Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein–Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV‑2
Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as pote...
Saved in:
Published in | ACS infectious diseases Vol. 7; no. 6; pp. 1519 - 1534 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50’s of 0.2–3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50’s (6–7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular. |
---|---|
AbstractList | Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50’s of 0.2–3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50’s (6–7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular. Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable / less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound-library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel drug-like compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC 50 s of 0.2-3.0 μM); whereas, control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC 50 s (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular. Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular. Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC 's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC 's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular. |
Author | Bojadzic, Damir Chen, Jinshui Chuang, Sung-Ting Alcazar, Oscar Buchwald, Peter Condor Capcha, Jose M Shehadeh, Lina A |
AuthorAffiliation | Interdisciplinary Stem Cell Institute Peggy and Harold Katz Family Drug Discovery Center Diabetes Research Institute Division of Cardiology Department of Molecular and Cellular Pharmacology, Miller School of Medicine |
AuthorAffiliation_xml | – name: Department of Molecular and Cellular Pharmacology, Miller School of Medicine – name: Division of Cardiology – name: Diabetes Research Institute – name: Interdisciplinary Stem Cell Institute – name: Peggy and Harold Katz Family Drug Discovery Center |
Author_xml | – sequence: 1 givenname: Damir surname: Bojadzic fullname: Bojadzic, Damir – sequence: 2 givenname: Oscar surname: Alcazar fullname: Alcazar, Oscar – sequence: 3 givenname: Jinshui orcidid: 0000-0001-8332-602X surname: Chen fullname: Chen, Jinshui – sequence: 4 givenname: Sung-Ting surname: Chuang fullname: Chuang, Sung-Ting – sequence: 5 givenname: Jose M surname: Condor Capcha fullname: Condor Capcha, Jose M – sequence: 6 givenname: Lina A surname: Shehadeh fullname: Shehadeh, Lina A – sequence: 7 givenname: Peter orcidid: 0000-0003-2732-8180 surname: Buchwald fullname: Buchwald, Peter email: pbuchwald@med.miami.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33979123$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1uFDEQhS0URELICZCQl2w68U__skAaWgNECgIxkK3lscuMk257YrsjZZcrRNwwJ8HRDNHAAlZVUr3vVanec7TnvAOEXlJyTAmjJ1JF6wwobeMxVYSQhjxBB4w3vGgZa_Z2-n10FONFllDeVmVZPUP7nHdNRxk_QHeLUQ5D8ckPoKYB8Klb2aVNPkTsDU4rwL0P3slrG6aIF2t7CW_wrJ8z_CX4BNbd3_7cdplNEKRK1jssI343eHUJG6NzG-SAZylJtRrBJSydxnOXwg02PuDF7Oui6P35_e0de4GeGjlEONrWQ_T9_fxb_7E4-_zhtJ-dFbKiNBWgoCZ1SyspTdMoIo2pG6a1LpeSA2nLlgCtjWKEG2ZAE64lU7opK8OoZpoforcb3_W0HEGrfFW-UayDHWW4EV5a8efE2ZX44a9FSzmpKc0Gr7cGwV9NEJMYbVQwDNKBn6JgFas5YWXXZemr3V2PS37nkAV8I1DBxxjAPEooEQ-Bi53AxTbwTHV_Ucom-fD_fLAd_sOebNg8FBd-Ci4_-5_EL4DuyVU |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1011596 crossref_primary_10_1021_acs_jcim_4c01110 crossref_primary_10_1016_j_phymed_2022_154324 crossref_primary_10_3390_molecules28093908 crossref_primary_10_1021_acscentsci_2c01190 crossref_primary_10_1016_j_cbi_2023_110380 crossref_primary_10_1021_acs_jcim_3c01385 crossref_primary_10_1021_jacs_1c11554 crossref_primary_10_1016_j_sbi_2021_11_003 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1186_s12929_022_00847_6 crossref_primary_10_1016_j_compbiomed_2022_105668 crossref_primary_10_1080_07391102_2023_2204505 crossref_primary_10_1007_s11030_024_11047_9 crossref_primary_10_1016_j_antiviral_2022_105514 crossref_primary_10_1016_j_virol_2023_07_006 crossref_primary_10_1080_07391102_2022_2103587 crossref_primary_10_1016_j_cellin_2023_100144 crossref_primary_10_1016_j_ijbiomac_2024_137059 crossref_primary_10_1021_acs_analchem_2c05464 crossref_primary_10_1021_acschembio_3c00568 crossref_primary_10_1007_s11030_022_10394_9 crossref_primary_10_1007_s12272_022_01401_6 crossref_primary_10_3389_fmed_2022_874611 crossref_primary_10_1002_jev2_12170 crossref_primary_10_1016_j_heliyon_2024_e30044 crossref_primary_10_1038_s44318_024_00281_4 crossref_primary_10_1089_mab_2022_29009_editorial crossref_primary_10_1080_07391102_2023_2300060 crossref_primary_10_3390_ijms26020678 crossref_primary_10_3390_pharmaceutics16050613 crossref_primary_10_3389_fddsv_2022_1085701 crossref_primary_10_1186_s13568_024_01739_8 crossref_primary_10_1039_D3RA06479D crossref_primary_10_3390_ph15091084 crossref_primary_10_1016_j_jbc_2022_101710 crossref_primary_10_1007_s00894_024_06006_y crossref_primary_10_3390_ijms23116083 crossref_primary_10_1002_chem_202403039 crossref_primary_10_1016_j_jgr_2022_07_003 crossref_primary_10_3390_pharmaceutics14010176 crossref_primary_10_1093_pcmedi_pbac024 crossref_primary_10_3390_ijms231810716 crossref_primary_10_1016_j_apsb_2021_06_016 crossref_primary_10_3389_fddsv_2022_898035 crossref_primary_10_1007_s11224_022_01887_2 crossref_primary_10_3390_biotech14010020 crossref_primary_10_1080_1062936X_2024_2306336 crossref_primary_10_2217_fmb_2023_0134 crossref_primary_10_3390_ijms242115894 crossref_primary_10_1016_j_biopha_2024_117517 crossref_primary_10_1016_j_compbiomed_2021_104634 crossref_primary_10_1016_j_chemphys_2023_111995 crossref_primary_10_1016_j_antiviral_2023_105735 crossref_primary_10_3390_ijms25116105 crossref_primary_10_1080_14756366_2023_2244693 crossref_primary_10_1021_acsomega_4c08640 crossref_primary_10_3390_chemosensors11020135 crossref_primary_10_1021_acschembio_2c00735 crossref_primary_10_1002_cmdc_202200440 crossref_primary_10_1021_acs_analchem_2c05043 crossref_primary_10_3390_molecules26185724 crossref_primary_10_3389_fcvm_2022_957006 crossref_primary_10_4155_fmc_2023_0257 crossref_primary_10_3390_ph17091240 crossref_primary_10_1002_pca_3088 crossref_primary_10_3389_fnano_2023_1186386 crossref_primary_10_1016_j_peptides_2022_170898 crossref_primary_10_1039_D4MD00286E crossref_primary_10_3390_ijms25094955 crossref_primary_10_1038_s41392_024_02036_3 crossref_primary_10_1021_jacs_4c15843 crossref_primary_10_3389_fphar_2022_955648 crossref_primary_10_1016_j_drudis_2022_06_012 crossref_primary_10_3390_ph15050621 crossref_primary_10_4236_ojbiphy_2022_122005 crossref_primary_10_1016_j_jmgm_2022_108206 crossref_primary_10_3390_ijms222212243 crossref_primary_10_1002_cbdv_202300957 crossref_primary_10_2147_JIR_S431222 crossref_primary_10_1111_febs_16662 crossref_primary_10_1371_journal_pcbi_1011955 crossref_primary_10_1021_acsinfecdis_2c00297 |
Cites_doi | 10.1126/science.abc6156 10.1002/0471140864.ps2809s79 10.1098/rsif.2006.0115 10.1001/jama.2017.5150 10.1126/science.abc5881 10.1021/jm010533y 10.1021/acs.jmedchem.7b00229 10.1126/science.1241475 10.1111/j.1399-5448.2008.00401.x 10.1097/00045391-200307000-00009 10.1038/s41586-020-2918-0 10.1126/science.abc7424 10.1016/j.ejmech.2004.01.007 10.1038/nrd.2016.23 10.1038/nm.3048 10.1016/j.bcp.2010.12.020 10.1161/CIRCULATIONAHA.120.047549 10.1126/science.abc2241 10.1021/acs.jmedchem.0c00502 10.1016/j.drudis.2006.05.014 10.1038/nprot.2006.77 10.1111/bph.14153 10.1016/j.bcp.2009.01.001 10.1016/S1473-3099(18)30044-6 10.1038/nrd2399 10.1007/s00125-019-04996-6 10.3109/03602539109029761 10.1038/s41591-021-01285-x 10.1038/nature06526 10.1038/s41423-020-0400-4 10.1021/jm070533j 10.1128/AAC.00900-20 10.1146/annurev-pharmtox-061220-093932 10.1038/513481a 10.1021/jm049137g 10.1038/s41467-020-16256-y 10.1038/s41587-020-0631-z 10.1016/j.neurobiolaging.2010.12.012 10.1016/j.drudis.2009.11.007 10.1016/j.bmc.2011.12.040 10.1016/j.chembiol.2015.04.019 10.1128/JVI.02232-14 10.1016/S0954-6111(99)90260-3 10.1084/jem.20200678 10.1021/acs.jcim.6b00465 10.1038/s41586-020-2286-9 10.1371/journal.ppat.1004166 10.1038/nmeth.2089 10.1038/nchembio0306-112 10.1371/journal.pcbi.1000695 10.3389/fphar.2020.600372 10.1101/2020.03.19.999318 10.1007/s10822-006-9040-8 10.1021/cr400698c 10.1021/acs.jmedchem.7b01337 10.1126/science.abb8925 10.1124/jpet.119.264143 10.1021/acs.jmedchem.7b00717 10.3389/fimmu.2020.02055 10.1002/JLB.3COVA0820-410RRR 10.2174/1389450116666150223115628 10.1007/978-3-540-79086-0_7 10.2174/1568026618666180531092503 10.1177/1087057106296688 10.1021/acs.jmedchem.7b00318 10.3389/fonc.2020.00657 10.1128/JVI.00560-06 10.1002/anie.201707816 10.1038/440388a 10.3389/fcvm.2020.618651 10.1007/s11739-012-0844-3 10.3390/molecules23051153 10.1021/acs.jmedchem.0c00606 10.1016/S0300-9084(99)80001-7 10.1056/NEJMoa063842 10.1111/bph.12819 10.1038/nature18615 10.1126/science.abb9332 10.1101/2020.08.12.246389 10.1038/nprot.2007.321 10.1038/s41594-019-0233-y 10.1002/iub.383 10.1016/j.ijantimicag.2020.105923 10.1021/acschembio.7b00903 10.1126/science.295.5557.1086 10.1021/acs.jmedchem.7b01154 10.1038/s41586-020-2180-5 10.1038/s41598-020-70220-w 10.1007/s00109-009-0519-3 10.1126/sciadv.abd3916 10.1021/jo00408a041 10.1016/j.chembiol.2004.07.013 10.1016/j.pharmthera.2017.02.027 10.1126/science.abd0831 10.1038/s41586-020-2380-z 10.1038/nrmicro2090 10.1016/j.ejca.2020.05.026 10.1016/j.phrs.2020.104859 10.2174/156802607780906726 10.1016/S0169-409X(96)00423-1 10.1101/2020.08.14.251090 10.1038/nature04444 10.1128/JVI.00998-13 10.1073/pnas.2003138117 10.1016/j.drudis.2017.05.017 10.2741/e400 10.1002/jmv.25726 10.1021/acsptsci.0c00161 10.1126/science.abd4585 10.1126/science.abc3517 10.1016/S1473-3099(20)30244-9 10.1126/science.abd2321 10.1016/j.jinf.2020.03.037 10.1016/j.drudis.2020.06.017 10.1038/nrd.2016.29 10.1016/j.ijantimicag.2020.106202 10.1056/NEJMoa2023184 10.3389/fchem.2014.00062 10.1002/9781118407738 10.1038/s41467-020-15562-9 10.1038/nrd1343 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsinfecdis.1c00070 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2373-8227 |
EndPage | 1534 |
ExternalDocumentID | PMC8130611 33979123 10_1021_acsinfecdis_1c00070 b430897842 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: S10 OD021758 |
GroupedDBID | 53G ABFRP ABMVS ABUCX ACGFS ACS AEESW AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS GGK UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a511t-ece606815aaf77c0aff672ddd4ba3e08480e16fc203f2fed03da2cd745f21d2d3 |
IEDL.DBID | ACS |
ISSN | 2373-8227 |
IngestDate | Thu Aug 21 18:35:36 EDT 2025 Fri Jul 11 10:19:44 EDT 2025 Mon Jul 21 05:47:46 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Tue Jul 01 01:32:34 EDT 2025 Sun Jun 13 13:37:22 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | ACE2 coronavirus SARS-CoV-2 protein−protein interaction antiviral spike protein |
Language | English |
License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a511t-ece606815aaf77c0aff672ddd4ba3e08480e16fc203f2fed03da2cd745f21d2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS DB performed the binding assays; DB and STC the thermal shift assays; OA, STC, and JMCC the pseudovirus assays; JC the chemical synthesis; LAS provided materials and analyzed the data. PB originated and designed the project, provided study guidance, analyzed the data, and wrote the draft manuscript. All authors contributed to writing and read the final manuscript. |
ORCID | 0000-0003-2732-8180 0000-0001-8332-602X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8130611 |
PMID | 33979123 |
PQID | 2526302499 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8130611 proquest_miscellaneous_2526302499 pubmed_primary_33979123 crossref_primary_10_1021_acsinfecdis_1c00070 crossref_citationtrail_10_1021_acsinfecdis_1c00070 acs_journals_10_1021_acsinfecdis_1c00070 |
ProviderPackageCode | ABFRP ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX GGK AQSVZ W1F UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-11 |
PublicationDateYYYYMMDD | 2021-06-11 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS infectious diseases |
PublicationTitleAlternate | ACS Infect. Dis |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 Bistas E. (ref73/cit73) 2020 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref124/cit124 ref64/cit64 ref54/cit54 ref6/cit6 Roterman I. (ref98/cit98) 1993; 44 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1126/science.abc6156 – ident: ref85/cit85 doi: 10.1002/0471140864.ps2809s79 – ident: ref90/cit90 doi: 10.1098/rsif.2006.0115 – ident: ref32/cit32 doi: 10.1001/jama.2017.5150 – ident: ref16/cit16 doi: 10.1126/science.abc5881 – ident: ref100/cit100 doi: 10.1021/jm010533y – ident: ref80/cit80 doi: 10.1021/acs.jmedchem.7b00229 – ident: ref49/cit49 doi: 10.1126/science.1241475 – ident: ref53/cit53 doi: 10.1111/j.1399-5448.2008.00401.x – ident: ref72/cit72 doi: 10.1097/00045391-200307000-00009 – ident: ref10/cit10 doi: 10.1038/s41586-020-2918-0 – ident: ref21/cit21 doi: 10.1126/science.abc7424 – ident: ref65/cit65 doi: 10.1016/j.ejmech.2004.01.007 – ident: ref47/cit47 doi: 10.1038/nrd.2016.23 – ident: ref45/cit45 doi: 10.1038/nm.3048 – ident: ref59/cit59 doi: 10.1016/j.bcp.2010.12.020 – ident: ref1/cit1 doi: 10.1161/CIRCULATIONAHA.120.047549 – ident: ref19/cit19 doi: 10.1126/science.abc2241 – ident: ref23/cit23 doi: 10.1021/acs.jmedchem.0c00502 – ident: ref101/cit101 doi: 10.1016/j.drudis.2006.05.014 – ident: ref102/cit102 doi: 10.1038/nprot.2006.77 – ident: ref78/cit78 doi: 10.1111/bph.14153 – ident: ref58/cit58 doi: 10.1016/j.bcp.2009.01.001 – ident: ref75/cit75 doi: 10.1016/S1473-3099(18)30044-6 – ident: ref28/cit28 doi: 10.1038/nrd2399 – ident: ref57/cit57 doi: 10.1007/s00125-019-04996-6 – ident: ref96/cit96 doi: 10.3109/03602539109029761 – volume: 44 start-page: 213 issue: 3 year: 1993 ident: ref98/cit98 publication-title: J. Physiol. Pharmacol. – ident: ref27/cit27 doi: 10.1038/s41591-021-01285-x – ident: ref39/cit39 doi: 10.1038/nature06526 – ident: ref15/cit15 doi: 10.1038/s41423-020-0400-4 – ident: ref94/cit94 doi: 10.1021/jm070533j – ident: ref71/cit71 doi: 10.1128/AAC.00900-20 – ident: ref5/cit5 doi: 10.1146/annurev-pharmtox-061220-093932 – ident: ref81/cit81 doi: 10.1038/513481a – ident: ref86/cit86 doi: 10.1021/jm049137g – ident: ref17/cit17 doi: 10.1038/s41467-020-16256-y – ident: ref67/cit67 doi: 10.1038/s41587-020-0631-z – ident: ref82/cit82 – ident: ref74/cit74 doi: 10.1016/j.neurobiolaging.2010.12.012 – ident: ref95/cit95 doi: 10.1016/j.drudis.2009.11.007 – ident: ref64/cit64 doi: 10.1016/j.bmc.2011.12.040 – ident: ref43/cit43 doi: 10.1016/j.chembiol.2015.04.019 – ident: ref18/cit18 doi: 10.1128/JVI.02232-14 – ident: ref54/cit54 doi: 10.1016/S0954-6111(99)90260-3 – ident: ref116/cit116 doi: 10.1084/jem.20200678 – ident: ref103/cit103 doi: 10.1021/acs.jcim.6b00465 – ident: ref69/cit69 doi: 10.1038/s41586-020-2286-9 – ident: ref109/cit109 doi: 10.1371/journal.ppat.1004166 – ident: ref124/cit124 doi: 10.1038/nmeth.2089 – ident: ref40/cit40 doi: 10.1038/nchembio0306-112 – ident: ref93/cit93 doi: 10.1371/journal.pcbi.1000695 – ident: ref63/cit63 doi: 10.3389/fphar.2020.600372 – ident: ref35/cit35 doi: 10.1101/2020.03.19.999318 – ident: ref91/cit91 doi: 10.1007/s10822-006-9040-8 – ident: ref42/cit42 doi: 10.1021/cr400698c – ident: ref50/cit50 doi: 10.1021/acs.jmedchem.7b01337 – ident: ref2/cit2 doi: 10.1126/science.abb8925 – ident: ref79/cit79 doi: 10.1124/jpet.119.264143 – ident: ref115/cit115 doi: 10.1021/acs.jmedchem.7b00717 – ident: ref121/cit121 doi: 10.3389/fimmu.2020.02055 – ident: ref120/cit120 doi: 10.1002/JLB.3COVA0820-410RRR – ident: ref44/cit44 doi: 10.2174/1389450116666150223115628 – ident: ref12/cit12 doi: 10.1007/978-3-540-79086-0_7 – ident: ref51/cit51 doi: 10.2174/1568026618666180531092503 – ident: ref108/cit108 doi: 10.1177/1087057106296688 – ident: ref37/cit37 doi: 10.1021/acs.jmedchem.7b00318 – ident: ref87/cit87 doi: 10.3389/fonc.2020.00657 – ident: ref112/cit112 doi: 10.1128/JVI.00560-06 – ident: ref31/cit31 doi: 10.1002/anie.201707816 – ident: ref30/cit30 doi: 10.1038/440388a – ident: ref89/cit89 doi: 10.3389/fcvm.2020.618651 – ident: ref55/cit55 doi: 10.1007/s11739-012-0844-3 – ident: ref62/cit62 doi: 10.3390/molecules23051153 – ident: ref33/cit33 doi: 10.1021/acs.jmedchem.0c00606 – ident: ref99/cit99 doi: 10.1016/S0300-9084(99)80001-7 – ident: ref29/cit29 doi: 10.1056/NEJMoa063842 – ident: ref60/cit60 doi: 10.1111/bph.12819 – ident: ref88/cit88 doi: 10.1038/nature18615 – ident: ref7/cit7 doi: 10.1126/science.abb9332 – ident: ref6/cit6 doi: 10.1101/2020.08.12.246389 – ident: ref84/cit84 doi: 10.1038/nprot.2007.321 – ident: ref113/cit113 doi: 10.1038/s41594-019-0233-y – ident: ref41/cit41 doi: 10.1002/iub.383 – ident: ref68/cit68 doi: 10.1016/j.ijantimicag.2020.105923 – ident: ref105/cit105 doi: 10.1021/acschembio.7b00903 – ident: ref46/cit46 doi: 10.1126/science.295.5557.1086 – ident: ref61/cit61 doi: 10.1021/acs.jmedchem.7b01154 – ident: ref14/cit14 doi: 10.1038/s41586-020-2180-5 – ident: ref66/cit66 doi: 10.1038/s41598-020-70220-w – ident: ref56/cit56 doi: 10.1007/s00109-009-0519-3 – ident: ref25/cit25 doi: 10.1126/sciadv.abd3916 – ident: ref123/cit123 doi: 10.1021/jo00408a041 – ident: ref107/cit107 doi: 10.1016/j.chembiol.2004.07.013 – ident: ref52/cit52 doi: 10.1016/j.pharmthera.2017.02.027 – ident: ref26/cit26 doi: 10.1126/science.abd0831 – ident: ref24/cit24 doi: 10.1038/s41586-020-2380-z – ident: ref34/cit34 doi: 10.1038/nrmicro2090 – ident: ref119/cit119 doi: 10.1016/j.ejca.2020.05.026 – ident: ref70/cit70 doi: 10.1016/j.phrs.2020.104859 – ident: ref92/cit92 doi: 10.2174/156802607780906726 – ident: ref114/cit114 doi: 10.1016/S0169-409X(96)00423-1 – ident: ref76/cit76 doi: 10.1101/2020.08.14.251090 – ident: ref117/cit117 doi: 10.1038/nature04444 – ident: ref106/cit106 doi: 10.1128/JVI.00998-13 – ident: ref13/cit13 doi: 10.1073/pnas.2003138117 – ident: ref104/cit104 doi: 10.1016/j.drudis.2017.05.017 – volume-title: StatPearls year: 2020 ident: ref73/cit73 – ident: ref97/cit97 doi: 10.2741/e400 – ident: ref22/cit22 doi: 10.1002/jmv.25726 – ident: ref110/cit110 doi: 10.1021/acsptsci.0c00161 – ident: ref122/cit122 doi: 10.1126/science.abd4585 – ident: ref9/cit9 doi: 10.1126/science.abc3517 – ident: ref8/cit8 doi: 10.1016/S1473-3099(20)30244-9 – ident: ref20/cit20 doi: 10.1126/science.abd2321 – ident: ref118/cit118 doi: 10.1016/j.jinf.2020.03.037 – ident: ref4/cit4 doi: 10.1016/j.drudis.2020.06.017 – ident: ref48/cit48 doi: 10.1038/nrd.2016.29 – ident: ref77/cit77 doi: 10.1016/j.ijantimicag.2020.106202 – ident: ref11/cit11 doi: 10.1056/NEJMoa2023184 – ident: ref36/cit36 doi: 10.3389/fchem.2014.00062 – ident: ref83/cit83 doi: 10.1002/9781118407738 – ident: ref111/cit111 doi: 10.1038/s41467-020-15562-9 – ident: ref38/cit38 doi: 10.1038/nrd1343 |
SSID | ssj0001385445 |
Score | 2.4904501 |
Snippet | Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that... Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1519 |
SubjectTerms | Angiotensin-Converting Enzyme 2 - metabolism COVID-19 - prevention & control Humans Pandemics Protein Interaction Domains and Motifs SARS-CoV-2 - drug effects Spike Glycoprotein, Coronavirus - antagonists & inhibitors Virus Attachment - drug effects |
Title | Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein–Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV‑2 |
URI | http://dx.doi.org/10.1021/acsinfecdis.1c00070 https://www.ncbi.nlm.nih.gov/pubmed/33979123 https://www.proquest.com/docview/2526302499 https://pubmed.ncbi.nlm.nih.gov/PMC8130611 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYlgdJL03c3faBCDz1U6UqyJbu3rdmQFjaUugm5GVkP1uzWG9beHHLKXwj5h_kl1dje7W5SQm4GS4M9GjGfNDPfIPTRmDiMoLqHxjImATMxiRUNiY1kzgOuPUaAeufRoTg4Cn6chCdrxeo3IviMflG6avKSTAFZQuDT_Al9m4lIwllrkKT_rlR4BNQyTTs5yYl3fXLJM_R_OeCRdLXpkW7BzJvZkmvuZ38HHS6LeNqsk8neos739PltTsf7_dkT9LgDonjQWs5T9MCWz9DDURdqf44u0z9qOiWjtn2uxd_LcZEX0JsHzxz2sBEnQH6gzor5osLpaTGxX_EgGTL8E6gfivL64qp7ws21Y1tBgVWFv3kHOrGtoONiDl9R10qP4aISq9LgIXQ7wR5O43TwKyXJ7Pj64pK9QEf7w9_JAen6NxDlYVxNrLb-eBTRUCknpe4r54RkxpggV9wCkX_fUuE063PHnDV9bhTTRgahY9Qww1-irXJW2tcIB9YEInSKCh14D2qUdiKPIi9IesAkbQ998trMuv1XZU1ondFsTcVZp-IeYsvlznTHgw7tOKZ3T_q8mnTa0oDcPfzD0o4yv10hBqNKO1tUGQuZ4EDTGPfQq9auVgI5xFg9kughuWFxqwFABb75pizGDSV45KGIoHT3_mp4gx4xSM-BNkz0Ldqq5wv7zuOrOn_f7Kq_dEMmkA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hIgEX3o_wXCQOHHCb3bW9NrdgpUqhqRBpqt6s9T4UK8GpYocDp_6Fin_YX8KM7aRNQRXcLHs9Wo9nNd_uzHxDyDtj4iDC6h4Wy9jzuYm9WLHAs5HMhC80YASsdx4ehIOx__k4OG6LwrAWBiZRgqSyDuJfsAuwHbhXpyeZHJOF0LXBRv0mwBGOW65eMro4WRERMszUXeWk8MADyhXd0N_loGPS5aZj-gNtXk2avOSFdu-R8Xr-dfLJdHtZZdv65xVqx__9wPvkbgtLaa-xowfkhi0eklvDNvD-iJyNvqvZzBs2zXQt3SsmeZZjpx46dxRAJE2QCkH9yBfLko5O8qn9SHtJn9OvSASRF-env9orWh9CNvUUVJX0E7jTqW0EHeULnEVVKT3BY0uqCkP72PuEArimo963kZfMj85Pz_hjMt7tHyYDr-3m4CkAdZVntYXNUsQCpZyUuqucCyU3xviZEhZp_buWhU7zrnDcWdMVRnFtpB84zgw34gnZKuaFfUaob40fBk6xUPvgT43SLsyiCARJgE_Sdsh70GbarsYyrQPtnKWXVJy2Ku4QvvrrqW5Z0bE5x-z6lz6sXzppSEGuH_52ZU4pLF6MyKjCzpdlygMeCiRtjDvkaWNea4ECI66AKzpEbhjeegASg28-KfJJTRAeATAJGXv-72p4Q24PDof76f7ewZcX5A7HxB1s0MRekq1qsbSvAHlV2et6of0GPsou8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRaq48H6E5yJx4IBLdtf22tyCSdQCqSpCq3Ky1vtQrAQnih0OnPoXKv5hfwkzthOagirEzbJ3R7vrGc23O7PfEPLSmDiI8HYPi2Xs-dzEXqxY4NlIZsIXGjAC3nceHoR7R_6Hk-Bki0SruzAwiBIklXUQH616blzLMMDewPs6RcnkmDCE7g0269cwcIfbrl4y-n26IiJkmakry0nhgReUK8qhv8tB56TLTef0B-K8nDh5wRMNbpKv6znUCSiT3WWV7eofl-gd_2eSt8iNFp7SXqNPt8mWLe6QnWEbgL9Lzkbf1HTqDZuiupbuF-M8y7FiD505CmCSJkiJoL7ni2VJR_N8Yt_SXtLn9BAJIfLi_PRn-0Trw8jmXgVVJX0HbnViG0HH-QJHUVVKj_H4kqrC0D7WQKEAsumo93nkJbPj89Mzfo8cDfpfkj2vrergKQB3lWe1hU1TxAKlnJS6q5wLJTfG-JkSFun9u5aFTvOucNxZ0xVGcW2kHzjODDfiPtkuZoV9SKhvjR8GTrFQ--BXjdIuzKIIBEmAUdJ2yCtYzbS1yjKtA-6cpReWOG2XuEP46s-numVHxyId06s7vV53mjfkIFc3f7FSqRSMGCMzqrCzZZnygIcCyRvjDnnQqNhaoMDIK-CLDpEbyrdugAThm1-KfFwThUcAUELGHv37MjwnO4fvB-mn_YOPj8l1jvk7WKeJPSHb1WJpnwIAq7Jnta39ArWzMXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Molecule+Inhibitors+of+the+Coronavirus+Spike%3A+ACE2+Protein%E2%80%93Protein+Interaction+as+Blockers+of+Viral+Attachment+and+Entry+for+SARS-CoV%E2%80%912&rft.jtitle=ACS+infectious+diseases&rft.au=Bojadzic%2C+Damir&rft.au=Alcazar%2C+Oscar&rft.au=Chen%2C+Jinshui&rft.au=Chuang%2C+Sung-Ting&rft.date=2021-06-11&rft.pub=American+Chemical+Society&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=7&rft.issue=6&rft.spage=1519&rft.epage=1534&rft_id=info:doi/10.1021%2Facsinfecdis.1c00070&rft.externalDocID=b430897842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon |