Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently ne...
Saved in:
Published in | Environmental science & technology Vol. 51; no. 8; pp. 4503 - 4511 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. |
---|---|
AbstractList | Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. Gaseous emissions from animal manure are considerable contributor to global ammonia (NH ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH , methane (CH ), and nitrous oxide (N O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH emissions is equivalent to 40% of the total NH emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. Gaseous emissions from animal manure are considerable contributor to global ammonia (NH₃) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH₃, methane (CH₄), and nitrous oxide (N₂O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH₃ emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH₃ emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH₃ emissions is equivalent to 40% of the total NH₃ emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. Gaseous emissions from animal manure are considerable contributor to global ammonia (NH^sub 3^) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH^sub 3^, methane (CH^sub 4^), and nitrous oxide (N^sub 2^O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH^sub 3^ emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH^sub 3^ emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH^sub 3^ emissions is equivalent to 40% of the total NH^sub 3^ emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues. |
Author | Wang, Yue Xin, Hongwei Smith, Pete Steinfeld, Henning Zhu, Zhiping Chadwick, Dave Gerber, Pierre J Opio, Carolyn Dong, Hongmin |
AuthorAffiliation | Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures University of Aberdeen Environment Centre Wales, School of Environment, Natural Resources and Geography Bangor University Department of Agricultural and Biosystems Engineering Iowa State University Institute of Biological and Environmental Sciences Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Animal Production Systems Group Ministry of Agriculture Wageningen University |
AuthorAffiliation_xml | – name: University of Aberdeen – name: Institute of Environment and Sustainable Development in Agriculture – name: Animal Production Systems Group – name: Department of Agricultural and Biosystems Engineering – name: Chinese Academy of Agricultural Sciences – name: Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures – name: Institute of Biological and Environmental Sciences – name: Environment Centre Wales, School of Environment, Natural Resources and Geography – name: Ministry of Agriculture – name: Iowa State University – name: Bangor University – name: Wageningen University |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-4194-7386 surname: Wang fullname: Wang, Yue organization: Ministry of Agriculture – sequence: 2 givenname: Hongmin surname: Dong fullname: Dong, Hongmin email: donghongmin@caas.cn organization: Ministry of Agriculture – sequence: 3 givenname: Zhiping surname: Zhu fullname: Zhu, Zhiping organization: Ministry of Agriculture – sequence: 4 givenname: Pierre J surname: Gerber fullname: Gerber, Pierre J organization: Wageningen University – sequence: 5 givenname: Hongwei surname: Xin fullname: Xin, Hongwei organization: Iowa State University – sequence: 6 givenname: Pete surname: Smith fullname: Smith, Pete organization: University of Aberdeen – sequence: 7 givenname: Carolyn surname: Opio fullname: Opio, Carolyn – sequence: 8 givenname: Henning surname: Steinfeld fullname: Steinfeld, Henning – sequence: 9 givenname: Dave surname: Chadwick fullname: Chadwick, Dave organization: Bangor University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28318241$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1r3DAQxUVJaTZpz70VQS-B4I2-bee2hHRbSOghLfQmRra8VbClrWSz7H9fObuhEAg9zUG_N3rzZs7QiQ_eIvSRkiUljF5Bk5Y2jUtliBKcvEELKhkpZCXpCVoQQnlRc_XrFJ2l9EgIYZxU79ApqzitmKALpO_d6DYwOr_B62it_x2mZPEaEgbf4tUwBO8A3w4uJRd8wl0MA37YOW_xPfgpPhXY2MH68Rqv8MM-jXbAKw_9Prn0Hr3toE_2w7Geo59fbn_cfC3uvq-_3azuCpCUjoVhzBjJiYGqrIWhgqrOMsO6mkhumWrAlNJUtWwBVM04K8vSmka1tO2YEoqfo-tD31324vM01msPsXFJB3C6dyZC3OvdFLXv57KdTNIydxJlFl8cxNsY_kw5T53HbWzfg7c5Ds3m5ETNqPgvSrN_pYioZkufX6CPYYo5l0zVhHAhKkky9elITWawrd5GN8xOn1eUAXkAmhhSirbTjRvzwoIfI7heU6LnU9D5FPT8yfEUsu7qhe659euKy4Nifvjn9RX6LyQPxik |
CitedBy_id | crossref_primary_10_1016_j_biortech_2023_129773 crossref_primary_10_1016_j_scienta_2024_112961 crossref_primary_10_1016_j_envres_2023_116613 crossref_primary_10_1007_s10333_021_00860_9 crossref_primary_10_1016_j_wasman_2023_04_034 crossref_primary_10_1016_j_agee_2025_109473 crossref_primary_10_1016_j_jclepro_2021_128560 crossref_primary_10_1016_j_wasman_2023_09_012 crossref_primary_10_15302_J_FASE_2019293 crossref_primary_10_1016_j_wasman_2019_10_012 crossref_primary_10_1016_j_envpol_2019_113863 crossref_primary_10_1007_s11356_023_25645_x crossref_primary_10_1016_j_scitotenv_2022_155902 crossref_primary_10_3390_su17020586 crossref_primary_10_1007_s10705_017_9893_3 crossref_primary_10_1007_s44246_024_00147_8 crossref_primary_10_1016_j_enmm_2024_101000 crossref_primary_10_1016_j_envpol_2020_115822 crossref_primary_10_1021_acs_est_2c01978 crossref_primary_10_1016_j_envpol_2018_10_124 crossref_primary_10_1021_acssuschemeng_1c04382 crossref_primary_10_1016_j_scitotenv_2023_166881 crossref_primary_10_1007_s40726_022_00232_9 crossref_primary_10_1016_j_jenvman_2019_05_026 crossref_primary_10_3390_w15234185 crossref_primary_10_1016_j_wasman_2020_06_021 crossref_primary_10_1111_gcb_14826 crossref_primary_10_4236_lce_2022_132004 crossref_primary_10_15212_ijafr_2023_0113 crossref_primary_10_1016_j_heliyon_2024_e29389 crossref_primary_10_1038_s43016_022_00513_y crossref_primary_10_1016_j_wasman_2022_05_018 crossref_primary_10_1029_2019JD030380 crossref_primary_10_3389_fvets_2021_689259 crossref_primary_10_1111_age_13323 crossref_primary_10_1016_j_wasman_2019_05_019 crossref_primary_10_3390_membranes12090882 crossref_primary_10_1016_j_jenvman_2022_114430 crossref_primary_10_1016_j_jhazmat_2020_123954 crossref_primary_10_1016_j_wasman_2024_02_046 crossref_primary_10_1016_j_jece_2024_114127 crossref_primary_10_1016_j_jenvman_2019_04_079 crossref_primary_10_5194_acp_19_5605_2019 crossref_primary_10_1590_1809_4430_eng_agric_v41n1p25_33_2021 crossref_primary_10_3390_ijerph16203930 crossref_primary_10_3390_nu14204393 crossref_primary_10_1016_j_jclepro_2018_04_021 crossref_primary_10_1021_acs_est_7b04829 crossref_primary_10_1016_j_scitotenv_2023_168112 crossref_primary_10_1016_j_jenvman_2024_121453 crossref_primary_10_1016_j_scitotenv_2022_155672 crossref_primary_10_1016_j_jclepro_2022_131127 crossref_primary_10_1016_j_scitotenv_2020_137693 crossref_primary_10_1016_j_agwat_2018_10_009 crossref_primary_10_1016_j_agsy_2024_104188 crossref_primary_10_1029_2024EF005263 crossref_primary_10_3390_app12052559 crossref_primary_10_1016_j_agrformet_2021_108373 crossref_primary_10_1093_af_vfac085 crossref_primary_10_1016_j_fcr_2021_108237 crossref_primary_10_2134_jeq2017_05_0199 crossref_primary_10_1016_j_bcab_2020_101605 crossref_primary_10_3390_ani12212941 crossref_primary_10_1016_j_jclepro_2019_118927 crossref_primary_10_1016_j_jclepro_2021_127138 crossref_primary_10_1016_j_biortech_2019_122414 crossref_primary_10_1016_j_eiar_2024_107494 crossref_primary_10_1007_s10705_024_10341_0 crossref_primary_10_1080_00103624_2024_2416547 crossref_primary_10_1016_j_resconrec_2022_106739 crossref_primary_10_1016_j_biosystemseng_2024_04_016 crossref_primary_10_1007_s10668_023_03167_3 crossref_primary_10_1016_j_heliyon_2023_e18208 crossref_primary_10_1016_j_jenvman_2023_117739 crossref_primary_10_1016_j_scitotenv_2022_156701 crossref_primary_10_1016_j_fcr_2023_109035 crossref_primary_10_1016_j_oneear_2024_02_007 crossref_primary_10_1016_j_jenvman_2024_120028 crossref_primary_10_1155_2022_8505922 crossref_primary_10_1016_j_envres_2023_115545 crossref_primary_10_3390_agronomy10111633 crossref_primary_10_1016_j_agrformet_2023_109432 crossref_primary_10_1017_S1742170520000320 crossref_primary_10_1038_s43016_022_00640_6 crossref_primary_10_1038_s43016_024_01010_0 crossref_primary_10_1021_acs_est_3c04209 crossref_primary_10_1016_j_scitotenv_2020_144720 crossref_primary_10_1016_j_envres_2020_110458 crossref_primary_10_1016_j_jenvman_2022_115306 crossref_primary_10_1016_j_wasman_2017_09_013 crossref_primary_10_1016_j_psep_2024_03_038 crossref_primary_10_1016_j_resconrec_2022_106343 crossref_primary_10_1016_j_scitotenv_2019_03_191 crossref_primary_10_1016_j_jenvman_2019_02_048 crossref_primary_10_3390_atmos10070411 crossref_primary_10_3390_su11226396 crossref_primary_10_1016_j_jenvman_2021_112027 crossref_primary_10_3390_microorganisms11112675 crossref_primary_10_1016_j_jclepro_2022_132004 crossref_primary_10_1016_j_scitotenv_2023_164400 crossref_primary_10_1007_s10113_022_01892_5 crossref_primary_10_1021_acs_est_8b02475 crossref_primary_10_1016_j_bcab_2021_101936 |
Cites_doi | 10.1016/j.livsci.2013.05.005 10.1073/pnas.1004659107 10.1111/gcb.12767 10.1007/s00374-003-0589-2 10.1038/ngeo551 10.1038/nclimate2081 10.1021/acs.est.6b03348 10.1021/es502160v 10.1126/science.1136674 10.1126/science.1172460 10.1016/j.agee.2014.06.010 10.1016/j.agee.2015.10.020 10.1023/B:FRES.0000029678.25083.fa 10.5194/acp-9-2949-2009 10.1016/S1164-5563(01)01067-6 10.1021/es048048q 10.1073/pnas.1012541107 10.1038/ngeo608 10.1016/j.anifeedsci.2011.04.077 10.1016/j.livsci.2008.06.021 10.1016/j.biortech.2011.08.076 10.1017/S0021859614000690 10.1007/s11814-010-0312-6 10.2134/jeq2015.11.0568 10.1007/s10533-004-0370-0 10.1029/2000GB001389 10.1177/0734242X10375587 10.1016/j.anifeedsci.2011.04.036 10.1016/j.agee.2005.08.030 10.1385/ABAB:109:1-3:263 10.2134/jeq2000.00472425002900040045x 10.1111/j.1365-2486.2006.01129.x 10.1017/S1751731113000876 10.1016/j.agee.2009.12.001 10.1016/j.agee.2005.08.031 10.1007/s10705-013-9551-3 10.1111/jam.12498 10.1093/applin/amp038 10.1016/j.atmosenv.2011.10.019 10.1016/j.jenvman.2016.08.047 10.1126/science.347.6223.704 10.1002/2013JD021130 10.1021/es302951a 10.1016/j.ces.2007.05.018 10.1016/j.jenvman.2012.08.018 10.1126/science.343.6168.238 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society Copyright American Chemical Society Apr 18, 2017 Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society – notice: Copyright American Chemical Society Apr 18, 2017 – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 QVL |
DOI | 10.1021/acs.est.6b06430 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 4511 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_523247 28318241 10_1021_acs_est_6b06430 e8718193 |
Genre | Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GeographicLocations | Australia France China Germany |
GeographicLocations_xml | – name: China – name: Germany – name: France – name: Australia |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N013484/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N013468/1 |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 08R 186 1WB 42X 8WZ A A6W ABDEX ACDCL ACKIV ADKFC AETEA AFDAS AFMIJ ANTXH HR IHE K78 MVM NHB OHT QVL RNS TAE UBX UBY UQL VJK VOH ZCG ZY4 |
ID | FETCH-LOGICAL-a511t-b22bb530ba8794b1416fe2b2f9053e26cab75b895daa69232777ebc6d1df26463 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Tue Jan 05 18:10:37 EST 2021 Thu Jul 10 18:33:33 EDT 2025 Fri Jul 11 07:04:56 EDT 2025 Mon Jun 30 08:26:51 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Tue Jul 01 02:57:52 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Thu Aug 27 13:42:33 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a511t-b22bb530ba8794b1416fe2b2f9053e26cab75b895daa69232777ebc6d1df26463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4194-7386 |
PMID | 28318241 |
PQID | 1900344850 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_523247 proquest_miscellaneous_2000249214 proquest_miscellaneous_1879660486 proquest_journals_1900344850 pubmed_primary_28318241 crossref_citationtrail_10_1021_acs_est_6b06430 crossref_primary_10_1021_acs_est_6b06430 acs_journals_10_1021_acs_est_6b06430 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2017-04-18 |
PublicationDateYYYYMMDD | 2017-04-18 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 Qin X. B. (ref58/cit58) 2006; 22 ref35/cit35 Steinfeld H. (ref5/cit5) 2006 ref19/cit19 Gerber P. J. (ref1/cit1) 2013 ref42/cit42 Zheng J. (ref53/cit53) 2011; 32 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 Gerber P. J. (ref30/cit30) 2013 ref6/cit6 ref36/cit36 ref18/cit18 Intergovernmental Panel on Climate Change (IPCC) (ref21/cit21) 2006 MacLeod M. (ref22/cit22) 2013 ref11/cit11 ref25/cit25 Velthof G. L. (ref59/cit59) 2003; 37 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Bittman S. (ref34/cit34) 2014 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref33/cit33 ref4/cit4 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1016/j.livsci.2013.05.005 – ident: ref14/cit14 – ident: ref3/cit3 doi: 10.1073/pnas.1004659107 – ident: ref15/cit15 doi: 10.1111/gcb.12767 – volume: 37 start-page: 221 issue: 4 year: 2003 ident: ref59/cit59 publication-title: Biol. Fertil. Soils. doi: 10.1007/s00374-003-0589-2 – ident: ref9/cit9 doi: 10.1038/ngeo551 – ident: ref6/cit6 doi: 10.1038/nclimate2081 – ident: ref17/cit17 doi: 10.1021/acs.est.6b03348 – ident: ref11/cit11 doi: 10.1021/es502160v – ident: ref10/cit10 doi: 10.1126/science.1136674 – ident: ref37/cit37 doi: 10.1126/science.1172460 – ident: ref57/cit57 doi: 10.1016/j.agee.2014.06.010 – ident: ref26/cit26 doi: 10.1016/j.agee.2015.10.020 – ident: ref33/cit33 – ident: ref28/cit28 doi: 10.1023/B:FRES.0000029678.25083.fa – ident: ref20/cit20 doi: 10.5194/acp-9-2949-2009 – ident: ref43/cit43 doi: 10.1016/S1164-5563(01)01067-6 – ident: ref47/cit47 doi: 10.1021/es048048q – ident: ref4/cit4 doi: 10.1073/pnas.1012541107 – ident: ref8/cit8 – volume-title: IPCC 2006 Guidelines for National Greenhouse Gas Inventories Vol. 4: Agriculture, Forestry, and Other Landuse year: 2006 ident: ref21/cit21 – ident: ref23/cit23 – ident: ref2/cit2 doi: 10.1038/ngeo608 – ident: ref29/cit29 doi: 10.1016/j.anifeedsci.2011.04.077 – ident: ref45/cit45 doi: 10.1016/j.livsci.2008.06.021 – ident: ref55/cit55 doi: 10.1016/j.biortech.2011.08.076 – volume: 22 start-page: 143 issue: 7 year: 2006 ident: ref58/cit58 publication-title: T. CSAE – ident: ref7/cit7 doi: 10.1017/S0021859614000690 – ident: ref54/cit54 doi: 10.1007/s11814-010-0312-6 – ident: ref52/cit52 doi: 10.2134/jeq2015.11.0568 – volume: 32 start-page: 2047 issue: 7 year: 2011 ident: ref53/cit53 publication-title: Environ. Sci. – ident: ref60/cit60 – ident: ref16/cit16 doi: 10.1007/s10533-004-0370-0 – volume-title: Tackling Climate Change through Livestock – A Global Assessment of Emissions and Mitigation Opportunities year: 2013 ident: ref1/cit1 – ident: ref18/cit18 doi: 10.1029/2000GB001389 – ident: ref27/cit27 doi: 10.1177/0734242X10375587 – ident: ref25/cit25 doi: 10.1016/j.anifeedsci.2011.04.036 – ident: ref50/cit50 doi: 10.1016/j.agee.2005.08.030 – ident: ref56/cit56 doi: 10.1385/ABAB:109:1-3:263 – ident: ref35/cit35 – ident: ref41/cit41 doi: 10.2134/jeq2000.00472425002900040045x – volume-title: Mitigation of Greenhouse Gas Emissions in Livestock Production – A Review of Technical Options for Non-CO2 Emissions year: 2013 ident: ref30/cit30 – volume-title: Livestock’S Long Shadow year: 2006 ident: ref5/cit5 – ident: ref19/cit19 doi: 10.1111/j.1365-2486.2006.01129.x – ident: ref31/cit31 doi: 10.1017/S1751731113000876 – ident: ref44/cit44 doi: 10.1016/j.agee.2009.12.001 – ident: ref48/cit48 doi: 10.1016/j.agee.2005.08.031 – ident: ref49/cit49 doi: 10.1007/s10705-013-9551-3 – ident: ref51/cit51 doi: 10.1111/jam.12498 – ident: ref36/cit36 doi: 10.1093/applin/amp038 – ident: ref46/cit46 doi: 10.1016/j.atmosenv.2011.10.019 – ident: ref32/cit32 doi: 10.1016/j.jenvman.2016.08.047 – ident: ref13/cit13 doi: 10.1126/science.347.6223.704 – volume-title: Greenhouse gas emissions from pig and chicken supply chains – A global life cycle assessment year: 2013 ident: ref22/cit22 – ident: ref24/cit24 doi: 10.1002/2013JD021130 – volume-title: Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen year: 2014 ident: ref34/cit34 – ident: ref39/cit39 doi: 10.1021/es302951a – ident: ref42/cit42 doi: 10.1016/j.ces.2007.05.018 – ident: ref38/cit38 doi: 10.1016/j.jenvman.2012.08.018 – ident: ref12/cit12 doi: 10.1126/science.343.6168.238 |
SSID | ssj0002308 |
Score | 2.5618825 |
SecondaryResourceType | review_article |
Snippet | Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to... Gaseous emissions from animal manure are considerable contributor to global ammonia (NH ) and agriculture greenhouse gas (GHG) emissions. Given the demand to... Gaseous emissions from animal manure are considerable contributor to global ammonia (NH^sub 3^) and agriculture greenhouse gas (GHG) emissions. Given the... Gaseous emissions from animal manure are considerable contributor to global ammonia (NH₃) and agriculture greenhouse gas (GHG) emissions. Given the demand to... |
SourceID | wageningen proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4503 |
SubjectTerms | Agricultural industry Air Pollutants Air quality Ammonia animal manure management Animal Production Systems Animals Australia China Climate Change Climate change mitigation Dierlijke Productiesystemen Emission measurements Emissions Emissions control emissions factor European Union France Gases Germany Greenhouse Effect greenhouse gas emissions Greenhouse gases Hogs Leerstoelgroep Dierlijke productiesystemen Management systems Manure Manures meta-analysis Methane Nitrous Oxide Outdoor air quality Paris Agreement Pig manure Reduction Sustainable development Swine Swine production Systems analysis |
Title | Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis |
URI | http://dx.doi.org/10.1021/acs.est.6b06430 https://www.ncbi.nlm.nih.gov/pubmed/28318241 https://www.proquest.com/docview/1900344850 https://www.proquest.com/docview/1879660486 https://www.proquest.com/docview/2000249214 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F523247 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELYQXOCwvHfLS16JA5eExnHshFtVFSqkcmGRerNsJ91FiwzCrSrx65lJ0rRQVXCKFD9kj2fsz4_5hpBzbuM849IGCY9ZwCWLA2NFHogs5ZngJs3Lo-zBneg_8NthMpyTRX--wWfRpbY-hAkyFAZXT9idbzABJowoqHvfTLqApNNZsIIsFsOGxWepAlyGrP-4DC1hyy2yOQV7dqWD08KCc71dPdXyJU8hvjP5H07GJrRvyyyOX_dlh_yoYSftVHqyS9YKt0e2FsgI98hhb-7zBllro_f7RA0eKyIO95eWz3T-PU98QW-0p9rltIOa_KhpDzQGj948RZcVej-FqulAoyMynT-yuaIdWrGk0xkfygF5uO796faDOi5DoAGejQPDmDFJ3DY6BWs2EWC6UcEMG2Vg0QUTVhuZmDRLcq0FAEgmpSxQA6J8BPhLxIdk3T274hehUtt2DPtzK4XgIyOMYG0Ne1aAHZHVCW-Rc5CZqu3Kq_LKnEUKf4IgVS3IFglno6lszW2OITaeVhe4aAq8VLQeq7OezNRjoR1ZyZWYJpD8u0kGOeN1i3YFjIPCOO5CIKXh6jzoKIWcjRH09Gelek17APjB5o9HLRLPdVE5DDHlFbKC1-d8ajp5Ve4JP1CDVwmCZHn0Pckdk02GQAXZK9MTsj5-nRSnALPG5qw0sHfjdCKi |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6axoHtMGAwVhhgpB24pDSOYyfcqqmjwDoJbZN6s2wnhYnJQ3OrSvz1vJdfLUyV4BQpcSzn5Xv25x_vewDHwiVFLpSLUpHwSCieRNbJIpJ5JnIpbFZUS9mTczm-Ep-n6XQLBm0sDDYiYE2h2sRfqQvE7-ke9pN9aWkQxUn6A6QinDA9PLno-l4k1FmbsyBP5LQT87lXAY1GLvw5Gt2jmLuws0S39lWc09q4c_oIvnYtro6b_Ogv5rbvfv0l5vg_n_QY9hoSyoY1ap7AVun3YXdNmnAfDkarCDgs2nQB4SnoyXUty-G_serQzvfbRSjZRxOY8QUbEq6vDRshfmghLjAKYGEXS6yaTQyFJbPVkZsPbMhqzXTWqqM8g6vT0eXJOGqyNEQGydo8spxbmyYDazL0bRsjw5uV3PJZjv5dcumMVanN8rQwRiKd5EqpkvAQFzNkYzI5gG1_68tDYMq4QYKzdaekFDMrreQDgzNYJCGxM6nowTHaTDdeFnS1gc5jTTfRkLoxZA_67U_VrlE6p4QbN5tfeNe98LMW-dhc9KhFyVo78ko5MUvx8dvuMdqZNl-ML_E_aMrqLiUJHG4uQ2FTpOAY45c-rxHYtQdpIE4FRdyDZAVJ7SnhVNCkEd6s-unl4k77G7oQ8HRKlFm9-DfLvYGH48vJmT77dP7lJexwojCka5kdwfb8blG-QgI2t68rn_sNocUrAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5CQ0LbA5fBRmGAkfbAS0rjOHbCWzVaxqUT0qjUN8t2EpiYvGluVYlfzzlJmhamSvAUKXEs5-Q79ufL-Q7AsXBJkQvlolQkPBKKJ5F1sohknolcCpsV9VL25EyeTsWnWTprg8IoFgYbEbCmUG_ik1dfF1WrMBC_pfvYV_alpYEUJ-p3adOOcD08Oe_6XyTV2SpvQZ7IWSfoc6sCGpFc-HNEukUz92B3ia7t61injbFn_ACmXavrIyc_-4u57btffwk6_u9nPYT7LRllwwY9j-BO6fdhb0OicB8ORutIOCzadgXhMejJRSPP4b-z-vDOj6tFKNkHE5jxBRsSvi8MGyGOaEEuMApkYedLrJpNDIUns_XRm3dsyBrtdLZSSXkC0_Ho28lp1GZriAyStnlkObc2TQbWZOjjNkamV5Xc8ipHPy-5dMaq1GZ5WhgjkVZypVRJuIiLClmZTA5gx1_58ikwZdwgwVm7U1KKykor-cDgTBbJSOxMKnpwjDbTrbcFXW-k81jTTTSkbg3Zg_7qx2rXKp5T4o3L7S-86V64bsQ-thc9WiFlox15raCYpfj4dfcY7UybMMaX-B80ZXeXkoQOt5eh8ClScozxSw8bFHbtQTqIU0IR9yBZw1J7SjwVNGmFt6t_erm40f6SLgQ-nRJ1Vs_-zXKv4N7X92P95ePZ5-ewy4nJkLxldgQ785tF-QJ52Ny-rN3uNy1ULYY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+Greenhouse+Gas+and+Ammonia+Emissions+from+Swine+Manure+Management%3A+A+System+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Yue&rft.au=Dong%2C+Hongmin&rft.au=Zhu%2C+Zhiping&rft.au=Gerber%2C+Pierre+J&rft.date=2017-04-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=51&rft.issue=8&rft.spage=4503&rft_id=info:doi/10.1021%2Facs.est.6b06430&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |