Study of a 3D Ginzburg-Landau functional with a discontinuous pinning term

In a convex domain \(\O\subset\R^3\), we consider the minimization of a 3D-Ginzburg-Landau type energy \(E_\v(u)=1/2\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2\) with a discontinuous pinning term \(a\) among \(H^1(\O,\C)\)-maps subject to a Dirichlet boundary condition \(g\in H^{1/2}(\p\O,\S^1)\)....

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Santos, Mickaël Dos
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 31.08.2012
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1103.3924

Cover

Abstract In a convex domain \(\O\subset\R^3\), we consider the minimization of a 3D-Ginzburg-Landau type energy \(E_\v(u)=1/2\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2\) with a discontinuous pinning term \(a\) among \(H^1(\O,\C)\)-maps subject to a Dirichlet boundary condition \(g\in H^{1/2}(\p\O,\S^1)\). The pinning term \(a:\R^3\to\R^*_+\) takes a constant value \(b\in(0,1)\) in \(\o\), an inner strictly convex subdomain of \(\O\), and 1 outside \(\o\). We prove energy estimates with various error terms depending on assumptions on \(\O,\o\) and \(g\). In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of \(g\) (the singularities are polarized and quantified by their degrees which are \(\pm 1\)), vorticity defects are geodesics (computed w.r.t. a geodesic metric \(d_{a^2}\) depending only on \(a\)) joining two paired singularities of \(g\) \(p_i & n_{\sigma(i)}\) where \(\sigma\) is a minimal connection (computed w.r.t. a metric \(d_{a^2}\)) of the singularities of \(g\) and \(p_1,...p_k\) are the positive (resp. \(n_1,...,n_k\) the negative) singularities.
AbstractList In a convex domain \(\O\subset\R^3\), we consider the minimization of a 3D-Ginzburg-Landau type energy \(E_\v(u)=1/2\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2\) with a discontinuous pinning term \(a\) among \(H^1(\O,\C)\)-maps subject to a Dirichlet boundary condition \(g\in H^{1/2}(\p\O,\S^1)\). The pinning term \(a:\R^3\to\R^*_+\) takes a constant value \(b\in(0,1)\) in \(\o\), an inner strictly convex subdomain of \(\O\), and 1 outside \(\o\). We prove energy estimates with various error terms depending on assumptions on \(\O,\o\) and \(g\). In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of \(g\) (the singularities are polarized and quantified by their degrees which are \(\pm 1\)), vorticity defects are geodesics (computed w.r.t. a geodesic metric \(d_{a^2}\) depending only on \(a\)) joining two paired singularities of \(g\) \(p_i & n_{\sigma(i)}\) where \(\sigma\) is a minimal connection (computed w.r.t. a metric \(d_{a^2}\)) of the singularities of \(g\) and \(p_1,...p_k\) are the positive (resp. \(n_1,...,n_k\) the negative) singularities.
Nonlinear Analysis: Theory, Methods and Applications 75, 17 (2012) 6275-6296 In a convex domain $\O\subset\R^3$, we consider the minimization of a 3D-Ginzburg-Landau type energy $E_\v(u)=1/2\int_\O|\n u|^2+\frac{1}{2\v^2}(a^2-|u|^2)^2$ with a discontinuous pinning term $a$ among $H^1(\O,\C)$-maps subject to a Dirichlet boundary condition $g\in H^{1/2}(\p\O,\S^1)$. The pinning term $a:\R^3\to\R^*_+$ takes a constant value $b\in(0,1)$ in $\o$, an inner strictly convex subdomain of $\O$, and 1 outside $\o$. We prove energy estimates with various error terms depending on assumptions on $\O,\o$ and $g$. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of $g$ (the singularities are polarized and quantified by their degrees which are $\pm 1$), vorticity defects are geodesics (computed w.r.t. a geodesic metric $d_{a^2}$ depending only on $a$) joining two paired singularities of $g$ $p_i & n_{\sigma(i)}$ where $\sigma$ is a minimal connection (computed w.r.t. a metric $d_{a^2}$) of the singularities of $g$ and $p_1,...p_k$ are the positive (resp. $n_1,...,n_k$ the negative) singularities.
Author Mickaël Dos Santos
Author_xml – sequence: 1
  givenname: Mickaël Dos
  surname: Santos
  fullname: Santos, Mickaël Dos
  organization: LAMA
BackLink https://doi.org/10.48550/arXiv.1103.3924$$DView paper in arXiv
https://doi.org/10.1016/j.na.2012.07.004$$DView published paper (Access to full text may be restricted)
BookMark eNotz8FPwyAUx3FiNHHO3T0ZEs-t8CiUHs3UqWniwd0b2sJk2WBCUedfb-c8vcs3L7_PBTp13mmErijJC8k5uVXh237mlBKWswqKEzQBxmgmC4BzNItxTQgBUQLnbIJe3obU77E3WGF2jxfW_bQprLJauV4lbJLrBuud2uAvO7yPUW9j591gXfIp4p11zroVHnTYXqIzozZRz_7vFC0fH5bzp6x-XTzP7-pMcQoZFZ2BjssOoO17IURZjmtaqGhLjCkFK6QmpOJFz3lJqVCtLpRpCWMSRCU1m6Lr49s_Z7MLdqvCvjl4m4N3DG6OwS74j6Tj0Kx9CiMhNkCkAClKDuwXw11Yow
ContentType Paper
Journal Article
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1103.3924
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1103_3924
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a512-16cf2c58c22bdd66677026b291b0ff76348e00954d557116abe4afb03382698e3
IEDL.DBID GOX
IngestDate Wed Jul 23 00:23:27 EDT 2025
Mon Jun 30 09:29:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a512-16cf2c58c22bdd66677026b291b0ff76348e00954d557116abe4afb03382698e3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1103.3924
PQID 2086286752
PQPubID 2050157
ParticipantIDs arxiv_primary_1103_3924
proquest_journals_2086286752
PublicationCentury 2000
PublicationDate 20120831
PublicationDateYYYYMMDD 2012-08-31
PublicationDate_xml – month: 08
  year: 2012
  text: 20120831
  day: 31
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4912686
SecondaryResourceType preprint
Snippet In a convex domain \(\O\subset\R^3\), we consider the minimization of a 3D-Ginzburg-Landau type energy \(E_\v(u)=1/2\int_\O|\n...
Nonlinear Analysis: Theory, Methods and Applications 75, 17 (2012) 6275-6296 In a convex domain $\O\subset\R^3$, we consider the minimization of a...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Boundary conditions
Computation
Defects
Dirichlet problem
Energy conservation
Geodesy
Mathematics - Analysis of PDEs
Pinning
Singularities
Vorticity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFRIbbwoFeWC1qB3HSSYGoK0qQAxF6hb5KXVJSh8I-PXcOQEGJNbEi8_W3X3f3fkj5EorbpX2gWkIz0xam7PcGc2c40Zrb4WJKhGPT2r8IiezdNYSbqu2rfLbJ0ZH7WqLHDmA9BynKLNU3CxeGapGYXW1ldDYJl0OkQbveT4c_XAsQmWQMSdNdTI-3XWtl-_zN-x9TwDt45h7N37544ljeBnuke6zXvjlPtny1QHZiV2ZdnVIJtjl90HrQDVN7uhoXn1iVYQ9IPzfUIxJDZVHkU6FRThjW6P2wwYAPV3Mox4RRe97RKbD--ntmLXiB2A1LhhXNgib5lYI4xxgjCyD7RhRcDMIAZyCzD2mR9Klaca50sZLHcwAEKdQRe6TY9Kp6sqfEioz4YNMABqZQsoCFsBaEaRLktQ7JXrkJNqgXDTvW5RonRKt0yP9b6uU7dVelb8Hcfb_73OyC9mFaAjYPumslxt_ARF8bS7jMX0B0z-aew
  priority: 102
  providerName: ProQuest
Title Study of a 3D Ginzburg-Landau functional with a discontinuous pinning term
URI https://www.proquest.com/docview/2086286752
https://arxiv.org/abs/1103.3924
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIL4KpXhgjWgujpOMfLSpKloQKlK3yI5tqUta9QMBA7-dc5KyIJYM1svynPjdO9t3ADdS-LmQxnqS5NnjeR57sVbS09pXUpocVdklYjwRwzc-moWzBlzv7sLI1cf8vaoPrNa3pE0BuXLkTWgiOm-VPs-qzcayElcN_4VRhFmO_FlYS7UYHMJBHeaxu2pejqBhimMYuUN7n2xhmWTBI0vnxZfb5PCenJvfMicxVWaOuewogdyV2YVr5bAlf86W87K9EHOL6QlMB_3pw9CrexkQCT56vsgt5mGcIyqtyTJEEZkfhYmvetbSP85j46IdrsMw8n0hleHSqh4ZSBRJbIJTaBWLwpwD4xEaywNyOirhPCEAYdFyHQSh0QLbcFZykC2rchWZYydz7LShs2Mlq7_UdYbO08RkG_Di3xcvYZ_iBKxSqR1obVZbc0VavFFdaMaDtAt79_3Jy2u3nB96jr_7Pwx6jRQ
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLVKKwQ3dgoF5gDHAJlMlh4QEhTorgoViVs0W6RemtIFKP_EP2InLRyQuHFNrCiyZ-znN_YY4FQGrg6kTRyJ4dkRWkdOZJR0jHGVlFZzlU2J6HSD-pNoPvvPBfhc9sJQWeXSJ2aO2qSaOHJM0iPqogx9fj16cWhqFJ2uLkdo5MuiZedvmLJNrho1tO8Z5_d3_du6s5gqgL_jcscNdMK1H2nOlTEI3sMQ0xDFq666TBLcbSKyhDuE8f3QdQOprJCJusRUjgfVyHr42RUoCWpoLULp5q7be_wmdXgQIkT38uPQ7K6wCzl-H7xSsb13jlBEIAbOnvxy_Vk8u9-AUk-O7HgTCna4BatZGaiebEOTygrnLE2YZF6NPQyGH3QM47SJb5gxCoI5d8iIv0UhaupNadjELJ1N2GiQDUBi5O53oP8fetmF4jAd2n1gIuQ2ER7mYqoqRBUFUJYnwnieb03Ay7CX6SAe5RdqxKSdmLRThspSK_FiL03iH8sf_P36BNbq_U47bje6rUNYR2jDc_a3AsXpeGaPED5M1fHCaAzif14mX6cU1iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+a+3D+Ginzburg-Landau+functional+with+a+discontinuous+pinning+term&rft.jtitle=arXiv.org&rft.au=Micka%C3%ABl+Dos+Santos&rft.date=2012-08-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1103.3924