Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis

Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently ne...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 51; no. 8; pp. 4503 - 4511
Main Authors Wang, Yue, Dong, Hongmin, Zhu, Zhiping, Gerber, Pierre J, Xin, Hongwei, Smith, Pete, Opio, Carolyn, Steinfeld, Henning, Chadwick, Dave
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
AbstractList Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH3, methane (CH4), and nitrous oxide (N2O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH3 emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH3 emissions is equivalent to 40% of the total NH3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH , methane (CH ), and nitrous oxide (N O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH emissions is equivalent to 40% of the total NH emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH₃) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH₃, methane (CH₄), and nitrous oxide (N₂O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH₃ emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid–liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH₃ emissions by 78%. The resultant potential reduction in GHG emissions from China’s pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH₃ emissions is equivalent to 40% of the total NH₃ emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH^sub 3^) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH^sub 3^, methane (CH^sub 4^), and nitrous oxide (N^sub 2^O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH^sub 3^ emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH^sub 3^ emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH^sub 3^ emissions is equivalent to 40% of the total NH^sub 3^ emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.
Author Wang, Yue
Xin, Hongwei
Smith, Pete
Steinfeld, Henning
Zhu, Zhiping
Chadwick, Dave
Gerber, Pierre J
Opio, Carolyn
Dong, Hongmin
AuthorAffiliation Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures
University of Aberdeen
Environment Centre Wales, School of Environment, Natural Resources and Geography
Bangor University
Department of Agricultural and Biosystems Engineering
Iowa State University
Institute of Biological and Environmental Sciences
Institute of Environment and Sustainable Development in Agriculture
Chinese Academy of Agricultural Sciences
Animal Production Systems Group
Ministry of Agriculture
Wageningen University
AuthorAffiliation_xml – name: University of Aberdeen
– name: Institute of Environment and Sustainable Development in Agriculture
– name: Animal Production Systems Group
– name: Department of Agricultural and Biosystems Engineering
– name: Chinese Academy of Agricultural Sciences
– name: Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures
– name: Institute of Biological and Environmental Sciences
– name: Environment Centre Wales, School of Environment, Natural Resources and Geography
– name: Ministry of Agriculture
– name: Iowa State University
– name: Bangor University
– name: Wageningen University
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-4194-7386
  surname: Wang
  fullname: Wang, Yue
  organization: Ministry of Agriculture
– sequence: 2
  givenname: Hongmin
  surname: Dong
  fullname: Dong, Hongmin
  email: donghongmin@caas.cn
  organization: Ministry of Agriculture
– sequence: 3
  givenname: Zhiping
  surname: Zhu
  fullname: Zhu, Zhiping
  organization: Ministry of Agriculture
– sequence: 4
  givenname: Pierre J
  surname: Gerber
  fullname: Gerber, Pierre J
  organization: Wageningen University
– sequence: 5
  givenname: Hongwei
  surname: Xin
  fullname: Xin, Hongwei
  organization: Iowa State University
– sequence: 6
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  organization: University of Aberdeen
– sequence: 7
  givenname: Carolyn
  surname: Opio
  fullname: Opio, Carolyn
– sequence: 8
  givenname: Henning
  surname: Steinfeld
  fullname: Steinfeld, Henning
– sequence: 9
  givenname: Dave
  surname: Chadwick
  fullname: Chadwick, Dave
  organization: Bangor University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28318241$$D View this record in MEDLINE/PubMed
BookMark eNqFks1r3DAQxUVJaTZpz70VQS-B4I2-bee2hHRbSOghLfQmRra8VbClrWSz7H9fObuhEAg9zUG_N3rzZs7QiQ_eIvSRkiUljF5Bk5Y2jUtliBKcvEELKhkpZCXpCVoQQnlRc_XrFJ2l9EgIYZxU79ApqzitmKALpO_d6DYwOr_B62it_x2mZPEaEgbf4tUwBO8A3w4uJRd8wl0MA37YOW_xPfgpPhXY2MH68Rqv8MM-jXbAKw_9Prn0Hr3toE_2w7Geo59fbn_cfC3uvq-_3azuCpCUjoVhzBjJiYGqrIWhgqrOMsO6mkhumWrAlNJUtWwBVM04K8vSmka1tO2YEoqfo-tD31324vM01msPsXFJB3C6dyZC3OvdFLXv57KdTNIydxJlFl8cxNsY_kw5T53HbWzfg7c5Ds3m5ETNqPgvSrN_pYioZkufX6CPYYo5l0zVhHAhKkky9elITWawrd5GN8xOn1eUAXkAmhhSirbTjRvzwoIfI7heU6LnU9D5FPT8yfEUsu7qhe659euKy4Nifvjn9RX6LyQPxik
CitedBy_id crossref_primary_10_1016_j_biortech_2023_129773
crossref_primary_10_1016_j_scienta_2024_112961
crossref_primary_10_1016_j_envres_2023_116613
crossref_primary_10_1007_s10333_021_00860_9
crossref_primary_10_1016_j_wasman_2023_04_034
crossref_primary_10_1016_j_agee_2025_109473
crossref_primary_10_1016_j_jclepro_2021_128560
crossref_primary_10_1016_j_wasman_2023_09_012
crossref_primary_10_15302_J_FASE_2019293
crossref_primary_10_1016_j_wasman_2019_10_012
crossref_primary_10_1016_j_envpol_2019_113863
crossref_primary_10_1007_s11356_023_25645_x
crossref_primary_10_1016_j_scitotenv_2022_155902
crossref_primary_10_3390_su17020586
crossref_primary_10_1007_s10705_017_9893_3
crossref_primary_10_1007_s44246_024_00147_8
crossref_primary_10_1016_j_enmm_2024_101000
crossref_primary_10_1016_j_envpol_2020_115822
crossref_primary_10_1021_acs_est_2c01978
crossref_primary_10_1016_j_envpol_2018_10_124
crossref_primary_10_1021_acssuschemeng_1c04382
crossref_primary_10_1016_j_scitotenv_2023_166881
crossref_primary_10_1007_s40726_022_00232_9
crossref_primary_10_1016_j_jenvman_2019_05_026
crossref_primary_10_3390_w15234185
crossref_primary_10_1016_j_wasman_2020_06_021
crossref_primary_10_1111_gcb_14826
crossref_primary_10_4236_lce_2022_132004
crossref_primary_10_15212_ijafr_2023_0113
crossref_primary_10_1016_j_heliyon_2024_e29389
crossref_primary_10_1038_s43016_022_00513_y
crossref_primary_10_1016_j_wasman_2022_05_018
crossref_primary_10_1029_2019JD030380
crossref_primary_10_3389_fvets_2021_689259
crossref_primary_10_1111_age_13323
crossref_primary_10_1016_j_wasman_2019_05_019
crossref_primary_10_3390_membranes12090882
crossref_primary_10_1016_j_jenvman_2022_114430
crossref_primary_10_1016_j_jhazmat_2020_123954
crossref_primary_10_1016_j_wasman_2024_02_046
crossref_primary_10_1016_j_jece_2024_114127
crossref_primary_10_1016_j_jenvman_2019_04_079
crossref_primary_10_5194_acp_19_5605_2019
crossref_primary_10_1590_1809_4430_eng_agric_v41n1p25_33_2021
crossref_primary_10_3390_ijerph16203930
crossref_primary_10_3390_nu14204393
crossref_primary_10_1016_j_jclepro_2018_04_021
crossref_primary_10_1021_acs_est_7b04829
crossref_primary_10_1016_j_scitotenv_2023_168112
crossref_primary_10_1016_j_jenvman_2024_121453
crossref_primary_10_1016_j_scitotenv_2022_155672
crossref_primary_10_1016_j_jclepro_2022_131127
crossref_primary_10_1016_j_scitotenv_2020_137693
crossref_primary_10_1016_j_agwat_2018_10_009
crossref_primary_10_1016_j_agsy_2024_104188
crossref_primary_10_1029_2024EF005263
crossref_primary_10_3390_app12052559
crossref_primary_10_1016_j_agrformet_2021_108373
crossref_primary_10_1093_af_vfac085
crossref_primary_10_1016_j_fcr_2021_108237
crossref_primary_10_2134_jeq2017_05_0199
crossref_primary_10_1016_j_bcab_2020_101605
crossref_primary_10_3390_ani12212941
crossref_primary_10_1016_j_jclepro_2019_118927
crossref_primary_10_1016_j_jclepro_2021_127138
crossref_primary_10_1016_j_biortech_2019_122414
crossref_primary_10_1016_j_eiar_2024_107494
crossref_primary_10_1007_s10705_024_10341_0
crossref_primary_10_1080_00103624_2024_2416547
crossref_primary_10_1016_j_resconrec_2022_106739
crossref_primary_10_1016_j_biosystemseng_2024_04_016
crossref_primary_10_1007_s10668_023_03167_3
crossref_primary_10_1016_j_heliyon_2023_e18208
crossref_primary_10_1016_j_jenvman_2023_117739
crossref_primary_10_1016_j_scitotenv_2022_156701
crossref_primary_10_1016_j_fcr_2023_109035
crossref_primary_10_1016_j_oneear_2024_02_007
crossref_primary_10_1016_j_jenvman_2024_120028
crossref_primary_10_1155_2022_8505922
crossref_primary_10_1016_j_envres_2023_115545
crossref_primary_10_3390_agronomy10111633
crossref_primary_10_1016_j_agrformet_2023_109432
crossref_primary_10_1017_S1742170520000320
crossref_primary_10_1038_s43016_022_00640_6
crossref_primary_10_1038_s43016_024_01010_0
crossref_primary_10_1021_acs_est_3c04209
crossref_primary_10_1016_j_scitotenv_2020_144720
crossref_primary_10_1016_j_envres_2020_110458
crossref_primary_10_1016_j_jenvman_2022_115306
crossref_primary_10_1016_j_wasman_2017_09_013
crossref_primary_10_1016_j_psep_2024_03_038
crossref_primary_10_1016_j_resconrec_2022_106343
crossref_primary_10_1016_j_scitotenv_2019_03_191
crossref_primary_10_1016_j_jenvman_2019_02_048
crossref_primary_10_3390_atmos10070411
crossref_primary_10_3390_su11226396
crossref_primary_10_1016_j_jenvman_2021_112027
crossref_primary_10_3390_microorganisms11112675
crossref_primary_10_1016_j_jclepro_2022_132004
crossref_primary_10_1016_j_scitotenv_2023_164400
crossref_primary_10_1007_s10113_022_01892_5
crossref_primary_10_1021_acs_est_8b02475
crossref_primary_10_1016_j_bcab_2021_101936
Cites_doi 10.1016/j.livsci.2013.05.005
10.1073/pnas.1004659107
10.1111/gcb.12767
10.1007/s00374-003-0589-2
10.1038/ngeo551
10.1038/nclimate2081
10.1021/acs.est.6b03348
10.1021/es502160v
10.1126/science.1136674
10.1126/science.1172460
10.1016/j.agee.2014.06.010
10.1016/j.agee.2015.10.020
10.1023/B:FRES.0000029678.25083.fa
10.5194/acp-9-2949-2009
10.1016/S1164-5563(01)01067-6
10.1021/es048048q
10.1073/pnas.1012541107
10.1038/ngeo608
10.1016/j.anifeedsci.2011.04.077
10.1016/j.livsci.2008.06.021
10.1016/j.biortech.2011.08.076
10.1017/S0021859614000690
10.1007/s11814-010-0312-6
10.2134/jeq2015.11.0568
10.1007/s10533-004-0370-0
10.1029/2000GB001389
10.1177/0734242X10375587
10.1016/j.anifeedsci.2011.04.036
10.1016/j.agee.2005.08.030
10.1385/ABAB:109:1-3:263
10.2134/jeq2000.00472425002900040045x
10.1111/j.1365-2486.2006.01129.x
10.1017/S1751731113000876
10.1016/j.agee.2009.12.001
10.1016/j.agee.2005.08.031
10.1007/s10705-013-9551-3
10.1111/jam.12498
10.1093/applin/amp038
10.1016/j.atmosenv.2011.10.019
10.1016/j.jenvman.2016.08.047
10.1126/science.347.6223.704
10.1002/2013JD021130
10.1021/es302951a
10.1016/j.ces.2007.05.018
10.1016/j.jenvman.2012.08.018
10.1126/science.343.6168.238
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright American Chemical Society Apr 18, 2017
Wageningen University & Research
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright American Chemical Society Apr 18, 2017
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
QVL
DOI 10.1021/acs.est.6b06430
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

AGRICOLA
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 4511
ExternalDocumentID oai_library_wur_nl_wurpubs_523247
28318241
10_1021_acs_est_6b06430
e8718193
Genre Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GeographicLocations Australia
France
China
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: France
– name: Australia
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N013484/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N013468/1
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
08R
186
1WB
42X
8WZ
A
A6W
ABDEX
ACDCL
ACKIV
ADKFC
AETEA
AFDAS
AFMIJ
ANTXH
HR
IHE
K78
MVM
NHB
OHT
QVL
RNS
TAE
UBX
UBY
UQL
VJK
VOH
ZCG
ZY4
ID FETCH-LOGICAL-a511t-b22bb530ba8794b1416fe2b2f9053e26cab75b895daa69232777ebc6d1df26463
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Tue Jan 05 18:10:37 EST 2021
Thu Jul 10 18:33:33 EDT 2025
Fri Jul 11 07:04:56 EDT 2025
Mon Jun 30 08:26:51 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Thu Aug 27 13:42:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a511t-b22bb530ba8794b1416fe2b2f9053e26cab75b895daa69232777ebc6d1df26463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4194-7386
PMID 28318241
PQID 1900344850
PQPubID 45412
PageCount 9
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_523247
proquest_miscellaneous_2000249214
proquest_miscellaneous_1879660486
proquest_journals_1900344850
pubmed_primary_28318241
crossref_citationtrail_10_1021_acs_est_6b06430
crossref_primary_10_1021_acs_est_6b06430
acs_journals_10_1021_acs_est_6b06430
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2017-04-18
PublicationDateYYYYMMDD 2017-04-18
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
Qin X. B. (ref58/cit58) 2006; 22
ref35/cit35
Steinfeld H. (ref5/cit5) 2006
ref19/cit19
Gerber P. J. (ref1/cit1) 2013
ref42/cit42
Zheng J. (ref53/cit53) 2011; 32
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
Gerber P. J. (ref30/cit30) 2013
ref6/cit6
ref36/cit36
ref18/cit18
Intergovernmental Panel on Climate Change (IPCC) (ref21/cit21) 2006
MacLeod M. (ref22/cit22) 2013
ref11/cit11
ref25/cit25
Velthof G. L. (ref59/cit59) 2003; 37
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Bittman S. (ref34/cit34) 2014
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref33/cit33
ref4/cit4
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1016/j.livsci.2013.05.005
– ident: ref14/cit14
– ident: ref3/cit3
  doi: 10.1073/pnas.1004659107
– ident: ref15/cit15
  doi: 10.1111/gcb.12767
– volume: 37
  start-page: 221
  issue: 4
  year: 2003
  ident: ref59/cit59
  publication-title: Biol. Fertil. Soils.
  doi: 10.1007/s00374-003-0589-2
– ident: ref9/cit9
  doi: 10.1038/ngeo551
– ident: ref6/cit6
  doi: 10.1038/nclimate2081
– ident: ref17/cit17
  doi: 10.1021/acs.est.6b03348
– ident: ref11/cit11
  doi: 10.1021/es502160v
– ident: ref10/cit10
  doi: 10.1126/science.1136674
– ident: ref37/cit37
  doi: 10.1126/science.1172460
– ident: ref57/cit57
  doi: 10.1016/j.agee.2014.06.010
– ident: ref26/cit26
  doi: 10.1016/j.agee.2015.10.020
– ident: ref33/cit33
– ident: ref28/cit28
  doi: 10.1023/B:FRES.0000029678.25083.fa
– ident: ref20/cit20
  doi: 10.5194/acp-9-2949-2009
– ident: ref43/cit43
  doi: 10.1016/S1164-5563(01)01067-6
– ident: ref47/cit47
  doi: 10.1021/es048048q
– ident: ref4/cit4
  doi: 10.1073/pnas.1012541107
– ident: ref8/cit8
– volume-title: IPCC 2006 Guidelines for National Greenhouse Gas Inventories Vol. 4: Agriculture, Forestry, and Other Landuse
  year: 2006
  ident: ref21/cit21
– ident: ref23/cit23
– ident: ref2/cit2
  doi: 10.1038/ngeo608
– ident: ref29/cit29
  doi: 10.1016/j.anifeedsci.2011.04.077
– ident: ref45/cit45
  doi: 10.1016/j.livsci.2008.06.021
– ident: ref55/cit55
  doi: 10.1016/j.biortech.2011.08.076
– volume: 22
  start-page: 143
  issue: 7
  year: 2006
  ident: ref58/cit58
  publication-title: T. CSAE
– ident: ref7/cit7
  doi: 10.1017/S0021859614000690
– ident: ref54/cit54
  doi: 10.1007/s11814-010-0312-6
– ident: ref52/cit52
  doi: 10.2134/jeq2015.11.0568
– volume: 32
  start-page: 2047
  issue: 7
  year: 2011
  ident: ref53/cit53
  publication-title: Environ. Sci.
– ident: ref60/cit60
– ident: ref16/cit16
  doi: 10.1007/s10533-004-0370-0
– volume-title: Tackling Climate Change through Livestock – A Global Assessment of Emissions and Mitigation Opportunities
  year: 2013
  ident: ref1/cit1
– ident: ref18/cit18
  doi: 10.1029/2000GB001389
– ident: ref27/cit27
  doi: 10.1177/0734242X10375587
– ident: ref25/cit25
  doi: 10.1016/j.anifeedsci.2011.04.036
– ident: ref50/cit50
  doi: 10.1016/j.agee.2005.08.030
– ident: ref56/cit56
  doi: 10.1385/ABAB:109:1-3:263
– ident: ref35/cit35
– ident: ref41/cit41
  doi: 10.2134/jeq2000.00472425002900040045x
– volume-title: Mitigation of Greenhouse Gas Emissions in Livestock Production – A Review of Technical Options for Non-CO2 Emissions
  year: 2013
  ident: ref30/cit30
– volume-title: Livestock’S Long Shadow
  year: 2006
  ident: ref5/cit5
– ident: ref19/cit19
  doi: 10.1111/j.1365-2486.2006.01129.x
– ident: ref31/cit31
  doi: 10.1017/S1751731113000876
– ident: ref44/cit44
  doi: 10.1016/j.agee.2009.12.001
– ident: ref48/cit48
  doi: 10.1016/j.agee.2005.08.031
– ident: ref49/cit49
  doi: 10.1007/s10705-013-9551-3
– ident: ref51/cit51
  doi: 10.1111/jam.12498
– ident: ref36/cit36
  doi: 10.1093/applin/amp038
– ident: ref46/cit46
  doi: 10.1016/j.atmosenv.2011.10.019
– ident: ref32/cit32
  doi: 10.1016/j.jenvman.2016.08.047
– ident: ref13/cit13
  doi: 10.1126/science.347.6223.704
– volume-title: Greenhouse gas emissions from pig and chicken supply chains – A global life cycle assessment
  year: 2013
  ident: ref22/cit22
– ident: ref24/cit24
  doi: 10.1002/2013JD021130
– volume-title: Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen
  year: 2014
  ident: ref34/cit34
– ident: ref39/cit39
  doi: 10.1021/es302951a
– ident: ref42/cit42
  doi: 10.1016/j.ces.2007.05.018
– ident: ref38/cit38
  doi: 10.1016/j.jenvman.2012.08.018
– ident: ref12/cit12
  doi: 10.1126/science.343.6168.238
SSID ssj0002308
Score 2.5618825
SecondaryResourceType review_article
Snippet Gaseous emissions from animal manure are considerable contributor to global ammonia (NH3) and agriculture greenhouse gas (GHG) emissions. Given the demand to...
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH ) and agriculture greenhouse gas (GHG) emissions. Given the demand to...
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH^sub 3^) and agriculture greenhouse gas (GHG) emissions. Given the...
Gaseous emissions from animal manure are considerable contributor to global ammonia (NH₃) and agriculture greenhouse gas (GHG) emissions. Given the demand to...
SourceID wageningen
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4503
SubjectTerms Agricultural industry
Air Pollutants
Air quality
Ammonia
animal manure management
Animal Production Systems
Animals
Australia
China
Climate Change
Climate change mitigation
Dierlijke Productiesystemen
Emission measurements
Emissions
Emissions control
emissions factor
European Union
France
Gases
Germany
Greenhouse Effect
greenhouse gas emissions
Greenhouse gases
Hogs
Leerstoelgroep Dierlijke productiesystemen
Management systems
Manure
Manures
meta-analysis
Methane
Nitrous Oxide
Outdoor air quality
Paris Agreement
Pig manure
Reduction
Sustainable development
Swine
Swine production
Systems analysis
Title Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis
URI http://dx.doi.org/10.1021/acs.est.6b06430
https://www.ncbi.nlm.nih.gov/pubmed/28318241
https://www.proquest.com/docview/1900344850
https://www.proquest.com/docview/1879660486
https://www.proquest.com/docview/2000249214
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F523247
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELYQXOCwvHfLS16JA5eExnHshFtVFSqkcmGRerNsJ91FiwzCrSrx65lJ0rRQVXCKFD9kj2fsz4_5hpBzbuM849IGCY9ZwCWLA2NFHogs5ZngJs3Lo-zBneg_8NthMpyTRX--wWfRpbY-hAkyFAZXT9idbzABJowoqHvfTLqApNNZsIIsFsOGxWepAlyGrP-4DC1hyy2yOQV7dqWD08KCc71dPdXyJU8hvjP5H07GJrRvyyyOX_dlh_yoYSftVHqyS9YKt0e2FsgI98hhb-7zBllro_f7RA0eKyIO95eWz3T-PU98QW-0p9rltIOa_KhpDzQGj948RZcVej-FqulAoyMynT-yuaIdWrGk0xkfygF5uO796faDOi5DoAGejQPDmDFJ3DY6BWs2EWC6UcEMG2Vg0QUTVhuZmDRLcq0FAEgmpSxQA6J8BPhLxIdk3T274hehUtt2DPtzK4XgIyOMYG0Ne1aAHZHVCW-Rc5CZqu3Kq_LKnEUKf4IgVS3IFglno6lszW2OITaeVhe4aAq8VLQeq7OezNRjoR1ZyZWYJpD8u0kGOeN1i3YFjIPCOO5CIKXh6jzoKIWcjRH09Gelek17APjB5o9HLRLPdVE5DDHlFbKC1-d8ajp5Ve4JP1CDVwmCZHn0Pckdk02GQAXZK9MTsj5-nRSnALPG5qw0sHfjdCKi
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6axoHtMGAwVhhgpB24pDSOYyfcqqmjwDoJbZN6s2wnhYnJQ3OrSvz1vJdfLUyV4BQpcSzn5Xv25x_vewDHwiVFLpSLUpHwSCieRNbJIpJ5JnIpbFZUS9mTczm-Ep-n6XQLBm0sDDYiYE2h2sRfqQvE7-ke9pN9aWkQxUn6A6QinDA9PLno-l4k1FmbsyBP5LQT87lXAY1GLvw5Gt2jmLuws0S39lWc09q4c_oIvnYtro6b_Ogv5rbvfv0l5vg_n_QY9hoSyoY1ap7AVun3YXdNmnAfDkarCDgs2nQB4SnoyXUty-G_serQzvfbRSjZRxOY8QUbEq6vDRshfmghLjAKYGEXS6yaTQyFJbPVkZsPbMhqzXTWqqM8g6vT0eXJOGqyNEQGydo8spxbmyYDazL0bRsjw5uV3PJZjv5dcumMVanN8rQwRiKd5EqpkvAQFzNkYzI5gG1_68tDYMq4QYKzdaekFDMrreQDgzNYJCGxM6nowTHaTDdeFnS1gc5jTTfRkLoxZA_67U_VrlE6p4QbN5tfeNe98LMW-dhc9KhFyVo78ko5MUvx8dvuMdqZNl-ML_E_aMrqLiUJHG4uQ2FTpOAY45c-rxHYtQdpIE4FRdyDZAVJ7SnhVNCkEd6s-unl4k77G7oQ8HRKlFm9-DfLvYGH48vJmT77dP7lJexwojCka5kdwfb8blG-QgI2t68rn_sNocUrAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5CQ0LbA5fBRmGAkfbAS0rjOHbCWzVaxqUT0qjUN8t2EpiYvGluVYlfzzlJmhamSvAUKXEs5-Q79ufL-Q7AsXBJkQvlolQkPBKKJ5F1sohknolcCpsV9VL25EyeTsWnWTprg8IoFgYbEbCmUG_ik1dfF1WrMBC_pfvYV_alpYEUJ-p3adOOcD08Oe_6XyTV2SpvQZ7IWSfoc6sCGpFc-HNEukUz92B3ia7t61injbFn_ACmXavrIyc_-4u57btffwk6_u9nPYT7LRllwwY9j-BO6fdhb0OicB8ORutIOCzadgXhMejJRSPP4b-z-vDOj6tFKNkHE5jxBRsSvi8MGyGOaEEuMApkYedLrJpNDIUns_XRm3dsyBrtdLZSSXkC0_Ho28lp1GZriAyStnlkObc2TQbWZOjjNkamV5Xc8ipHPy-5dMaq1GZ5WhgjkVZypVRJuIiLClmZTA5gx1_58ikwZdwgwVm7U1KKykor-cDgTBbJSOxMKnpwjDbTrbcFXW-k81jTTTSkbg3Zg_7qx2rXKp5T4o3L7S-86V64bsQ-thc9WiFlox15raCYpfj4dfcY7UybMMaX-B80ZXeXkoQOt5eh8ClScozxSw8bFHbtQTqIU0IR9yBZw1J7SjwVNGmFt6t_erm40f6SLgQ-nRJ1Vs_-zXKv4N7X92P95ePZ5-ewy4nJkLxldgQ785tF-QJ52Ny-rN3uNy1ULYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+Greenhouse+Gas+and+Ammonia+Emissions+from+Swine+Manure+Management%3A+A+System+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Wang%2C+Yue&rft.au=Dong%2C+Hongmin&rft.au=Zhu%2C+Zhiping&rft.au=Gerber%2C+Pierre+J&rft.date=2017-04-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=51&rft.issue=8&rft.spage=4503&rft_id=info:doi/10.1021%2Facs.est.6b06430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon