Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein–Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV‑2

Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as pote...

Full description

Saved in:
Bibliographic Details
Published inACS infectious diseases Vol. 7; no. 6; pp. 1519 - 1534
Main Authors Bojadzic, Damir, Alcazar, Oscar, Chen, Jinshui, Chuang, Sung-Ting, Condor Capcha, Jose M, Shehadeh, Lina A, Buchwald, Peter
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50’s of 0.2–3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50’s (6–7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
AbstractList Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50’s of 0.2–3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50’s (6–7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable / less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound-library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel drug-like compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC 50 s of 0.2-3.0 μM); whereas, control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC 50 s (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC50's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than that with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable/less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound library focused around the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel druglike compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC 's of 0.2-3.0 μM), whereas control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs of interest identified here bind SARS-CoV-2-S and not hACE2. While dyes seemed to be promiscuous inhibitors, DRI-C23041 showed some selectivity and inhibited the entry of two different SARS-CoV-2-S expressing pseudoviruses into hACE2-expressing cells in a concentration-dependent manner with low micromolar IC 's (6-7 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for SARS-CoV-2 attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Author Bojadzic, Damir
Chen, Jinshui
Chuang, Sung-Ting
Alcazar, Oscar
Buchwald, Peter
Condor Capcha, Jose M
Shehadeh, Lina A
AuthorAffiliation Interdisciplinary Stem Cell Institute
Peggy and Harold Katz Family Drug Discovery Center
Diabetes Research Institute
Division of Cardiology
Department of Molecular and Cellular Pharmacology, Miller School of Medicine
AuthorAffiliation_xml – name: Department of Molecular and Cellular Pharmacology, Miller School of Medicine
– name: Division of Cardiology
– name: Diabetes Research Institute
– name: Interdisciplinary Stem Cell Institute
– name: Peggy and Harold Katz Family Drug Discovery Center
Author_xml – sequence: 1
  givenname: Damir
  surname: Bojadzic
  fullname: Bojadzic, Damir
– sequence: 2
  givenname: Oscar
  surname: Alcazar
  fullname: Alcazar, Oscar
– sequence: 3
  givenname: Jinshui
  orcidid: 0000-0001-8332-602X
  surname: Chen
  fullname: Chen, Jinshui
– sequence: 4
  givenname: Sung-Ting
  surname: Chuang
  fullname: Chuang, Sung-Ting
– sequence: 5
  givenname: Jose M
  surname: Condor Capcha
  fullname: Condor Capcha, Jose M
– sequence: 6
  givenname: Lina A
  surname: Shehadeh
  fullname: Shehadeh, Lina A
– sequence: 7
  givenname: Peter
  orcidid: 0000-0003-2732-8180
  surname: Buchwald
  fullname: Buchwald, Peter
  email: pbuchwald@med.miami.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33979123$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1uFDEQhS0URELICZCQl2w68U__skAaWgNECgIxkK3lscuMk257YrsjZZcrRNwwJ8HRDNHAAlZVUr3vVanec7TnvAOEXlJyTAmjJ1JF6wwobeMxVYSQhjxBB4w3vGgZa_Z2-n10FONFllDeVmVZPUP7nHdNRxk_QHeLUQ5D8ckPoKYB8Klb2aVNPkTsDU4rwL0P3slrG6aIF2t7CW_wrJ8z_CX4BNbd3_7cdplNEKRK1jssI343eHUJG6NzG-SAZylJtRrBJSydxnOXwg02PuDF7Oui6P35_e0de4GeGjlEONrWQ_T9_fxb_7E4-_zhtJ-dFbKiNBWgoCZ1SyspTdMoIo2pG6a1LpeSA2nLlgCtjWKEG2ZAE64lU7opK8OoZpoforcb3_W0HEGrfFW-UayDHWW4EV5a8efE2ZX44a9FSzmpKc0Gr7cGwV9NEJMYbVQwDNKBn6JgFas5YWXXZemr3V2PS37nkAV8I1DBxxjAPEooEQ-Bi53AxTbwTHV_Ucom-fD_fLAd_sOebNg8FBd-Ci4_-5_EL4DuyVU
CitedBy_id crossref_primary_10_1371_journal_ppat_1011596
crossref_primary_10_1021_acs_jcim_4c01110
crossref_primary_10_1016_j_phymed_2022_154324
crossref_primary_10_3390_molecules28093908
crossref_primary_10_1021_acscentsci_2c01190
crossref_primary_10_1016_j_cbi_2023_110380
crossref_primary_10_1021_acs_jcim_3c01385
crossref_primary_10_1021_jacs_1c11554
crossref_primary_10_1016_j_sbi_2021_11_003
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_1016_j_compbiomed_2022_105668
crossref_primary_10_1080_07391102_2023_2204505
crossref_primary_10_1007_s11030_024_11047_9
crossref_primary_10_1016_j_antiviral_2022_105514
crossref_primary_10_1016_j_virol_2023_07_006
crossref_primary_10_1080_07391102_2022_2103587
crossref_primary_10_1016_j_cellin_2023_100144
crossref_primary_10_1016_j_ijbiomac_2024_137059
crossref_primary_10_1021_acs_analchem_2c05464
crossref_primary_10_1021_acschembio_3c00568
crossref_primary_10_1007_s11030_022_10394_9
crossref_primary_10_1007_s12272_022_01401_6
crossref_primary_10_3389_fmed_2022_874611
crossref_primary_10_1002_jev2_12170
crossref_primary_10_1016_j_heliyon_2024_e30044
crossref_primary_10_1038_s44318_024_00281_4
crossref_primary_10_1089_mab_2022_29009_editorial
crossref_primary_10_1080_07391102_2023_2300060
crossref_primary_10_3390_ijms26020678
crossref_primary_10_3390_pharmaceutics16050613
crossref_primary_10_3389_fddsv_2022_1085701
crossref_primary_10_1186_s13568_024_01739_8
crossref_primary_10_1039_D3RA06479D
crossref_primary_10_3390_ph15091084
crossref_primary_10_1016_j_jbc_2022_101710
crossref_primary_10_1007_s00894_024_06006_y
crossref_primary_10_3390_ijms23116083
crossref_primary_10_1002_chem_202403039
crossref_primary_10_1016_j_jgr_2022_07_003
crossref_primary_10_3390_pharmaceutics14010176
crossref_primary_10_1093_pcmedi_pbac024
crossref_primary_10_3390_ijms231810716
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_3389_fddsv_2022_898035
crossref_primary_10_1007_s11224_022_01887_2
crossref_primary_10_3390_biotech14010020
crossref_primary_10_1080_1062936X_2024_2306336
crossref_primary_10_2217_fmb_2023_0134
crossref_primary_10_3390_ijms242115894
crossref_primary_10_1016_j_biopha_2024_117517
crossref_primary_10_1016_j_compbiomed_2021_104634
crossref_primary_10_1016_j_chemphys_2023_111995
crossref_primary_10_1016_j_antiviral_2023_105735
crossref_primary_10_3390_ijms25116105
crossref_primary_10_1080_14756366_2023_2244693
crossref_primary_10_1021_acsomega_4c08640
crossref_primary_10_3390_chemosensors11020135
crossref_primary_10_1021_acschembio_2c00735
crossref_primary_10_1002_cmdc_202200440
crossref_primary_10_1021_acs_analchem_2c05043
crossref_primary_10_3390_molecules26185724
crossref_primary_10_3389_fcvm_2022_957006
crossref_primary_10_4155_fmc_2023_0257
crossref_primary_10_3390_ph17091240
crossref_primary_10_1002_pca_3088
crossref_primary_10_3389_fnano_2023_1186386
crossref_primary_10_1016_j_peptides_2022_170898
crossref_primary_10_1039_D4MD00286E
crossref_primary_10_3390_ijms25094955
crossref_primary_10_1038_s41392_024_02036_3
crossref_primary_10_1021_jacs_4c15843
crossref_primary_10_3389_fphar_2022_955648
crossref_primary_10_1016_j_drudis_2022_06_012
crossref_primary_10_3390_ph15050621
crossref_primary_10_4236_ojbiphy_2022_122005
crossref_primary_10_1016_j_jmgm_2022_108206
crossref_primary_10_3390_ijms222212243
crossref_primary_10_1002_cbdv_202300957
crossref_primary_10_2147_JIR_S431222
crossref_primary_10_1111_febs_16662
crossref_primary_10_1371_journal_pcbi_1011955
crossref_primary_10_1021_acsinfecdis_2c00297
Cites_doi 10.1126/science.abc6156
10.1002/0471140864.ps2809s79
10.1098/rsif.2006.0115
10.1001/jama.2017.5150
10.1126/science.abc5881
10.1021/jm010533y
10.1021/acs.jmedchem.7b00229
10.1126/science.1241475
10.1111/j.1399-5448.2008.00401.x
10.1097/00045391-200307000-00009
10.1038/s41586-020-2918-0
10.1126/science.abc7424
10.1016/j.ejmech.2004.01.007
10.1038/nrd.2016.23
10.1038/nm.3048
10.1016/j.bcp.2010.12.020
10.1161/CIRCULATIONAHA.120.047549
10.1126/science.abc2241
10.1021/acs.jmedchem.0c00502
10.1016/j.drudis.2006.05.014
10.1038/nprot.2006.77
10.1111/bph.14153
10.1016/j.bcp.2009.01.001
10.1016/S1473-3099(18)30044-6
10.1038/nrd2399
10.1007/s00125-019-04996-6
10.3109/03602539109029761
10.1038/s41591-021-01285-x
10.1038/nature06526
10.1038/s41423-020-0400-4
10.1021/jm070533j
10.1128/AAC.00900-20
10.1146/annurev-pharmtox-061220-093932
10.1038/513481a
10.1021/jm049137g
10.1038/s41467-020-16256-y
10.1038/s41587-020-0631-z
10.1016/j.neurobiolaging.2010.12.012
10.1016/j.drudis.2009.11.007
10.1016/j.bmc.2011.12.040
10.1016/j.chembiol.2015.04.019
10.1128/JVI.02232-14
10.1016/S0954-6111(99)90260-3
10.1084/jem.20200678
10.1021/acs.jcim.6b00465
10.1038/s41586-020-2286-9
10.1371/journal.ppat.1004166
10.1038/nmeth.2089
10.1038/nchembio0306-112
10.1371/journal.pcbi.1000695
10.3389/fphar.2020.600372
10.1101/2020.03.19.999318
10.1007/s10822-006-9040-8
10.1021/cr400698c
10.1021/acs.jmedchem.7b01337
10.1126/science.abb8925
10.1124/jpet.119.264143
10.1021/acs.jmedchem.7b00717
10.3389/fimmu.2020.02055
10.1002/JLB.3COVA0820-410RRR
10.2174/1389450116666150223115628
10.1007/978-3-540-79086-0_7
10.2174/1568026618666180531092503
10.1177/1087057106296688
10.1021/acs.jmedchem.7b00318
10.3389/fonc.2020.00657
10.1128/JVI.00560-06
10.1002/anie.201707816
10.1038/440388a
10.3389/fcvm.2020.618651
10.1007/s11739-012-0844-3
10.3390/molecules23051153
10.1021/acs.jmedchem.0c00606
10.1016/S0300-9084(99)80001-7
10.1056/NEJMoa063842
10.1111/bph.12819
10.1038/nature18615
10.1126/science.abb9332
10.1101/2020.08.12.246389
10.1038/nprot.2007.321
10.1038/s41594-019-0233-y
10.1002/iub.383
10.1016/j.ijantimicag.2020.105923
10.1021/acschembio.7b00903
10.1126/science.295.5557.1086
10.1021/acs.jmedchem.7b01154
10.1038/s41586-020-2180-5
10.1038/s41598-020-70220-w
10.1007/s00109-009-0519-3
10.1126/sciadv.abd3916
10.1021/jo00408a041
10.1016/j.chembiol.2004.07.013
10.1016/j.pharmthera.2017.02.027
10.1126/science.abd0831
10.1038/s41586-020-2380-z
10.1038/nrmicro2090
10.1016/j.ejca.2020.05.026
10.1016/j.phrs.2020.104859
10.2174/156802607780906726
10.1016/S0169-409X(96)00423-1
10.1101/2020.08.14.251090
10.1038/nature04444
10.1128/JVI.00998-13
10.1073/pnas.2003138117
10.1016/j.drudis.2017.05.017
10.2741/e400
10.1002/jmv.25726
10.1021/acsptsci.0c00161
10.1126/science.abd4585
10.1126/science.abc3517
10.1016/S1473-3099(20)30244-9
10.1126/science.abd2321
10.1016/j.jinf.2020.03.037
10.1016/j.drudis.2020.06.017
10.1038/nrd.2016.29
10.1016/j.ijantimicag.2020.106202
10.1056/NEJMoa2023184
10.3389/fchem.2014.00062
10.1002/9781118407738
10.1038/s41467-020-15562-9
10.1038/nrd1343
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsinfecdis.1c00070
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-8227
EndPage 1534
ExternalDocumentID PMC8130611
33979123
10_1021_acsinfecdis_1c00070
b430897842
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD021758
GroupedDBID 53G
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
GGK
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a511t-ece606815aaf77c0aff672ddd4ba3e08480e16fc203f2fed03da2cd745f21d2d3
IEDL.DBID ACS
ISSN 2373-8227
IngestDate Thu Aug 21 18:35:36 EDT 2025
Fri Jul 11 10:19:44 EDT 2025
Mon Jul 21 05:47:46 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Tue Jul 01 01:32:34 EDT 2025
Sun Jun 13 13:37:22 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords ACE2
coronavirus
SARS-CoV-2
protein−protein interaction
antiviral
spike protein
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a511t-ece606815aaf77c0aff672ddd4ba3e08480e16fc203f2fed03da2cd745f21d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
DB performed the binding assays; DB and STC the thermal shift assays; OA, STC, and JMCC the pseudovirus assays; JC the chemical synthesis; LAS provided materials and analyzed the data. PB originated and designed the project, provided study guidance, analyzed the data, and wrote the draft manuscript. All authors contributed to writing and read the final manuscript.
ORCID 0000-0003-2732-8180
0000-0001-8332-602X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8130611
PMID 33979123
PQID 2526302499
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8130611
proquest_miscellaneous_2526302499
pubmed_primary_33979123
crossref_primary_10_1021_acsinfecdis_1c00070
crossref_citationtrail_10_1021_acsinfecdis_1c00070
acs_journals_10_1021_acsinfecdis_1c00070
ProviderPackageCode ABFRP
ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
GGK
AQSVZ
W1F
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-11
PublicationDateYYYYMMDD 2021-06-11
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS infectious diseases
PublicationTitleAlternate ACS Infect. Dis
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
Bistas E. (ref73/cit73) 2020
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref124/cit124
ref64/cit64
ref54/cit54
ref6/cit6
Roterman I. (ref98/cit98) 1993; 44
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1126/science.abc6156
– ident: ref85/cit85
  doi: 10.1002/0471140864.ps2809s79
– ident: ref90/cit90
  doi: 10.1098/rsif.2006.0115
– ident: ref32/cit32
  doi: 10.1001/jama.2017.5150
– ident: ref16/cit16
  doi: 10.1126/science.abc5881
– ident: ref100/cit100
  doi: 10.1021/jm010533y
– ident: ref80/cit80
  doi: 10.1021/acs.jmedchem.7b00229
– ident: ref49/cit49
  doi: 10.1126/science.1241475
– ident: ref53/cit53
  doi: 10.1111/j.1399-5448.2008.00401.x
– ident: ref72/cit72
  doi: 10.1097/00045391-200307000-00009
– ident: ref10/cit10
  doi: 10.1038/s41586-020-2918-0
– ident: ref21/cit21
  doi: 10.1126/science.abc7424
– ident: ref65/cit65
  doi: 10.1016/j.ejmech.2004.01.007
– ident: ref47/cit47
  doi: 10.1038/nrd.2016.23
– ident: ref45/cit45
  doi: 10.1038/nm.3048
– ident: ref59/cit59
  doi: 10.1016/j.bcp.2010.12.020
– ident: ref1/cit1
  doi: 10.1161/CIRCULATIONAHA.120.047549
– ident: ref19/cit19
  doi: 10.1126/science.abc2241
– ident: ref23/cit23
  doi: 10.1021/acs.jmedchem.0c00502
– ident: ref101/cit101
  doi: 10.1016/j.drudis.2006.05.014
– ident: ref102/cit102
  doi: 10.1038/nprot.2006.77
– ident: ref78/cit78
  doi: 10.1111/bph.14153
– ident: ref58/cit58
  doi: 10.1016/j.bcp.2009.01.001
– ident: ref75/cit75
  doi: 10.1016/S1473-3099(18)30044-6
– ident: ref28/cit28
  doi: 10.1038/nrd2399
– ident: ref57/cit57
  doi: 10.1007/s00125-019-04996-6
– ident: ref96/cit96
  doi: 10.3109/03602539109029761
– volume: 44
  start-page: 213
  issue: 3
  year: 1993
  ident: ref98/cit98
  publication-title: J. Physiol. Pharmacol.
– ident: ref27/cit27
  doi: 10.1038/s41591-021-01285-x
– ident: ref39/cit39
  doi: 10.1038/nature06526
– ident: ref15/cit15
  doi: 10.1038/s41423-020-0400-4
– ident: ref94/cit94
  doi: 10.1021/jm070533j
– ident: ref71/cit71
  doi: 10.1128/AAC.00900-20
– ident: ref5/cit5
  doi: 10.1146/annurev-pharmtox-061220-093932
– ident: ref81/cit81
  doi: 10.1038/513481a
– ident: ref86/cit86
  doi: 10.1021/jm049137g
– ident: ref17/cit17
  doi: 10.1038/s41467-020-16256-y
– ident: ref67/cit67
  doi: 10.1038/s41587-020-0631-z
– ident: ref82/cit82
– ident: ref74/cit74
  doi: 10.1016/j.neurobiolaging.2010.12.012
– ident: ref95/cit95
  doi: 10.1016/j.drudis.2009.11.007
– ident: ref64/cit64
  doi: 10.1016/j.bmc.2011.12.040
– ident: ref43/cit43
  doi: 10.1016/j.chembiol.2015.04.019
– ident: ref18/cit18
  doi: 10.1128/JVI.02232-14
– ident: ref54/cit54
  doi: 10.1016/S0954-6111(99)90260-3
– ident: ref116/cit116
  doi: 10.1084/jem.20200678
– ident: ref103/cit103
  doi: 10.1021/acs.jcim.6b00465
– ident: ref69/cit69
  doi: 10.1038/s41586-020-2286-9
– ident: ref109/cit109
  doi: 10.1371/journal.ppat.1004166
– ident: ref124/cit124
  doi: 10.1038/nmeth.2089
– ident: ref40/cit40
  doi: 10.1038/nchembio0306-112
– ident: ref93/cit93
  doi: 10.1371/journal.pcbi.1000695
– ident: ref63/cit63
  doi: 10.3389/fphar.2020.600372
– ident: ref35/cit35
  doi: 10.1101/2020.03.19.999318
– ident: ref91/cit91
  doi: 10.1007/s10822-006-9040-8
– ident: ref42/cit42
  doi: 10.1021/cr400698c
– ident: ref50/cit50
  doi: 10.1021/acs.jmedchem.7b01337
– ident: ref2/cit2
  doi: 10.1126/science.abb8925
– ident: ref79/cit79
  doi: 10.1124/jpet.119.264143
– ident: ref115/cit115
  doi: 10.1021/acs.jmedchem.7b00717
– ident: ref121/cit121
  doi: 10.3389/fimmu.2020.02055
– ident: ref120/cit120
  doi: 10.1002/JLB.3COVA0820-410RRR
– ident: ref44/cit44
  doi: 10.2174/1389450116666150223115628
– ident: ref12/cit12
  doi: 10.1007/978-3-540-79086-0_7
– ident: ref51/cit51
  doi: 10.2174/1568026618666180531092503
– ident: ref108/cit108
  doi: 10.1177/1087057106296688
– ident: ref37/cit37
  doi: 10.1021/acs.jmedchem.7b00318
– ident: ref87/cit87
  doi: 10.3389/fonc.2020.00657
– ident: ref112/cit112
  doi: 10.1128/JVI.00560-06
– ident: ref31/cit31
  doi: 10.1002/anie.201707816
– ident: ref30/cit30
  doi: 10.1038/440388a
– ident: ref89/cit89
  doi: 10.3389/fcvm.2020.618651
– ident: ref55/cit55
  doi: 10.1007/s11739-012-0844-3
– ident: ref62/cit62
  doi: 10.3390/molecules23051153
– ident: ref33/cit33
  doi: 10.1021/acs.jmedchem.0c00606
– ident: ref99/cit99
  doi: 10.1016/S0300-9084(99)80001-7
– ident: ref29/cit29
  doi: 10.1056/NEJMoa063842
– ident: ref60/cit60
  doi: 10.1111/bph.12819
– ident: ref88/cit88
  doi: 10.1038/nature18615
– ident: ref7/cit7
  doi: 10.1126/science.abb9332
– ident: ref6/cit6
  doi: 10.1101/2020.08.12.246389
– ident: ref84/cit84
  doi: 10.1038/nprot.2007.321
– ident: ref113/cit113
  doi: 10.1038/s41594-019-0233-y
– ident: ref41/cit41
  doi: 10.1002/iub.383
– ident: ref68/cit68
  doi: 10.1016/j.ijantimicag.2020.105923
– ident: ref105/cit105
  doi: 10.1021/acschembio.7b00903
– ident: ref46/cit46
  doi: 10.1126/science.295.5557.1086
– ident: ref61/cit61
  doi: 10.1021/acs.jmedchem.7b01154
– ident: ref14/cit14
  doi: 10.1038/s41586-020-2180-5
– ident: ref66/cit66
  doi: 10.1038/s41598-020-70220-w
– ident: ref56/cit56
  doi: 10.1007/s00109-009-0519-3
– ident: ref25/cit25
  doi: 10.1126/sciadv.abd3916
– ident: ref123/cit123
  doi: 10.1021/jo00408a041
– ident: ref107/cit107
  doi: 10.1016/j.chembiol.2004.07.013
– ident: ref52/cit52
  doi: 10.1016/j.pharmthera.2017.02.027
– ident: ref26/cit26
  doi: 10.1126/science.abd0831
– ident: ref24/cit24
  doi: 10.1038/s41586-020-2380-z
– ident: ref34/cit34
  doi: 10.1038/nrmicro2090
– ident: ref119/cit119
  doi: 10.1016/j.ejca.2020.05.026
– ident: ref70/cit70
  doi: 10.1016/j.phrs.2020.104859
– ident: ref92/cit92
  doi: 10.2174/156802607780906726
– ident: ref114/cit114
  doi: 10.1016/S0169-409X(96)00423-1
– ident: ref76/cit76
  doi: 10.1101/2020.08.14.251090
– ident: ref117/cit117
  doi: 10.1038/nature04444
– ident: ref106/cit106
  doi: 10.1128/JVI.00998-13
– ident: ref13/cit13
  doi: 10.1073/pnas.2003138117
– ident: ref104/cit104
  doi: 10.1016/j.drudis.2017.05.017
– volume-title: StatPearls
  year: 2020
  ident: ref73/cit73
– ident: ref97/cit97
  doi: 10.2741/e400
– ident: ref22/cit22
  doi: 10.1002/jmv.25726
– ident: ref110/cit110
  doi: 10.1021/acsptsci.0c00161
– ident: ref122/cit122
  doi: 10.1126/science.abd4585
– ident: ref9/cit9
  doi: 10.1126/science.abc3517
– ident: ref8/cit8
  doi: 10.1016/S1473-3099(20)30244-9
– ident: ref20/cit20
  doi: 10.1126/science.abd2321
– ident: ref118/cit118
  doi: 10.1016/j.jinf.2020.03.037
– ident: ref4/cit4
  doi: 10.1016/j.drudis.2020.06.017
– ident: ref48/cit48
  doi: 10.1038/nrd.2016.29
– ident: ref77/cit77
  doi: 10.1016/j.ijantimicag.2020.106202
– ident: ref11/cit11
  doi: 10.1056/NEJMoa2023184
– ident: ref36/cit36
  doi: 10.3389/fchem.2014.00062
– ident: ref83/cit83
  doi: 10.1002/9781118407738
– ident: ref111/cit111
  doi: 10.1038/s41467-020-15562-9
– ident: ref38/cit38
  doi: 10.1038/nrd1343
SSID ssj0001385445
Score 2.4904501
Snippet Inhibitors of the protein–protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand–receptor pair that...
Inhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and human ACE2 (hACE2), which acts as a ligand-receptor pair that...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1519
SubjectTerms Angiotensin-Converting Enzyme 2 - metabolism
COVID-19 - prevention & control
Humans
Pandemics
Protein Interaction Domains and Motifs
SARS-CoV-2 - drug effects
Spike Glycoprotein, Coronavirus - antagonists & inhibitors
Virus Attachment - drug effects
Title Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein–Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV‑2
URI http://dx.doi.org/10.1021/acsinfecdis.1c00070
https://www.ncbi.nlm.nih.gov/pubmed/33979123
https://www.proquest.com/docview/2526302499
https://pubmed.ncbi.nlm.nih.gov/PMC8130611
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYlgdJL03c3faBCDz1U6UqyJbu3rdmQFjaUugm5GVkP1uzWG9beHHLKXwj5h_kl1dje7W5SQm4GS4M9GjGfNDPfIPTRmDiMoLqHxjImATMxiRUNiY1kzgOuPUaAeufRoTg4Cn6chCdrxeo3IviMflG6avKSTAFZQuDT_Al9m4lIwllrkKT_rlR4BNQyTTs5yYl3fXLJM_R_OeCRdLXpkW7BzJvZkmvuZ38HHS6LeNqsk8neos739PltTsf7_dkT9LgDonjQWs5T9MCWz9DDURdqf44u0z9qOiWjtn2uxd_LcZEX0JsHzxz2sBEnQH6gzor5osLpaTGxX_EgGTL8E6gfivL64qp7ws21Y1tBgVWFv3kHOrGtoONiDl9R10qP4aISq9LgIXQ7wR5O43TwKyXJ7Pj64pK9QEf7w9_JAen6NxDlYVxNrLb-eBTRUCknpe4r54RkxpggV9wCkX_fUuE063PHnDV9bhTTRgahY9Qww1-irXJW2tcIB9YEInSKCh14D2qUdiKPIi9IesAkbQ998trMuv1XZU1ondFsTcVZp-IeYsvlznTHgw7tOKZ3T_q8mnTa0oDcPfzD0o4yv10hBqNKO1tUGQuZ4EDTGPfQq9auVgI5xFg9kughuWFxqwFABb75pizGDSV45KGIoHT3_mp4gx4xSM-BNkz0Ldqq5wv7zuOrOn_f7Kq_dEMmkA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hIgEX3o_wXCQOHHCb3bW9NrdgpUqhqRBpqt6s9T4UK8GpYocDp_6Fin_YX8KM7aRNQRXcLHs9Wo9nNd_uzHxDyDtj4iDC6h4Wy9jzuYm9WLHAs5HMhC80YASsdx4ehIOx__k4OG6LwrAWBiZRgqSyDuJfsAuwHbhXpyeZHJOF0LXBRv0mwBGOW65eMro4WRERMszUXeWk8MADyhXd0N_loGPS5aZj-gNtXk2avOSFdu-R8Xr-dfLJdHtZZdv65xVqx__9wPvkbgtLaa-xowfkhi0eklvDNvD-iJyNvqvZzBs2zXQt3SsmeZZjpx46dxRAJE2QCkH9yBfLko5O8qn9SHtJn9OvSASRF-env9orWh9CNvUUVJX0E7jTqW0EHeULnEVVKT3BY0uqCkP72PuEArimo963kZfMj85Pz_hjMt7tHyYDr-3m4CkAdZVntYXNUsQCpZyUuqucCyU3xviZEhZp_buWhU7zrnDcWdMVRnFtpB84zgw34gnZKuaFfUaob40fBk6xUPvgT43SLsyiCARJgE_Sdsh70GbarsYyrQPtnKWXVJy2Ku4QvvrrqW5Z0bE5x-z6lz6sXzppSEGuH_52ZU4pLF6MyKjCzpdlygMeCiRtjDvkaWNea4ECI66AKzpEbhjeegASg28-KfJJTRAeATAJGXv-72p4Q24PDof76f7ewZcX5A7HxB1s0MRekq1qsbSvAHlV2et6of0GPsou8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRaq48H6E5yJx4IBLdtf22tyCSdQCqSpCq3Ky1vtQrAQnih0OnPoXKv5hfwkzthOagirEzbJ3R7vrGc23O7PfEPLSmDiI8HYPi2Xs-dzEXqxY4NlIZsIXGjAC3nceHoR7R_6Hk-Bki0SruzAwiBIklXUQH616blzLMMDewPs6RcnkmDCE7g0269cwcIfbrl4y-n26IiJkmakry0nhgReUK8qhv8tB56TLTef0B-K8nDh5wRMNbpKv6znUCSiT3WWV7eofl-gd_2eSt8iNFp7SXqNPt8mWLe6QnWEbgL9Lzkbf1HTqDZuiupbuF-M8y7FiD505CmCSJkiJoL7ni2VJR_N8Yt_SXtLn9BAJIfLi_PRn-0Trw8jmXgVVJX0HbnViG0HH-QJHUVVKj_H4kqrC0D7WQKEAsumo93nkJbPj89Mzfo8cDfpfkj2vrergKQB3lWe1hU1TxAKlnJS6q5wLJTfG-JkSFun9u5aFTvOucNxZ0xVGcW2kHzjODDfiPtkuZoV9SKhvjR8GTrFQ--BXjdIuzKIIBEmAUdJ2yCtYzbS1yjKtA-6cpReWOG2XuEP46s-numVHxyId06s7vV53mjfkIFc3f7FSqRSMGCMzqrCzZZnygIcCyRvjDnnQqNhaoMDIK-CLDpEbyrdugAThm1-KfFwThUcAUELGHv37MjwnO4fvB-mn_YOPj8l1jvk7WKeJPSHb1WJpnwIAq7Jnta39ArWzMXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Molecule+Inhibitors+of+the+Coronavirus+Spike%3A+ACE2+Protein%E2%80%93Protein+Interaction+as+Blockers+of+Viral+Attachment+and+Entry+for+SARS-CoV%E2%80%912&rft.jtitle=ACS+infectious+diseases&rft.au=Bojadzic%2C+Damir&rft.au=Alcazar%2C+Oscar&rft.au=Chen%2C+Jinshui&rft.au=Chuang%2C+Sung-Ting&rft.date=2021-06-11&rft.pub=American+Chemical+Society&rft.issn=2373-8227&rft.eissn=2373-8227&rft.volume=7&rft.issue=6&rft.spage=1519&rft.epage=1534&rft_id=info:doi/10.1021%2Facsinfecdis.1c00070&rft.externalDocID=b430897842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon