Multiplexed Ion Beam Imaging Readout of Single-Cell Immunoblotting
Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing cap...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 93; no. 24; pp. 8517 - 8525 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/acs.analchem.1c01050 |
Cover
Abstract | Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75-μm thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody–protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ∼42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB. |
---|---|
AbstractList | Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75-μm thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody-protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ∼42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB. Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75- μ m thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody–protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ~42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB. Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75-μm thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody-protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ∼42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB.Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell immunoblotting (scIB) offers proteoform detection specificity, but often relies on fluorescence-based readout and is therefore limited in multiplexing capability. Among rising multiplexed imaging methods is multiplexed ion beam imaging by time-of-flight (MIBI-TOF), a mass spectrometry imaging technology. MIBI-TOF employs metal-tagged antibodies that do not suffer from spectral overlap to the same degree as fluorophore-tagged antibodies. We report for the first-time MIBI-TOF of single-cell immunoblotting (scIB-MIBI-TOF). The scIB assay subjects single-cell lysate to protein immunoblotting on a microscale device consisting of a 50- to 75-μm thick hydrated polyacrylamide (PA) gel matrix for protein immobilization prior to in-gel immunoprobing. We confirm antibody-protein binding in the PA gel with indirect fluorescence readout of metal-tagged antibodies. Since MIBI-TOF is a layer-by-layer imaging technique, and our protein target is immobilized within a 3D PA gel layer, we characterize the protein distribution throughout the PA gel depth by fluorescence confocal microscopy and confirm that the highest signal-to-noise ratio is achieved by imaging the entirety of the PA gel depth. Accordingly, we report the required MIBI-TOF ion dose strength needed to image varying PA gel depths. Lastly, by imaging ∼42% of PA gel depth with MIBI-TOF, we detect two isoelectrically separated TurboGFP (tGFP) proteoforms from individual glioblastoma cells, demonstrating that highly multiplexed mass spectrometry-based readout is compatible with scIB. |
Author | Angelo, Michael Bendall, Sean C Bosse, Marc Herr, Amy E Lomeli, Gabriela |
AuthorAffiliation | The UC Berkeley-UCSF Graduate Program in Bioengineering Department of Pathology Department of Bioengineering Chan Zuckerberg Biohub |
AuthorAffiliation_xml | – name: Department of Bioengineering – name: Department of Pathology – name: The UC Berkeley-UCSF Graduate Program in Bioengineering – name: Chan Zuckerberg Biohub |
Author_xml | – sequence: 1 givenname: Gabriela orcidid: 0000-0001-8603-1614 surname: Lomeli fullname: Lomeli, Gabriela – sequence: 2 givenname: Marc orcidid: 0000-0003-4912-8059 surname: Bosse fullname: Bosse, Marc organization: Department of Pathology – sequence: 3 givenname: Sean C orcidid: 0000-0003-1341-2453 surname: Bendall fullname: Bendall, Sean C organization: Department of Pathology – sequence: 4 givenname: Michael orcidid: 0000-0003-1531-5067 surname: Angelo fullname: Angelo, Michael email: mangelo0@stanford.edu organization: Department of Pathology – sequence: 5 givenname: Amy E orcidid: 0000-0002-6906-2985 surname: Herr fullname: Herr, Amy E email: aeh@berkeley.edu organization: Chan Zuckerberg Biohub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34106685$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAUhUVJaSZp36AUQzfdeHIlW_JVF4VkSNuBlEJ_1kKW5YmCbE0tuyRvH5mZCU0WzUpI95zDufpOyFEfekvIWwpLCoyeaROXutfeXNtuSQ1Q4PCCLChnkAtEdkQWAFDkrAI4Jicx3gBQClS8IsdFSUEI5Aty8W3yo9t6e2ubbB367MLqLlt3euP6TfbD6iZMYxba7Ge6e5uvrPdp3E19qH0Yx_T6mrxstY_2zf48Jb8_X_5afc2vvn9Zr86vcs0pjDk2prC8pgi1LJFSVrUgmUCBpW1rjbJqKzRaStq0FZPIbd1gXUlsm5ahEMUp-bTL3U51Zxtj-3HQXm0H1-nhTgXt1ONJ767VJvxVWEoJVKaAD_uAIfyZbBxV56JJC-nehikqJgpRlunP6PNSXkhELKq51vsn0pswDQnMrCqxLJjgPKne_Vv-ofWBRBJ83AnMEGIcbKuMG_XowryL84qCmrGrhF0dsKs99mQun5gP-c_YYGebpw-t_2u5BwkExFc |
CitedBy_id | crossref_primary_10_1002_advs_202105932 crossref_primary_10_1021_acs_analchem_4c00788 crossref_primary_10_1016_j_chroma_2023_463813 crossref_primary_10_1016_j_tibtech_2022_04_004 crossref_primary_10_3389_fbioe_2024_1507460 crossref_primary_10_1021_acs_analchem_3c04130 crossref_primary_10_1038_s41413_023_00304_6 crossref_primary_10_1002_elps_202100327 crossref_primary_10_1021_acs_analchem_3c01577 |
Cites_doi | 10.1038/nm.3488 10.1038/nchembio.2576 10.1042/EBC20180014 10.1038/nmeth.2992 10.3389/fimmu.2019.02657 10.1021/acs.analchem.9b05159 10.1002/anie.201606039 10.1038/s41596-018-0016-7 10.1039/C8LC00216A 10.1111/j.1749-6632.1997.tb52194.x 10.1038/s41598-019-51849-8 10.1021/acs.analchem.7b05007 10.1016/j.ymeth.2012.02.009 10.1016/j.cell.2018.08.039 10.1016/S0010-4825(99)00011-6 10.1038/micronano.2016.79 10.1002/adma.201503939 10.1038/nmeth.2369 10.1126/sciadv.aax5851 10.1021/acs.analchem.9b03582 10.1002/pmic.201900226 10.1038/labinvest.2017.50 10.1158/0008-5472.CAN-10-3795 10.2144/01316bt01 10.1039/C9AN02553G 10.1186/s13059-017-1218-y 10.1038/ncomms14622 10.1038/s41586-019-1876-x 10.1116/1.4993628 10.1016/j.cels.2016.03.008 10.1038/nprot.2016.089 10.1038/labinvest.2015.2 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society Copyright American Chemical Society Jun 22, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Jun 22, 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.analchem.1c01050 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 8525 |
ExternalDocumentID | PMC8499019 34106685 10_1021_acs_analchem_1c01050 b079534447 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R33 CA225296 – fundername: NCI NIH HHS grantid: R01 CA203018 – fundername: NIH HHS grantid: DP5 OD019822 – fundername: NIA NIH HHS grantid: R01 AG056287 – fundername: NIA NIH HHS grantid: R01 AG057915 – fundername: NCI NIH HHS grantid: U24 CA224309 |
GroupedDBID | - .K2 02 1AW 23M 3RI 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABOCM ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV CITATION CUPRZ KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a510t-8dc3e5b180b9481127f09268684efba897f78ca991df72985ebd8b798fdf28663 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 17:45:50 EDT 2025 Fri Jul 11 15:34:04 EDT 2025 Fri Jul 11 03:04:07 EDT 2025 Mon Jun 30 08:44:33 EDT 2025 Mon Jul 21 05:24:03 EDT 2025 Tue Jul 01 01:19:25 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Thu Jun 24 03:11:19 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a510t-8dc3e5b180b9481127f09268684efba897f78ca991df72985ebd8b798fdf28663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions All authors designed the experiments. G.L. and M.B. performed the experiments. G.L. performed the data analysis. |
ORCID | 0000-0003-1531-5067 0000-0003-4912-8059 0000-0002-6906-2985 0000-0001-8603-1614 0000-0003-1341-2453 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8499019 |
PMID | 34106685 |
PQID | 2548432655 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8499019 proquest_miscellaneous_2636440031 proquest_miscellaneous_2539888376 proquest_journals_2548432655 pubmed_primary_34106685 crossref_citationtrail_10_1021_acs_analchem_1c01050 crossref_primary_10_1021_acs_analchem_1c01050 acs_journals_10_1021_acs_analchem_1c01050 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-22 |
PublicationDateYYYYMMDD | 2021-06-22 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Walker A. V. (ref28/cit28) 2016 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 Kirby B. J. (ref32/cit32) 2010 ref11/cit11 ref25/cit25 Gopal A. (ref14/cit14) 2019; 9 ref16/cit16 ref29/cit29 ref23/cit23 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref20/cit20 Vickerman J. C. (ref15/cit15) 2001 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1038/nm.3488 – ident: ref2/cit2 doi: 10.1038/nchembio.2576 – ident: ref5/cit5 doi: 10.1042/EBC20180014 – ident: ref11/cit11 doi: 10.1038/nmeth.2992 – ident: ref18/cit18 doi: 10.3389/fimmu.2019.02657 – ident: ref19/cit19 doi: 10.1021/acs.analchem.9b05159 – ident: ref12/cit12 doi: 10.1002/anie.201606039 – ident: ref23/cit23 doi: 10.1038/s41596-018-0016-7 – ident: ref31/cit31 doi: 10.1039/C8LC00216A – ident: ref24/cit24 doi: 10.1111/j.1749-6632.1997.tb52194.x – volume: 9 start-page: 15389 issue: 1 year: 2019 ident: ref14/cit14 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51849-8 – ident: ref7/cit7 doi: 10.1021/acs.analchem.7b05007 – ident: ref6/cit6 doi: 10.1016/j.ymeth.2012.02.009 – ident: ref17/cit17 doi: 10.1016/j.cell.2018.08.039 – volume-title: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices year: 2010 ident: ref32/cit32 – ident: ref22/cit22 doi: 10.1016/S0010-4825(99)00011-6 – ident: ref34/cit34 doi: 10.1038/micronano.2016.79 – ident: ref26/cit26 doi: 10.1002/adma.201503939 – ident: ref3/cit3 doi: 10.1038/nmeth.2369 – ident: ref9/cit9 doi: 10.1126/sciadv.aax5851 – ident: ref25/cit25 doi: 10.1021/acs.analchem.9b03582 – start-page: 44 volume-title: Encyclopedia of Spectroscopy and Spectrometry year: 2016 ident: ref28/cit28 – ident: ref1/cit1 doi: 10.1002/pmic.201900226 – ident: ref21/cit21 doi: 10.1038/labinvest.2017.50 – ident: ref4/cit4 doi: 10.1158/0008-5472.CAN-10-3795 – ident: ref8/cit8 doi: 10.2144/01316bt01 – ident: ref30/cit30 doi: 10.1039/C9AN02553G – ident: ref35/cit35 doi: 10.1186/s13059-017-1218-y – ident: ref13/cit13 doi: 10.1038/ncomms14622 – ident: ref33/cit33 doi: 10.1038/s41586-019-1876-x – ident: ref27/cit27 doi: 10.1116/1.4993628 – ident: ref10/cit10 doi: 10.1016/j.cels.2016.03.008 – start-page: 1 volume-title: TOF-SIMS: Surface Analysis by Mass Spectrometry year: 2001 ident: ref15/cit15 – ident: ref16/cit16 doi: 10.1038/nprot.2016.089 – ident: ref29/cit29 doi: 10.1038/labinvest.2015.2 |
SSID | ssj0011016 |
Score | 2.4124367 |
Snippet | Improvements in single-cell protein analysis are required to study the cell-to-cell variation inherent to diseases, including cancer. Single-cell... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8517 |
SubjectTerms | Analytical chemistry Antibodies Brain cancer Chemistry Confocal microscopy Fluorescence gels Glioblastoma Glioblastoma cells Imaging techniques Immobilization Immunoblotting Ion beams Ions Mass Spectrometry Mass spectroscopy Medical imaging Multiplexing Polyacrylamide Proteins Scientific imaging Signal to noise ratio Single-Cell Analysis Single-cell protein Spectroscopy |
Title | Multiplexed Ion Beam Imaging Readout of Single-Cell Immunoblotting |
URI | http://dx.doi.org/10.1021/acs.analchem.1c01050 https://www.ncbi.nlm.nih.gov/pubmed/34106685 https://www.proquest.com/docview/2548432655 https://www.proquest.com/docview/2539888376 https://www.proquest.com/docview/2636440031 https://pubmed.ncbi.nlm.nih.gov/PMC8499019 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfQdgAODMbXGwMViQuHPNq0Td3j9sS0IQ0OY9JuVdI4AtHXIl4rIf56nL6229sEg2MTp00cp_5ZdmyANxlGjig0QieGBNsbWmitnIhJ2owVJBr0t5FPP6rj8-TDRXpxaShe9-DL6J0uV3PNTOU1LOdR6Ss6som-LRVLmodCi7PJa-At0bFCnneojlfl_vAWr5DK1aZCuoEyrwdLXtE-RzvwabzDsw46-TbvWjMvf91M6fiPC3sIDwYgGhysJecR3KF6F-4uxvpvu3D_SqrCx3B4OkQe_iQbnDR1cEh6GZws-yJHgQ_Fb7o2aFxwxs8ViQVVFXcvu7oxVdMHVz-B86P3nxfHYqi_IDSf1FagLWNKTYSh8TldIpm5MGe-K0zIGY155jIsNSNM6xijY0rGoslydNZJZCjzFLbqpqbnEMRodemUloR5ElKUJ6nNldQ2M7zwVM_gLbOjGM7Pquhd4zIqfOPIo2Lg0QziccOKckhk7utpVLeMEtOo7-tEHrfQ74-ycDkttqYxYcCbpjN4PXXzvngvi66p6TxNnCOy3a_-QqNixqH-hzqDZ2vxmibFsIJhIPIXsg3Bmwh8QvDNnvrrlz4xOCbey5nv_QczX8A96aN0QiWk3Iet9kdHLxlmteZVf7Z-AxKlJMY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hONAeCqUtXR5tKvXSg7eJ85ocYQXabVkuQMUtsmNbrcgmiE2kqr-ecTYJLIgijvEr4_HY81kzngH4GqNntHYlE4HUjO4bggkRGeZrrmJSkCjRvkaenkbji-DHZXi5AmH3FoaImNNI88aIfxddwPtuywTxlqYyG3qZTexIN_U1wiPcZmw4GJ31xgN7Ie0S5Vm7avdi7olRrF7K5st66RHYfOgzeU8JHW_Ar578xvfkalhXcpj9exDZ8cXz24Q3LSx1DhZy9BZWdLEF66MuG9wWvL4XuPAdHE5bP8S_WjmTsnAOtZg5k1mT8sixjvllXTmlcc7oO9dspPOcqmd1Ucq8bFyt38PF8dH5aMzabAxM0L6tGKrM16H00JU2wovHY-MmPMIIA22kwCQ2MWaC8KYyhNgx1FKhjBM0ynAkYPMBVouy0B_B8VGJzESCa0wCV3tJEKok4kLFkiYeigF8I3ak7W6ap42hnHupLex4lLY8GoDfrVuatWHNbXaN_JlerO91vQjr8Uz7vU4k7siiuzUGBH_DcABf-mpaF2tzEYUua9vGTxCRjvH_tIl8QqX2eB3A9kLKeqIIZBAoRPpDvCR_fQMbHny5pvjzuwkTjoG1eSY7L2DmZ1gfn09P0pPJ6c9deMWt_44bMc73YLW6qfU-AbBKfmq22y37pC0n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfQkIA98DFgHAwoEi885NamX-7jdnDaAZuQxqSJlyppEoHotRPXkxB_PXavLXdDMMFj89XEsZOfZccGeJli4Kz1tVCRtoL0DSWUSpwIrTQpXZCokV8jH58kR2fR2_P4fC3VF01iQSMtWiM-S_WFcV2EgWCfyxXRl5YzHwcFJ3ckbf06W-44a8PB5HQwILBS2ifLY9tq_2ruD6Pw3VQsNu-m3wDnZb_JtYtoegc-DUto_U--jpeNHhc_LkV3_K813oXbHTz1Dlb8dA-u2WoHbk76rHA7sL0WwPA-HB53_ojfrfFmdeUdWjX3ZvM29ZHHDvr1svFq553Sd2nFxJYlVc-XVa3LunW5fgBn0zcfJ0eiy8ogFMlvI9AUoY11gL7mSC-BTJ2fyQQTjKzTCrPUpVgowp3GEXLH2GqDOs3QGSeRAM5D2Krqyj4CL0SjCpcoaTGLfBtkUWyyRCqTalp4rEbwisiRd1K1yFuDuQxyLuxplHc0GkHY711edOHNOctGeUUvMfS6WIX3uKL9Xs8Wv6ZFOjZGBIPjeAQvhmraF7a9qMrWS24TZohIx_lf2iQhoVM-Zkewu-K0YVIENggcIv0h3eDBoQGHCd-sqb58bsOFY8S2z-zxPxDzOdz48Hqav5-dvHsCtyS78fiJkHIPtppvS_uUcFijn7US9xOQPS-q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplexed+Ion+Beam+Imaging+Readout+of+Single-Cell+Immunoblotting&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Lomeli%2C+Gabriela&rft.au=Bosse%2C+Marc&rft.au=Bendall%2C+Sean+C&rft.au=Angelo%2C+Michael&rft.date=2021-06-22&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=93&rft.issue=24&rft.spage=8517&rft_id=info:doi/10.1021%2Facs.analchem.1c01050&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |