A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem
A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
22.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3. |
---|---|
AbstractList | A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3. Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Part 1, 31-52, 2012 A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3. |
Author | Plum, Michael Roth, Dagmar McKenna, Patrick J Pacella, Filomena |
Author_xml | – sequence: 1 givenname: Patrick surname: McKenna middlename: J fullname: McKenna, Patrick J – sequence: 2 givenname: Filomena surname: Pacella fullname: Pacella, Filomena – sequence: 3 givenname: Michael surname: Plum fullname: Plum, Michael – sequence: 4 givenname: Dagmar surname: Roth fullname: Roth, Dagmar |
BackLink | https://doi.org/10.1007/978-3-0348-0249-9_3$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1210.5893$$DView paper in arXiv |
BookMark | eNotj11LwzAUhoMoOOfuvZKA1535XNvLWeYHDBTcvC3pcgIZbVKTVvTfmzrhwIHzPhze5wqdO-8AoRtKlqKQktyr8G2_lpSlgyxKfoZmjHOaFYKxS7SI8UgIYaucSclnaL_Gle_6cYCQrWO0cQCN985-juAgRvwWvDfY-IAVfofOttaBCnjTtrYf7AE_-NFpFX7wh2pHmPCmhe4aXRjVRlj87znaPW521XO2fX16qdbbTElKMxC50QDABKMNN7ykhpGGE6EbAHUQxDRaH8qSyRRIBWZlikZykSZnmhk-R7ent3_KdR9sl6rUk3o9qSfg7gT0wSejONRHPwaXKtWMFCtZ5oWk_Bc63l5s |
ContentType | Paper Journal Article |
Copyright | 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1210.5893 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1210_5893 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a511-e47fdeee2421b3f391f20b304dbeeac40fbddc99251f25aef6f8b53453472d2f3 |
IEDL.DBID | 8FG |
IngestDate | Mon Jan 08 05:43:24 EST 2024 Thu Oct 10 17:21:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a511-e47fdeee2421b3f391f20b304dbeeac40fbddc99251f25aef6f8b53453472d2f3 |
OpenAccessLink | https://www.proquest.com/docview/2086597851?pq-origsite=%requestingapplication% |
PQID | 2086597851 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1210_5893 proquest_journals_2086597851 |
PublicationCentury | 2000 |
PublicationDate | 20121022 2012-10-22 |
PublicationDateYYYYMMDD | 2012-10-22 |
PublicationDate_xml | – month: 10 year: 2012 text: 20121022 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2012 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.5306144 |
SecondaryResourceType | preprint |
Snippet | A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness... Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Part 1, 31-52, 2012 A wide variety of articles, starting with the... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Boundary value problems Complexity Dirichlet problem Domains Eigenvalues Mathematics - Analysis of PDEs Uniqueness |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryI4le16h68RtvJR5NjFWsR_ABb6S3sZmehoK2krei_d2aTehEhpzC5vN1984bZvAG4KBzJWG4TWAwpiAptmAd5L-vEJqnBnsm8qc_DYzKaRPfTeNqA882_MLr8mn1W_sBmeSXuVpcxp9QmNBHlxtbd07RqNnonrjr8N4wVpn_zh1h9thjuwHYt89SgWpddaNB8DyYDtRmiEDAsArBVE--gKoSjnlnFOsUqUmn1Qu8zUYC6VHKtgg92oa79CKTyW73qtzVJuMyC2Yfx8HZ8MwrqsQaBZnUTUNR3loikF2tCF2Y9x1iF3cgaYhaMus5YW2QZCw-HsSaXuNTEYcRPHy268ABa88WcjkCJyzRillDKVUFcGJM66ZQxMJb6aLANhx6O_KNyrsgFqFyAakNnA1Beb9pljlzecH3BGuz43w9PYIslAwp7I3agtSrXdMppeWXO_OL8AJQYjeE priority: 102 providerName: Cornell University |
Title | A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem |
URI | https://www.proquest.com/docview/2086597851 https://arxiv.org/abs/1210.5893 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEF20RfDmt9Va9uA12m6STXISK_1AaC3aSm9hNzsLBW1r2ope_O3ObFM9CEII5OP0Znn7dmaYx9hlZoFsubVnhA9ekCmNPIhrWUkjYy0aOnFDfXp92R0F9-NwXCTcFkVb5YYTHVGbWUY5cjykxxLFLwqEm_mbR65RVF0tLDS2WbkhIkktfXG785NjETJCxeyvq5NudNe1yj8m7zRSoX4VxlRtLrs3f5jYbS_tPVYeqDnk-2wLpgdsx3VlZotDNrrlG9cFD3GkiBg-ciNXiaH4AGWv5Sg7ueJP8DohyahyTn0YyAQZbzrPpPyTP6uXFdDvZB5zxIbt1vCu6xU-CJ5COeRBEFkDAFS81b71k4ZFcP16YDQgbQZ1q43JkgSVihWhAittrEM_wCsSRlj_mJWmsymcMk5jqYVIJMR4jAgzrWNLpTUExkAktKiwEwdHOl-PukgJqJSAqrDqBqC0WOWL9DcmZ_9_Pme7KDQEcb4QVVZa5iu4wM18qWsuYjVWbrb6g0d86jyM8d77an0DVcai0w |
link.rule.ids | 228,230,780,784,885,12765,21388,27925,33373,33744,43600,43805 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UYvTmtyhqD15Xod3Pk1EjogIhEQy3TbudJiQIuIDRf-9MWfRgYrKn3Z7eNG9eZ7rzGLvILJAtt_aMkOD5mdLIg7iXVWjCWIu6TtxQn3YnbPb9p0EwKApus-Ja5YoTHVGbSUY1cjykxyGKXxQI19N3j1yjqLtaWGiss7IvMXXTn-KNh58aiwgjVMxy2Z10o7uuVP45_KCRCrXLIKZuc9m9-cPELr00tlm5q6aQ77A1GO-yDXcrM5vtsf4NX7kueIgjRcTwvhu5SgzFuyh7LUfZyRV_gbchSUaVc7qHgUyQ8VvnmZR_8Vc1WgAtJ_OYfdZr3Pfuml7hg-AplEMe-JE1AEDNWy2tTOoWwZU132hA2vRrVhuTJQkqFSsCBTa0sQ6kj08kjLDygJXGkzEcMU5jqYVIQojxGBFkWseWWmsIjIFIaFFhhw6OdLocdZESUCkBVWHVFUBpsctn6W9Mjv__fM42m712K209dp5P2BaKDkH8L0SVleb5Ak4xsc_1mYveN01zods |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Assisted+Uniqueness+Proof+for+a+Semilinear+Elliptic+Boundary+Value+Problem&rft.jtitle=arXiv.org&rft.au=McKenna%2C+Patrick+J&rft.au=Pacella%2C+Filomena&rft.au=Plum%2C+Michael&rft.au=Roth%2C+Dagmar&rft.date=2012-10-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1210.5893 |