: Laufkötter
  fullname: Laufkötter, Charlotte
  organization: University of Bern
– sequence: 5
  givenname: Cleo E.
  surname: Jongedijk
  fullname: Jongedijk, Cleo E.
  organization: Imperial College London
– sequence: 6
  givenname: Christian
  orcidid: 0000-0003-4200-1450
  surname: Kehl
  fullname: Kehl, Christian
  organization: Utrecht University
– sequence: 7
  givenname: Erik
  orcidid: 0000-0003-2041-0704
  surname: van Sebille
  fullname: van Sebille, Erik
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34221786$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAYhYNM3Jy781r6B6pJ3rRN7tSi1bEh-HFd8qnRrCnthuzfuzIdvjfnhfNw4JxTNGpiYxE6J_iSYCquKKZ4XmJSYMGP0ISSXKSCCjI6_EU2RrO-_8S744QzJk7QGBilpOD5BF1XISoZkmU0NliTvPjmyzfvSfkhO6nXtvP92us-iS659dHFzQAtve5iG-RgnaFjJ0NvZ786RW_3d6_lQ7p4qh7Lm0UqM0IhVdQxrZQTmTCcMuBYQWGIoQRzMADAwQqbg1YOcmWhAIOVVJYJTThnOUzRxT633aiVNXXb-ZXstvVflR0Ae-DbB7s9-ATXw1L1_6XqefVcUsYygB-5rVtJ
CitedBy_id crossref_primary_10_1016_j_marpolbul_2022_114533
crossref_primary_10_1038_s43247_023_00701_z
crossref_primary_10_1021_acs_est_2c01302
crossref_primary_10_1186_s43591_022_00041_3
crossref_primary_10_1038_s41467_024_49074_7
crossref_primary_10_1111_jiec_13269
crossref_primary_10_1016_j_envpol_2022_118808
crossref_primary_10_1038_s41467_023_37108_5
crossref_primary_10_1088_1748_9326_ac4fd9
crossref_primary_10_3390_w15203658
crossref_primary_10_3389_fenvs_2022_941910
crossref_primary_10_1007_s10641_023_01497_9
crossref_primary_10_1038_s41598_022_07080_z
crossref_primary_10_1515_bot_2023_0061
crossref_primary_10_1016_j_envpol_2025_125819
crossref_primary_10_3390_w13192690
crossref_primary_10_1186_s43591_024_00098_2
crossref_primary_10_1016_j_csr_2023_104947
crossref_primary_10_1016_j_marpolbul_2022_113755
crossref_primary_10_1016_j_scitotenv_2024_175019
crossref_primary_10_1038_s44221_024_00332_4
crossref_primary_10_1016_j_marpolbul_2025_117536
crossref_primary_10_1016_j_psep_2024_02_007
crossref_primary_10_1016_j_envpol_2024_124501
crossref_primary_10_1042_ETLS20220013
crossref_primary_10_1016_j_cageo_2023_105322
crossref_primary_10_5194_bg_19_2211_2022
crossref_primary_10_1016_j_scitotenv_2023_165637
crossref_primary_10_3390_app142210229
crossref_primary_10_3389_fmars_2022_903134
crossref_primary_10_1186_s43591_022_00048_w
crossref_primary_10_1016_j_envsoft_2021_105291
crossref_primary_10_5194_gmd_18_319_2025
crossref_primary_10_1016_j_oceano_2021_11_006
crossref_primary_10_1016_j_watres_2023_120493
crossref_primary_10_3389_fenvs_2022_940892
crossref_primary_10_1016_j_envpol_2022_119994
crossref_primary_10_1016_j_earscirev_2022_104021
crossref_primary_10_3389_fmars_2022_947309
crossref_primary_10_5194_gmd_15_1995_2022
crossref_primary_10_1088_1748_9326_ad78ed
crossref_primary_10_1111_gcb_16129
crossref_primary_10_1016_j_dsr_2024_104266
crossref_primary_10_1016_j_envpol_2024_124911
crossref_primary_10_1002_lno_12370
crossref_primary_10_1016_j_marpolbul_2022_113949
crossref_primary_10_3389_fmars_2022_925437
crossref_primary_10_3389_frans_2022_868515
crossref_primary_10_1002_lno_12330
crossref_primary_10_1088_1748_9326_ad5195
crossref_primary_10_1186_s43591_021_00019_7
crossref_primary_10_1016_j_jhazmat_2023_132742
crossref_primary_10_1038_s41467_022_30572_5
crossref_primary_10_1002_lno_11879
crossref_primary_10_1016_j_marenvres_2023_106182
crossref_primary_10_1016_j_jglr_2022_07_001
crossref_primary_10_1016_j_jhazmat_2023_131855
crossref_primary_10_1021_acs_est_2c08873
crossref_primary_10_1093_pnasnexus_pgad070
crossref_primary_10_1016_j_scitotenv_2024_174305
crossref_primary_10_1016_j_marpolbul_2023_115136
crossref_primary_10_1016_j_marpolbul_2023_114729
crossref_primary_10_5194_os_18_1477_2022
crossref_primary_10_1038_s41561_023_01216_0
crossref_primary_10_1007_s00216_023_04634_6
crossref_primary_10_1016_j_scitotenv_2022_157374
crossref_primary_10_1016_j_csr_2024_105396
crossref_primary_10_3389_fmars_2024_1534678
crossref_primary_10_1002_lno_12814
crossref_primary_10_1016_j_marpolbul_2023_114880
crossref_primary_10_3390_jmse10081009
crossref_primary_10_1007_s10236_024_01649_0
crossref_primary_10_1016_j_envpol_2023_121828
crossref_primary_10_1016_j_trac_2024_117566
crossref_primary_10_1016_j_envpol_2022_119379
ContentType Journal Article
Copyright 2021. The Authors.
Copyright_xml – notice: 2021. The Authors.
DBID 24P
NPM
DOI 10.1029/2020JC017098
DatabaseName Wiley Online Library Open Access
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2169-9291
EndPage n/a
ExternalDocumentID 34221786
JGRC24453
Genre article
Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
– fundername: Swiss National Science Foundation
  funderid: 174124
– fundername: EC, H2020, H2020 Priority Excellent Science, H2020 European Research Council (ERC)
  funderid: 715386
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
7XC
8-1
88I
8CJ
8FE
8FH
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D1J
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AEYWJ
AGHNM
AGYGG
NPM
PHGZM
PHGZT
ID FETCH-LOGICAL-a5123-b2f4cbbf959d824380b37d1d21083d33383e9e63cbf36be373d0babe49c188463
IEDL.DBID 24P
ISSN 2169-9275
IngestDate Mon Jul 21 06:04:37 EDT 2025
Wed Jan 22 16:29:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords microplastic
Lagrangian
modeling
Biofouling
Language English
License Attribution
2021. The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5123-b2f4cbbf959d824380b37d1d21083d33383e9e63cbf36be373d0babe49c188463
ORCID 0000-0003-1517-4815
0000-0003-2041-0704
0000-0003-4200-1450
0000-0003-0092-5209
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC017098
PMID 34221786
PageCount 15
ParticipantIDs pubmed_primary_34221786
wiley_primary_10_1029_2020JC017098_JGRC24453
PublicationCentury 2000
PublicationDate April 2021
2021-Apr
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of geophysical research. Oceans
PublicationTitleAlternate J Geophys Res Oceans
PublicationYear 2021
References 2018; 285
2014; 457
2019; 9
2009; 63
2019; 4
2010; 16
2019; 1–10
2013; 47
2017; 3
2017; 4
1990; 37
1973; 13
2000; 45
2019; 12
2011; 62
2017; 24
2015; 10
2020; 15
2019; 245
2019; 124
2016; 50
2012; 39
2020; 268
2020; 10
2020; 54
2014; 111
2013; 6
2017; 9
2019; 683
2020; 18
2019; 143
2017; 51
2018; 5
2020; 154
2020
1991; 22
2015; 175
2017; 12
2016; 210
2018; 52
2015
2015; 90
2012; 46
2012; 65
2003; 20
2010; 7
2014; 76
References_xml – volume: 268
  year: 2020
  article-title: Plastic pollution impacts on marine carbon biogeochemistry
  publication-title: Environmental Pollution
– volume: 45
  start-page: 569
  issue: 3
  year: 2000
  end-page: 579
  article-title: Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton
  publication-title: Limnology & Oceanography
– volume: 285
  year: 2018
  article-title: Rapid aggregation of biofilm‐covered microplastics with marine biogenic particles
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 3
  issue: 7
  year: 2017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Science Advances
– volume: 90
  start-page: 29
  year: 2015
  end-page: 43
  article-title: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS‐10 standard
  publication-title: Ocean Modelling
– start-page: 29
  year: 2015
  end-page: 56
– volume: 4
  start-page: 258
  issue: 7
  year: 2017
  end-page: 267
  article-title: Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment
  publication-title: Environmental Science and Technology Letters
– volume: 245
  start-page: 98
  issue: 2019
  year: 2019
  end-page: 110
  article-title: Bioavailability and effects of microplastics on marine zooplankton: A review
  publication-title: Environmental Pollution
– start-page: 1
  year: 2020
  end-page: 12
  article-title: The global biological microplastic particle sink
  publication-title: Scientific Reports
– volume: 24
  start-page: 293
  issue: 2
  year: 2017
  end-page: 305
  article-title: Modeling the dynamical sinking of biogenic particles in oceanic flow
  publication-title: Nonlinear Processes in Geophysics
– volume: 683
  start-page: 600
  year: 2019
  end-page: 608
  article-title: Biofilm facilitates metal accumulation onto microplastics in estuarine waters
  publication-title: The Science of the Total Environment
– volume: 63
  start-page: 884
  issue: 7
  year: 2009
  end-page: 890
  article-title: Biofouling and stability of synthetic polymers in sea water
  publication-title: International Biodeterioration & Biodegradation
– volume: 12
  start-page: 3571
  year: 2019
  end-page: 3584
  article-title: The Parcels v2.0 Lagrangian framework: New field interpolation schemes
  publication-title: Geoscientific Model Development
– volume: 7
  start-page: 3139
  issue: 10
  year: 2010
  end-page: 3151
  article-title: The most oligotrophic subtropical zones of the global ocean: Similarities and differences in terms of chlorophyll and yellow substance
  publication-title: Biogeosciences
– volume: 52
  start-page: 7111
  issue: 12
  year: 2018
  end-page: 7119
  article-title: Role of marine snows in microplastic fate and bioavailability
  publication-title: Environmental Science and Technology
– volume: 54
  start-page: 8668
  issue: 14
  year: 2020
  end-page: 8680
  article-title: Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: Implications for remediation
  publication-title: Environmental Science and Technology
– volume: 124
  start-page: 6086
  year: 2019
  end-page: 6096
  article-title: Influence of near‐surface currents on the global dispersal of marine microplastic
  publication-title: Journal of Geophysical Research: Oceans
– volume: 39
  issue: 7
  year: 2012
  article-title: The effect of wind mixing on the vertical distribution of buoyant plastic debris
  publication-title: Geophysical Research Letters
– volume: 457
  start-page: 151
  year: 2014
  end-page: 159
  article-title: Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 50
  start-page: 3239
  issue: 6
  year: 2016
  end-page: 3246
  article-title: Microplastics alter the properties and sinking rates of Zooplankton Faecal Pellets
  publication-title: Environmental Science and Technology
– volume: 16
  start-page: 354
  issue: 1–3
  year: 2010
  end-page: 380
  article-title: Thermophysical properties of seawater: A review of existing correlations and data
  publication-title: Desalination and Water Treatment
– volume: 111
  start-page: 10239
  issue: 28
  year: 2014
  end-page: 10244
  article-title: Plastic debris in the open ocean
  publication-title: Proceedings of the National Academy of Sciences
– volume: 175
  start-page: 39
  year: 2015
  end-page: 46
  article-title: Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates
  publication-title: Marine Chemistry
– volume: 15
  start-page: 1
  issue: 2
  year: 2020
  end-page: 20
  article-title: Sinking of microbial‐associated microplastics in natural waters
  publication-title: PloS One
– volume: 143
  start-page: 92
  year: 2019
  end-page: 100
  article-title: Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study
  publication-title: Marine Pollution Bulletin
– volume: 47
  start-page: 7137
  issue: 13
  year: 2013
  end-page: 7146
  article-title: Life in the “Plastisphere”: Microbial communities on plastic marine debris
  publication-title: Environmental Science and Technology
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  article-title: First evidence of plastic fallout from the North Pacific Garbage Patch
  publication-title: Scientific Reports
– volume: 51
  start-page: 7963
  issue: 14
  year: 2017
  end-page: 7971
  article-title: Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics
  publication-title: Environmental Science and Technology
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column
  publication-title: Scientific Reports
– volume: 1–10
  year: 2019
  article-title: A global mass budget for positively buoyant macroplastic debris in the ocean
  publication-title: Scientific Reports
– volume: 20
  start-page: 730
  issue: 5
  year: 2003
  end-page: 741
  article-title: Accurate and computationally efficient algorithms for potential temperature and density of seawater
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 15
  issue: 2
  year: 2020
  article-title: The physical oceanography of the transport of floating marine debris
  publication-title: Environmental Research Letters
– volume: 22
  start-page: 608
  issue: 12
  year: 1991
  end-page: 613
  article-title: Fouling of floating plastic debris under Biscayne Bay exposure conditions
  publication-title: Marine Pollution Bulletin
– volume: 12
  issue: 11
  year: 2017
  article-title: All is not lost: Deriving a top‐down mass budget of plastic at sea
  publication-title: Environmental Research Letters
– volume: 210
  start-page: 354
  year: 2016
  end-page: 360
  article-title: Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity
  publication-title: Environmental Pollution
– volume: 18
  start-page: 139
  year: 2020
  end-page: 151
  article-title: Ecology of the plastisphere
  publication-title: Nature Reviews Microbiology
– volume: 13
  start-page: 37
  year: 1973
  end-page: 51
  article-title: Viscosity of sea water solutions
  publication-title: Desalination
– volume: 4
  issue: 3
  year: 2019
  article-title: Orientation dynamics of nonspherical particles under surface gravity waves
  publication-title: Physical Review Fluids
– volume: 124
  start-page: 8558
  issue: 12
  year: 2019
  end-page: 8573
  article-title: Eulerian modeling of the three‐dimensional distribution of seven popular microplastic types in the Global Ocean
  publication-title: Journal of Geophysical Research: Oceans
– volume: 54
  year: 2020
  article-title: Marine plastic debris: A new surface for microbial colonization
  publication-title: Environmental Science and Technology
– volume: 46
  start-page: 3060
  issue: 6
  year: 2012
  end-page: 3075
  article-title: Microplastics in the marine environment: A review of the methods used for identification and quantification
  publication-title: Environmental Science and Technology
– volume: 37
  start-page: 1197
  issue: 8
  year: 1990
  end-page: 1211
  article-title: A model of the formation of marine algal flocs by physical coagulation processes
  publication-title: Deep‐Sea Research A. Oceanographic Research Papers
– volume: 52
  start-page: 12819
  issue: 21
  year: 2018
  end-page: 12828
  article-title: Global Pattern of Microplastics (MPs) in commercial food‐grade salts: Sea salt as an indicator of seawater MP pollution
  publication-title: Environmental Science and Technology
– volume: 76
  start-page: 20
  year: 2014
  end-page: 30
  article-title: Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy‐resolving model
  publication-title: Ocean Modelling
– volume: 5
  start-page: 375
  issue: 3
  year: 2018
  end-page: 386
  article-title: Microplastics in seafood and the implications for human health
  publication-title: Current Environmental Health Reports
– volume: 154
  start-page: 1
  issue: 111092
  year: 2020
  end-page: 9
  article-title: Microplastic accumulation in deep‐sea sediments from the Rockall Trough
  publication-title: Marine Pollution Bulletin
– volume: 15
  issue: 11
  year: 2020
  article-title: A spatially variable scarcity of floating microplastics in the eastern North Pacific Ocean
  publication-title: Environmental Research Letters
– volume: 9
  start-page: 1346
  issue: 9
  year: 2017
  end-page: 1360
  article-title: Sampling, isolating and identifying microplastics ingested by fish and invertebrates
  publication-title: Analytical Methods
– volume: 6
  start-page: 1767
  issue: 5
  year: 2013
  end-page: 1811
  article-title: MEDUSA‐2.0: An intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies
  publication-title: Geoscientific Model Development
– volume: 52
  start-page: 11038
  issue: 19
  year: 2018
  end-page: 11048
  article-title: Field‐based evidence for microplastic in marine aggregates and mussels: Implications for trophic transfer
  publication-title: Environmental Science and Technology
– volume: 12
  issue: 12
  year: 2017
  article-title: Effects of biofouling on the sinking behavior of microplastics
  publication-title: Environmental Research Letters
– volume: 10
  issue: 12
  year: 2015
  article-title: A global inventory of small floating plastic debris
  publication-title: Environmental Research Letters
– volume: 62
  start-page: 1596
  issue: 8
  year: 2011
  end-page: 1605
  article-title: Microplastics in the marine environment
  publication-title: Marine Pollution Bulletin
– volume: 65
  start-page: 51
  issue: 1–3
  year: 2012
  end-page: 62
  article-title: Pathways of marine debris derived from trajectories of Lagrangian drifters
  publication-title: Marine Pollution Bulletin
– start-page: 431
  year: 2020
  end-page: 453
  article-title: Sinking microplastics in the water column: Simulations in the Mediterranean Sea
  publication-title: Ocean Science
SSID ssj0000818449
Score 2.4680746
Snippet Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e2020JC017098
SubjectTerms Biofouling
Lagrangian
microplastic
modeling
Title Global Modeled Sinking Characteristics of Biofouled Microplastic
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JC017098
https://www.ncbi.nlm.nih.gov/pubmed/34221786
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LAgJ8aa8lIERi8R2nHgDIkpVqaUCKnWLcn5ILEkF7f_n7ERVGFmy2PJwlv19d_n8HSF3GaSSZ5xRcFVGhYCYVsIYmohEO8mFBRPUFlM5movxIl10BTf_Fqb1h9gU3PzJCPe1P-AV_HRmA94jE7P2eFx4-xeVb5Nd_7rWdzBgYrapsXi7NhEYMEukooplaad9xyUe-gv08KfPUQPIDA_JQccOo6d2O4_Ilq2Pyf6btlXdWUufkMfWpj-ahB42Jvpoux9ExV_r5ahx0fNX45q1nzTxurslMmUcOiXz4ctnMaJdHwRaIRxzCswJDeBUqkzOvEU88MwkBrO1nBvuk0yrrOQaHJdgMfQmhgqsUDrJkV_wM7JTN7W9IBG4DG9aCTyuUmG1wJAkiGKJZipluc4H5LyNQ7lszS5KLhhmLbkckPsQmM1A-HvNVNkPYzl-fS-QMKT88n_Tr8ge82KRIIm5Jjur77W9QbRfwW3YUvxOZ5NfBJygzA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDCAkxDflMwMjFontOPEGRJRQ2oKglbpF8ZfEklSo_f-cnagKI7MtD8-x37vz5R1Ct4mMOU0owdKWCWZMhrhkWuOIRcpyyozUvtpiwvMZG87jedvn1P0L0_hDrBNu7mT4-9odcJeQbt0GnEkmhO3hMHP-LyLdRFsMpLn7rAn7WCdZnF8b8xKYRFxgQZK4LX6HJe67C3QIqCtSPcsM9tFeKw-Dx2Y_D9CGqQ7R7rsyZdV6Sx-hh8anPxj7JjY6-GraHwTZX-_loLbB03dt65WbNHaFdwuQyjB0jGaD52mW47YRAi6BjymWxDIlpRWx0ClxHvGSJjrSEK6lVFMXZRphOFXSUi4NYK9DWUrDhIpSEBj0BPWqujJnKJA2gauWSxqWMTOKASQR0FikiIhJqtI-Om1wKBaN20VBGYGwJeV9dOeBWQ_452siii6MxfDlMwPFENPz_02_Qdv5dDwqRq-Ttwu0Q1zliK-PuUS95c_KXAH1L-W1395fFvOjNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELSgSAghId6UZw4csUhsx4lvQKCUQksFVOotyvohcUki1P4_thNV4cjZlg9j2Tu7Hs8idJ1AzGlCCQZTJJgxCHHBlMIRi6ThlGlQXm0x4cMZG83jeVtwc39hGn-IVcHNnQx_X7sDXivTmg04j0ybtYejzNm_iHQdbbj3PifpI2y6qrE4uzbmGTCJuMCCJHGrfbdL3HYX6MSfLkf1QWawi3ZadhjcN9u5h9Z0uY-236UuytZa-gDdNTb9wdj3sFHBZ9P9IMj-Wi8HlQkevitTLd2ksdPd1ZYp26FDNBs8fWVD3PZBwIUNxxQDMUwCGBELlRJnEQ80UZGy2VpKFXVJphaaUwmGctAWehVCAZoJGaWWX9Aj1CurUp-gAExib1oONCxipiWzkEQ2ikWSiJikMu2j4waHvG7MLnLKiM1aUt5HNx6Y1YB_vSYi78KYj54_MksYYnr6v-lXaHP6OMjfXiavZ2iLON2IV8eco97iZ6kvbOBfwKXf3V9aTaJe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Modeled+Sinking+Characteristics+of+Biofouled+Microplastic&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=Lobelle%2C+Delphine&rft.au=Kooi%2C+Merel&rft.au=Koelmans%2C+Albert+A.&rft.au=Laufk%C3%B6tter%2C+Charlotte&rft.date=2021-04-01&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=126&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JC017098&rft.externalDBID=10.1029%252F2020JC017098&rft.externalDocID=JGRC24453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon