Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring
The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allo...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 94; no. 23; pp. 8335 - 8345 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/acs.analchem.2c00829 |
Cover
Abstract | The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models. |
---|---|
AbstractList | The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models. The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models. The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models. |
Author | Arroyo-Currás, Netzahualcóyotl Nie, Yuhang Kavner, Jonathan Tehrani, Farshad Teymourian, Hazhir Huang, Nickey Dassau, Eyal Wu, Yao Mack, John Laffel, Lori M. Reynoso, Maria Wang, Joseph Shaver, Alexander Duvvuri, Andrés Furmidge, Allison Patti, Mary-Elizabeth |
AuthorAffiliation | Joslin Diabetes Center Biochemistry, Cellular and Molecular Biology Department of Nanoengineering Department of Pharmacology and Molecular Sciences Harvard John A. Paulson School of Engineering and Applied Sciences Johns Hopkins University School of Medicine |
AuthorAffiliation_xml | – name: Biochemistry, Cellular and Molecular Biology – name: Joslin Diabetes Center – name: Department of Pharmacology and Molecular Sciences – name: Department of Nanoengineering – name: Johns Hopkins University School of Medicine – name: Harvard John A. Paulson School of Engineering and Applied Sciences |
Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0003-1296-6569 surname: Wu fullname: Wu, Yao organization: Johns Hopkins University School of Medicine – sequence: 2 givenname: Farshad surname: Tehrani fullname: Tehrani, Farshad organization: Department of Nanoengineering – sequence: 3 givenname: Hazhir orcidid: 0000-0003-0025-4732 surname: Teymourian fullname: Teymourian, Hazhir organization: Department of Nanoengineering – sequence: 4 givenname: John surname: Mack fullname: Mack, John organization: Johns Hopkins University School of Medicine – sequence: 5 givenname: Alexander orcidid: 0000-0002-5478-5291 surname: Shaver fullname: Shaver, Alexander organization: Johns Hopkins University School of Medicine – sequence: 6 givenname: Maria surname: Reynoso fullname: Reynoso, Maria organization: Department of Nanoengineering – sequence: 7 givenname: Jonathan surname: Kavner fullname: Kavner, Jonathan organization: Department of Nanoengineering – sequence: 8 givenname: Nickey surname: Huang fullname: Huang, Nickey organization: Department of Nanoengineering – sequence: 9 givenname: Allison surname: Furmidge fullname: Furmidge, Allison organization: Department of Nanoengineering – sequence: 10 givenname: Andrés surname: Duvvuri fullname: Duvvuri, Andrés organization: Department of Nanoengineering – sequence: 11 givenname: Yuhang surname: Nie fullname: Nie, Yuhang organization: Department of Nanoengineering – sequence: 12 givenname: Lori M. surname: Laffel fullname: Laffel, Lori M. organization: Joslin Diabetes Center – sequence: 14 givenname: Mary-Elizabeth surname: Patti fullname: Patti, Mary-Elizabeth organization: Joslin Diabetes Center – sequence: 15 givenname: Eyal surname: Dassau fullname: Dassau, Eyal organization: Harvard John A. Paulson School of Engineering and Applied Sciences – sequence: 16 givenname: Joseph surname: Wang fullname: Wang, Joseph email: josephwang@ucsd.edu organization: Department of Nanoengineering – sequence: 17 givenname: Netzahualcóyotl orcidid: 0000-0002-2740-6276 surname: Arroyo-Currás fullname: Arroyo-Currás, Netzahualcóyotl email: netzarroyo@jhmi.edu organization: Johns Hopkins University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35653647$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCP0BoJDYsmHBtx49hUamEp9QKCYJYWo7nJnE1Ywd7Bol_j0PSCLqgKy_ud46O7z1n5CTEgIQ8pTClwOgr6_LUBtu5DfZT5gA0ax6QCRUMaqk1OyETAOA1UwCn5CznGwBKgcpH5JQLKbicqQn5fu1dKsbYdlhdbgfbY6rf2Ixt9RVDjilXq5iqeQyDD2Mc88vqC9quXvgeq8UGk93iOHhXvU3jurqOwQ8x-bB-TB6ubJfxyeE9J9_ev1vMP9ZXnz98ml9e1VZQGGqFDpScccF5g9pqKlqlGs0pMrVsXSuXLeeqcaKhli6VQtSKcduAXkpkOOPn5GLvux2XPbYOw5BsZ7bJ9zb9MtF68-8k-I1Zx5-mYcCEUMXgxcEgxR8j5sH0PjvsOhuwfNcwRTUTsqS4H5WKcyGY0gV9fge9iWMq1_pDKSmU0lCoZ3-HP6a-PU8BZnug3CjnhKsjQsHsWmBKC8xtC8yhBUX2-o7M-cEOPu5W4Lv7xLAX76bH1P-V_AYBhsxW |
CitedBy_id | crossref_primary_10_1021_acssensors_3c02004 crossref_primary_10_1016_j_snb_2023_134354 crossref_primary_10_1016_j_bbrc_2023_05_032 crossref_primary_10_1016_j_nanoen_2024_110194 crossref_primary_10_1016_j_jsams_2023_01_010 crossref_primary_10_1021_acsmaterialsau_4c00125 crossref_primary_10_1021_acs_molpharmaceut_4c01266 crossref_primary_10_1002_admi_202400789 crossref_primary_10_1016_j_sajb_2023_08_034 crossref_primary_10_1016_j_biosx_2024_100500 crossref_primary_10_1039_D4BM00794H crossref_primary_10_1016_j_cca_2023_117668 crossref_primary_10_1021_acssensors_3c02086 crossref_primary_10_3390_bios13060630 crossref_primary_10_3390_bios13070726 crossref_primary_10_1021_acssensors_2c02780 crossref_primary_10_1038_s43246_024_00468_6 crossref_primary_10_1039_D4SD00066H crossref_primary_10_1021_acssensors_4c00142 crossref_primary_10_1002_SMMD_20220023 crossref_primary_10_1002_adhm_202303921 crossref_primary_10_3390_bios13030313 crossref_primary_10_1021_acsapm_3c02206 crossref_primary_10_1149_2754_2726_ad15a2 crossref_primary_10_1149_2754_2726_ad15a1 crossref_primary_10_1016_j_addr_2024_115341 crossref_primary_10_1002_adfm_202208534 crossref_primary_10_1002_adhm_202404193 crossref_primary_10_1021_acs_analchem_4c06519 crossref_primary_10_1039_D4SD00192C crossref_primary_10_1109_TBCAS_2024_3405815 crossref_primary_10_1002_smsc_202300358 crossref_primary_10_1002_adma_202313743 crossref_primary_10_1039_D2TB02600G crossref_primary_10_1016_j_device_2023_100092 crossref_primary_10_1016_j_asems_2025_100139 crossref_primary_10_1021_acs_langmuir_4c00585 crossref_primary_10_3390_mi13071099 crossref_primary_10_1016_j_cej_2024_156130 crossref_primary_10_3390_bios12100782 crossref_primary_10_1002_smll_202207539 crossref_primary_10_1002_admt_202400619 crossref_primary_10_1039_D4CS00001C crossref_primary_10_3390_chemosensors11080459 crossref_primary_10_1016_j_trac_2023_117467 crossref_primary_10_1021_acssensors_2c02409 crossref_primary_10_1021_acs_analchem_2c03970 crossref_primary_10_1021_acssensors_3c01381 crossref_primary_10_1016_j_bios_2025_117373 crossref_primary_10_1039_D2AN02096C crossref_primary_10_1021_acssensors_4c00516 crossref_primary_10_1039_D2LC00790H crossref_primary_10_1002_smll_202206753 crossref_primary_10_1021_acs_analchem_4c01043 crossref_primary_10_1016_j_jconrel_2024_11_020 crossref_primary_10_1021_acs_analchem_4c05004 crossref_primary_10_1021_acsami_2c22741 crossref_primary_10_1016_j_bios_2023_115918 crossref_primary_10_1016_j_coelec_2023_101286 crossref_primary_10_2174_0115680266304711240327072348 crossref_primary_10_1021_acssensors_2c01428 crossref_primary_10_1149_2754_2726_accd7e crossref_primary_10_1016_j_snb_2024_136731 crossref_primary_10_1002_adfm_202424463 crossref_primary_10_1039_D3SD00165B crossref_primary_10_1021_acs_chemrev_3c00078 crossref_primary_10_1126_sciadv_abq4539 crossref_primary_10_1016_j_bios_2023_115802 crossref_primary_10_1016_j_snr_2024_100260 crossref_primary_10_1002_ange_202316678 crossref_primary_10_1016_j_bios_2023_115408 crossref_primary_10_1007_s00216_023_04805_5 crossref_primary_10_3390_nano14242014 crossref_primary_10_1016_j_heliyon_2024_e36677 crossref_primary_10_1002_adma_202402009 crossref_primary_10_1002_pat_70020 crossref_primary_10_1080_17425247_2024_2384696 crossref_primary_10_1016_j_snb_2024_136518 crossref_primary_10_1002_anie_202316678 crossref_primary_10_1038_s44222_023_00094_w crossref_primary_10_3390_bios13080828 crossref_primary_10_3390_antibiotics12101478 crossref_primary_10_1016_j_biosx_2023_100405 crossref_primary_10_3390_molecules29204891 crossref_primary_10_1039_D3LC00210A crossref_primary_10_1149_2754_2726_ace068 crossref_primary_10_1063_5_0154637 crossref_primary_10_1002_advs_202306560 crossref_primary_10_1021_acssensors_3c01172 crossref_primary_10_1038_s44222_023_00141_6 crossref_primary_10_1126_sciadv_adn5875 crossref_primary_10_3390_bios14080391 crossref_primary_10_1016_j_tibtech_2022_12_005 crossref_primary_10_1021_acssensors_3c02279 crossref_primary_10_1021_acssensors_4c03637 crossref_primary_10_1016_j_bios_2024_116697 crossref_primary_10_1021_acssensors_3c01868 crossref_primary_10_1038_s41551_022_00998_9 crossref_primary_10_1021_acsomega_2c04789 crossref_primary_10_1002_advs_202411433 crossref_primary_10_1021_acs_analchem_4c01167 crossref_primary_10_1039_D4MA00479E crossref_primary_10_1021_acs_analchem_2c05158 crossref_primary_10_1021_acssensors_2c01910 crossref_primary_10_1093_jac_dkad289 crossref_primary_10_1002_advs_202309027 |
Cites_doi | 10.1038/s42003-018-0170-z 10.1016/s0140-6736(09)60743-1 10.1007/s00216-020-03087-5 10.1021/acs.jproteome.7b00642 10.1021/acssensors.9b01616 10.2174/0929867003375489 10.1016/j.bios.2017.01.016 10.1002/btm2.10201 10.1021/acssensors.7b00787 10.1021/acssensors.1c01183 10.1021/acs.analchem.9b05109 10.2174/1389200219666171227200547 10.1021/acsami.9b22385 10.1038/nprot.2007.413 10.1016/j.trechm.2020.02.009 10.3389/fmolb.2019.00069 10.1177/1932296817699637 10.1021/jacs.0c01883 10.1039/c9sc01495k 10.1007/978-1-0716-1803-5_25 10.1016/j.cobme.2021.100312 10.1021/acs.analchem.9b03853 10.1093/annonc/mds627 10.1016/j.bios.2021.113404 10.1128/AAC.02042-17 10.1038/sj.bjc.6602403 10.1021/acssensors.9b01127 10.1002/elan.201100361 10.1080/10428190500353430 10.1002/adhm.202002255 10.1126/scitranslmed.3007095 10.1586/14787210.2014.912942 10.1007/s004210050679 10.1093/cid/ciaa1354 10.1021/acssensors.0c01318 10.1039/c6an02625g 10.1021/acssensors.0c02455 10.1016/0304-386x(76)90004-9 10.1073/pnas.1613458114 10.1021/acsptsci.8b00033 10.1039/d0ay00026d 10.1177/0003702816662607 10.1038/346818a0 10.1126/science.2200121 10.1016/j.jconrel.2012.01.042 10.1126/scitranslmed.aaw0285 10.1021/acs.analchem.9b02553 10.1007/s00277-017-3160-1 10.1111/bcp.13070 10.1002/anie.200500989 10.1016/j.jconrel.2019.10.022 10.1002/elan.200403224 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society Copyright American Chemical Society Jun 14, 2022 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Jun 14, 2022 – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.analchem.2c00829 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 8345 |
ExternalDocumentID | PMC9202557 35653647 10_1021_acs_analchem_2c00829 a276806168 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007445 – fundername: ; grantid: 7505508-5108014 (2018PG-TI0061) |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFRP ABHFT ABHMW ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a510t-7ec076435339e8a815d779831e27bdcd6bd3379c591a1b77ee8723a908b6e2e43 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 18:36:58 EDT 2025 Fri Jul 11 03:03:10 EDT 2025 Thu Jul 10 22:13:46 EDT 2025 Mon Jun 30 08:36:26 EDT 2025 Thu Apr 03 07:08:28 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Tue Jul 01 03:28:09 EDT 2025 Thu Jul 06 08:30:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a510t-7ec076435339e8a815d779831e27bdcd6bd3379c591a1b77ee8723a908b6e2e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This paper was originally published ASAP on June 2, 2022, with an error in Figure 6G. The corrected version was reposted on June 3, 2022. |
ORCID | 0000-0003-0025-4732 0000-0002-2740-6276 0000-0003-1296-6569 0000-0002-5478-5291 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9202557 |
PMID | 35653647 |
PQID | 2677657780 |
PQPubID | 45400 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202557 proquest_miscellaneous_2718256337 proquest_miscellaneous_2673355278 proquest_journals_2677657780 pubmed_primary_35653647 crossref_primary_10_1021_acs_analchem_2c00829 crossref_citationtrail_10_1021_acs_analchem_2c00829 acs_journals_10_1021_acs_analchem_2c00829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-14 |
PublicationDateYYYYMMDD | 2022-06-14 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 Dauphin-Ducharme P. (ref36/cit36) 2022; 2393 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 Torrisi R. (ref50/cit50) 2006; 26 ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1038/s42003-018-0170-z – ident: ref10/cit10 doi: 10.1016/s0140-6736(09)60743-1 – ident: ref44/cit44 doi: 10.1007/s00216-020-03087-5 – ident: ref16/cit16 doi: 10.1021/acs.jproteome.7b00642 – ident: ref41/cit41 doi: 10.1021/acssensors.9b01616 – ident: ref52/cit52 doi: 10.2174/0929867003375489 – ident: ref24/cit24 doi: 10.1016/j.bios.2017.01.016 – ident: ref5/cit5 doi: 10.1002/btm2.10201 – ident: ref9/cit9 doi: 10.1021/acssensors.7b00787 – ident: ref53/cit53 doi: 10.1021/acssensors.1c01183 – ident: ref27/cit27 doi: 10.1021/acs.analchem.9b05109 – ident: ref14/cit14 doi: 10.2174/1389200219666171227200547 – ident: ref34/cit34 doi: 10.1021/acsami.9b22385 – ident: ref39/cit39 doi: 10.1038/nprot.2007.413 – ident: ref7/cit7 doi: 10.1016/j.trechm.2020.02.009 – ident: ref4/cit4 doi: 10.3389/fmolb.2019.00069 – volume: 26 start-page: 3861 year: 2006 ident: ref50/cit50 publication-title: Anticancer Res. – ident: ref18/cit18 doi: 10.1177/1932296817699637 – ident: ref28/cit28 doi: 10.1021/jacs.0c01883 – ident: ref45/cit45 doi: 10.1039/c9sc01495k – volume: 2393 start-page: 479 volume-title: Biomedical Engineering Technologies year: 2022 ident: ref36/cit36 doi: 10.1007/978-1-0716-1803-5_25 – ident: ref6/cit6 doi: 10.1016/j.cobme.2021.100312 – ident: ref32/cit32 doi: 10.1021/acs.analchem.9b03853 – ident: ref51/cit51 doi: 10.1093/annonc/mds627 – ident: ref33/cit33 doi: 10.1016/j.bios.2021.113404 – ident: ref12/cit12 doi: 10.1128/AAC.02042-17 – ident: ref49/cit49 doi: 10.1038/sj.bjc.6602403 – ident: ref23/cit23 doi: 10.1021/acssensors.9b01127 – ident: ref26/cit26 doi: 10.1002/elan.201100361 – ident: ref46/cit46 doi: 10.1080/10428190500353430 – ident: ref19/cit19 doi: 10.1002/adhm.202002255 – ident: ref8/cit8 doi: 10.1126/scitranslmed.3007095 – ident: ref15/cit15 doi: 10.1586/14787210.2014.912942 – ident: ref11/cit11 doi: 10.1007/s004210050679 – ident: ref42/cit42 doi: 10.1093/cid/ciaa1354 – ident: ref1/cit1 doi: 10.1021/acssensors.0c01318 – ident: ref25/cit25 doi: 10.1039/c6an02625g – ident: ref40/cit40 doi: 10.1021/acssensors.0c02455 – ident: ref43/cit43 doi: 10.1016/0304-386x(76)90004-9 – ident: ref3/cit3 doi: 10.1073/pnas.1613458114 – ident: ref2/cit2 doi: 10.1021/acsptsci.8b00033 – ident: ref35/cit35 doi: 10.1039/d0ay00026d – ident: ref13/cit13 doi: 10.1177/0003702816662607 – ident: ref31/cit31 doi: 10.1038/346818a0 – ident: ref30/cit30 doi: 10.1126/science.2200121 – ident: ref21/cit21 doi: 10.1016/j.jconrel.2012.01.042 – ident: ref17/cit17 doi: 10.1126/scitranslmed.aaw0285 – ident: ref38/cit38 doi: 10.1021/acs.analchem.9b02553 – ident: ref48/cit48 doi: 10.1007/s00277-017-3160-1 – ident: ref47/cit47 doi: 10.1111/bcp.13070 – ident: ref29/cit29 doi: 10.1002/anie.200500989 – ident: ref22/cit22 doi: 10.1016/j.jconrel.2019.10.022 – ident: ref37/cit37 doi: 10.1002/elan.200403224 |
SSID | ssj0011016 |
Score | 2.6554499 |
Snippet | The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose,... The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose,... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8335 |
SubjectTerms | Analytical chemistry Animal models Animals Aptamers Arrays Biomarkers Biomarkers - analysis Biomedical materials Biomedical research blood Chemical sensors Chemistry Drug Monitoring - methods drugs Electrochemistry Extracellular Fluid - chemistry Fabrication Medical research Metabolites Monitoring Needles Oligonucleotides - analysis physiology Redox reactions rodents Sensor arrays Sensors therapeutics Translation |
Title | Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring |
URI | http://dx.doi.org/10.1021/acs.analchem.2c00829 https://www.ncbi.nlm.nih.gov/pubmed/35653647 https://www.proquest.com/docview/2677657780 https://www.proquest.com/docview/2673355278 https://www.proquest.com/docview/2718256337 https://pubmed.ncbi.nlm.nih.gov/PMC9202557 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPFAqUQEFG4oKEl42dxPGx3baqkAoSbUVvkV9ARZtWm-TCr2cmr-22gsIx8UP2eGx_o_F8A_BWZsETzRUXRgeeaIvnoE-mPP9mjEWj2SZtIO3Bp2z_OPl4kp4sDMXrHnwRfzCumhgUKs7hfCJcGwx6F-6JDDWNoNDscPQakCU6ZMgjh-oQKveHXuhCctXyhXQDZV5_LHnl9tlbg89DDE_36OTnpKntxP26Sen4jxN7BA97IMq2Os15DHdCuQ73Z0P-t3VYvUJV-AS-HtDLPfz0Z4FtXdbmPMz5Nl6Bnh2iJXwxrxjCX0ZkV6dlc9FU79kXxKCcQkzY0SLIi-3Mm--sO0mo56dwvLd7NNvnfVIGbnD71lwFN1UIYxAm6pCbPE69UjqXcRDKeucz66VU2qU6NrFVKoRcCWn0NLdZECGRz2ClxOE-B5Z6iX3qzATi0AkSmxOc8Vpqp4VyEbxDGRX9pqqK1l8u4oJ-DoIresFFIIdVLFzPbk5JNs5uacXHVpcdu8ct9TcHBVkMS2RKZalS-TSCN2MxLha5XkwZUORUR0oiu8v_UgdhAgJQlF4EG53OjYOSiLuJ6T8CtaSNYwViCV8uKU9_tGzhWpDZqF78hzBfwgNBUR6UoinZhJV63oRXiL1q-7rdcL8BUvcrzA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vcig98CivQAEjcUHC242dxPFxWagW6PZAt9Bb5NiGVrRptUku_Hpmskm2WwRVj3Fsazwe2581nm8A3sjEO6K54sJozyOd4z7ooiFPfxiT46U5j5pA2ul-MjmMPh_FR2sQd7EwKESJPZWNE3_JLhDuUJlB3eJQzgbCNjGht-A24hFBGRtG44PeeUAX0i5RHvlVu4i5f_RC55ItV8-lv8Dm1TeTlw6h3XvwrRe_eXvya1BX-cD-vsLseOPx3Ye7LSxlo4UdPYA1X2zBxrjLBrcFm5eICx_C9ym948NPd-rZ6KIyZ37O3-OB6NgB3ovP5yVDMMyI-uqkqM_r8h37ioiUU8AJmy1DvtiHef2TLfYV6vkRHO5-nI0nvE3RwA0u5oorb4cKQQ2CRu1Tk4axU0qnMvRC5c66JHdSKm1jHZowV8r7VAlp9DDNEy98JB_DeoHiPgUWO4l96sR4YtTxEpsTuHFaaquFsgG8RR1l7RIrs8Z7LsKMCjvFZa3iApDdZGa25TqnlBun17TifauLBdfHNfW3OztZiiUSpZJYqXQYwOv-N04WOWJM4VHlVEdKor5L_1MHQQPCUdReAE8WptcLJdHqifc_ALVilH0F4gxf_VOcHDfc4VrQJVI9u4EyX8HGZDbdy_Y-7X95DncExX9Q8qZoG9aree1fICqr8pfNGvwD-PY0LQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkXgceJRXoICRuCDhZWNn4_i4bFmVRytEW1FxifwqVLTpapNc-PXMZJN0twgqOMaxLXs8tr_ReL4BeCHT4InmigujA0-0xXPQJ0OeHRpj0Wi2SRNIu72Tbu0n7w9GB0upvnAQJfZUNk582tUzf9gyDMSvqdygfHE6JwPhmrjQy3CFPHeUtWE82e0dCGSUdsnyyLfaRc39oRe6m1y5ejf9BjjPv5tcuoimt-BrP4Xm_cmPQV3Zgft5jt3xv-Z4G2628JSNF_p0By6FYh2uTbqscOtwY4nA8C582ab3fPjpjwMbzypzEub8DV6Mnu2ifXw6LxmCYkYUWEdFfVqXr9hnRKacAk_Y3lnoF9uc19_Y4nyhnu_B_vTt3mSLt6kauMFNXXEV3FAhuEHwqENmsnjkldKZjINQ1jufWi-l0m6kYxNbpULIlJBGDzObBhESeR_WChzuQ2AjL7FPnZpAzDpBYnMCOV5L7bRQLoKXKKO83Wpl3njRRZxTYSe4vBVcBLJb0Ny1nOeUeuP4gla8bzVbcH5cUH-j05WzYYlUKdRLlQ0jeN7_xsUih4wpAoqc6khJFHjZX-ogeEBYitKL4MFC_fpBSdR84v-PQK0oZl-BuMNX_xRH3xsOcS3ImFSP_kGYz-Dqp81p_vHdzofHcF1QGAjlcEo2YK2a1-EJgrPKPm224S-9Hjaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microneedle+Aptamer-Based+Sensors+for+Continuous%2C+Real-Time+Therapeutic+Drug+Monitoring&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wu%2C+Yao&rft.au=Tehrani%2C+Farshad&rft.au=Teymourian%2C+Hazhir&rft.au=Mack%2C+John&rft.date=2022-06-14&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=94&rft.issue=23&rft.spage=8335&rft_id=info:doi/10.1021%2Facs.analchem.2c00829&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |