A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem

A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors McKenna, Patrick J, Pacella, Filomena, Plum, Michael, Roth, Dagmar
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3.
AbstractList A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3.
Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Part 1, 31-52, 2012 A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3.
Author Plum, Michael
Roth, Dagmar
McKenna, Patrick J
Pacella, Filomena
Author_xml – sequence: 1
  givenname: Patrick
  surname: McKenna
  middlename: J
  fullname: McKenna, Patrick J
– sequence: 2
  givenname: Filomena
  surname: Pacella
  fullname: Pacella, Filomena
– sequence: 3
  givenname: Michael
  surname: Plum
  fullname: Plum, Michael
– sequence: 4
  givenname: Dagmar
  surname: Roth
  fullname: Roth, Dagmar
BackLink https://doi.org/10.1007/978-3-0348-0249-9_3$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1210.5893$$DView paper in arXiv
BookMark eNotj11LwzAUhoMoOOfuvZKA1535XNvLWeYHDBTcvC3pcgIZbVKTVvTfmzrhwIHzPhze5wqdO-8AoRtKlqKQktyr8G2_lpSlgyxKfoZmjHOaFYKxS7SI8UgIYaucSclnaL_Gle_6cYCQrWO0cQCN985-juAgRvwWvDfY-IAVfofOttaBCnjTtrYf7AE_-NFpFX7wh2pHmPCmhe4aXRjVRlj87znaPW521XO2fX16qdbbTElKMxC50QDABKMNN7ykhpGGE6EbAHUQxDRaH8qSyRRIBWZlikZykSZnmhk-R7ent3_KdR9sl6rUk3o9qSfg7gT0wSejONRHPwaXKtWMFCtZ5oWk_Bc63l5s
ContentType Paper
Journal Article
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1210.5893
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1210_5893
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a511-e47fdeee2421b3f391f20b304dbeeac40fbddc99251f25aef6f8b53453472d2f3
IEDL.DBID 8FG
IngestDate Mon Jan 08 05:43:24 EST 2024
Thu Oct 10 17:21:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a511-e47fdeee2421b3f391f20b304dbeeac40fbddc99251f25aef6f8b53453472d2f3
OpenAccessLink https://www.proquest.com/docview/2086597851?pq-origsite=%requestingapplication%
PQID 2086597851
PQPubID 2050157
ParticipantIDs arxiv_primary_1210_5893
proquest_journals_2086597851
PublicationCentury 2000
PublicationDate 20121022
2012-10-22
PublicationDateYYYYMMDD 2012-10-22
PublicationDate_xml – month: 10
  year: 2012
  text: 20121022
  day: 22
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5306144
SecondaryResourceType preprint
Snippet A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness...
Inequalities and Applications 2010, International Series of Numerical Mathematics, Vol. 161, Part 1, 31-52, 2012 A wide variety of articles, starting with the...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Boundary value problems
Complexity
Dirichlet problem
Domains
Eigenvalues
Mathematics - Analysis of PDEs
Uniqueness
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryI4le16h68RtvJR5NjFWsR_ABb6S3sZmehoK2krei_d2aTehEhpzC5vN1984bZvAG4KBzJWG4TWAwpiAptmAd5L-vEJqnBnsm8qc_DYzKaRPfTeNqA882_MLr8mn1W_sBmeSXuVpcxp9QmNBHlxtbd07RqNnonrjr8N4wVpn_zh1h9thjuwHYt89SgWpddaNB8DyYDtRmiEDAsArBVE--gKoSjnlnFOsUqUmn1Qu8zUYC6VHKtgg92oa79CKTyW73qtzVJuMyC2Yfx8HZ8MwrqsQaBZnUTUNR3loikF2tCF2Y9x1iF3cgaYhaMus5YW2QZCw-HsSaXuNTEYcRPHy268ABa88WcjkCJyzRillDKVUFcGJM66ZQxMJb6aLANhx6O_KNyrsgFqFyAakNnA1Beb9pljlzecH3BGuz43w9PYIslAwp7I3agtSrXdMppeWXO_OL8AJQYjeE
  priority: 102
  providerName: Cornell University
Title A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem
URI https://www.proquest.com/docview/2086597851
https://arxiv.org/abs/1210.5893
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEF20RfDmt9Va9uA12m6STXISK_1AaC3aSm9hNzsLBW1r2ope_O3ObFM9CEII5OP0Znn7dmaYx9hlZoFsubVnhA9ekCmNPIhrWUkjYy0aOnFDfXp92R0F9-NwXCTcFkVb5YYTHVGbWUY5cjykxxLFLwqEm_mbR65RVF0tLDS2WbkhIkktfXG785NjETJCxeyvq5NudNe1yj8m7zRSoX4VxlRtLrs3f5jYbS_tPVYeqDnk-2wLpgdsx3VlZotDNrrlG9cFD3GkiBg-ciNXiaH4AGWv5Sg7ueJP8DohyahyTn0YyAQZbzrPpPyTP6uXFdDvZB5zxIbt1vCu6xU-CJ5COeRBEFkDAFS81b71k4ZFcP16YDQgbQZ1q43JkgSVihWhAittrEM_wCsSRlj_mJWmsymcMk5jqYVIJMR4jAgzrWNLpTUExkAktKiwEwdHOl-PukgJqJSAqrDqBqC0WOWL9DcmZ_9_Pme7KDQEcb4QVVZa5iu4wM18qWsuYjVWbrb6g0d86jyM8d77an0DVcai0w
link.rule.ids 228,230,780,784,885,12765,21388,27925,33373,33744,43600,43805
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UYvTmtyhqD15Xod3Pk1EjogIhEQy3TbudJiQIuIDRf-9MWfRgYrKn3Z7eNG9eZ7rzGLvILJAtt_aMkOD5mdLIg7iXVWjCWIu6TtxQn3YnbPb9p0EwKApus-Ja5YoTHVGbSUY1cjykxyGKXxQI19N3j1yjqLtaWGiss7IvMXXTn-KNh58aiwgjVMxy2Z10o7uuVP45_KCRCrXLIKZuc9m9-cPELr00tlm5q6aQ77A1GO-yDXcrM5vtsf4NX7kueIgjRcTwvhu5SgzFuyh7LUfZyRV_gbchSUaVc7qHgUyQ8VvnmZR_8Vc1WgAtJ_OYfdZr3Pfuml7hg-AplEMe-JE1AEDNWy2tTOoWwZU132hA2vRrVhuTJQkqFSsCBTa0sQ6kj08kjLDygJXGkzEcMU5jqYVIQojxGBFkWseWWmsIjIFIaFFhhw6OdLocdZESUCkBVWHVFUBpsctn6W9Mjv__fM42m712K209dp5P2BaKDkH8L0SVleb5Ak4xsc_1mYveN01zods
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Assisted+Uniqueness+Proof+for+a+Semilinear+Elliptic+Boundary+Value+Problem&rft.jtitle=arXiv.org&rft.au=McKenna%2C+Patrick+J&rft.au=Pacella%2C+Filomena&rft.au=Plum%2C+Michael&rft.au=Roth%2C+Dagmar&rft.date=2012-10-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1210.5893