Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring

The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allo...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 94; no. 23; pp. 8335 - 8345
Main Authors Wu, Yao, Tehrani, Farshad, Teymourian, Hazhir, Mack, John, Shaver, Alexander, Reynoso, Maria, Kavner, Jonathan, Huang, Nickey, Furmidge, Allison, Duvvuri, Andrés, Nie, Yuhang, Laffel, Lori M., Patti, Mary-Elizabeth, Dassau, Eyal, Wang, Joseph, Arroyo-Currás, Netzahualcóyotl
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.06.2022
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.2c00829

Cover

Abstract The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
AbstractList The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
Author Arroyo-Currás, Netzahualcóyotl
Nie, Yuhang
Kavner, Jonathan
Tehrani, Farshad
Teymourian, Hazhir
Huang, Nickey
Dassau, Eyal
Wu, Yao
Mack, John
Laffel, Lori M.
Reynoso, Maria
Wang, Joseph
Shaver, Alexander
Duvvuri, Andrés
Furmidge, Allison
Patti, Mary-Elizabeth
AuthorAffiliation Joslin Diabetes Center
Biochemistry, Cellular and Molecular Biology
Department of Nanoengineering
Department of Pharmacology and Molecular Sciences
Harvard John A. Paulson School of Engineering and Applied Sciences
Johns Hopkins University School of Medicine
AuthorAffiliation_xml – name: Biochemistry, Cellular and Molecular Biology
– name: Joslin Diabetes Center
– name: Department of Pharmacology and Molecular Sciences
– name: Department of Nanoengineering
– name: Johns Hopkins University School of Medicine
– name: Harvard John A. Paulson School of Engineering and Applied Sciences
Author_xml – sequence: 1
  givenname: Yao
  orcidid: 0000-0003-1296-6569
  surname: Wu
  fullname: Wu, Yao
  organization: Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Farshad
  surname: Tehrani
  fullname: Tehrani, Farshad
  organization: Department of Nanoengineering
– sequence: 3
  givenname: Hazhir
  orcidid: 0000-0003-0025-4732
  surname: Teymourian
  fullname: Teymourian, Hazhir
  organization: Department of Nanoengineering
– sequence: 4
  givenname: John
  surname: Mack
  fullname: Mack, John
  organization: Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Alexander
  orcidid: 0000-0002-5478-5291
  surname: Shaver
  fullname: Shaver, Alexander
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: Maria
  surname: Reynoso
  fullname: Reynoso, Maria
  organization: Department of Nanoengineering
– sequence: 7
  givenname: Jonathan
  surname: Kavner
  fullname: Kavner, Jonathan
  organization: Department of Nanoengineering
– sequence: 8
  givenname: Nickey
  surname: Huang
  fullname: Huang, Nickey
  organization: Department of Nanoengineering
– sequence: 9
  givenname: Allison
  surname: Furmidge
  fullname: Furmidge, Allison
  organization: Department of Nanoengineering
– sequence: 10
  givenname: Andrés
  surname: Duvvuri
  fullname: Duvvuri, Andrés
  organization: Department of Nanoengineering
– sequence: 11
  givenname: Yuhang
  surname: Nie
  fullname: Nie, Yuhang
  organization: Department of Nanoengineering
– sequence: 12
  givenname: Lori M.
  surname: Laffel
  fullname: Laffel, Lori M.
  organization: Joslin Diabetes Center
– sequence: 14
  givenname: Mary-Elizabeth
  surname: Patti
  fullname: Patti, Mary-Elizabeth
  organization: Joslin Diabetes Center
– sequence: 15
  givenname: Eyal
  surname: Dassau
  fullname: Dassau, Eyal
  organization: Harvard John A. Paulson School of Engineering and Applied Sciences
– sequence: 16
  givenname: Joseph
  surname: Wang
  fullname: Wang, Joseph
  email: josephwang@ucsd.edu
  organization: Department of Nanoengineering
– sequence: 17
  givenname: Netzahualcóyotl
  orcidid: 0000-0002-2740-6276
  surname: Arroyo-Currás
  fullname: Arroyo-Currás, Netzahualcóyotl
  email: netzarroyo@jhmi.edu
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35653647$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPCP0BoJDYsmHBtx49hUamEp9QKCYJYWo7nJnE1Ywd7Bol_j0PSCLqgKy_ud46O7z1n5CTEgIQ8pTClwOgr6_LUBtu5DfZT5gA0ax6QCRUMaqk1OyETAOA1UwCn5CznGwBKgcpH5JQLKbicqQn5fu1dKsbYdlhdbgfbY6rf2Ixt9RVDjilXq5iqeQyDD2Mc88vqC9quXvgeq8UGk93iOHhXvU3jurqOwQ8x-bB-TB6ubJfxyeE9J9_ev1vMP9ZXnz98ml9e1VZQGGqFDpScccF5g9pqKlqlGs0pMrVsXSuXLeeqcaKhli6VQtSKcduAXkpkOOPn5GLvux2XPbYOw5BsZ7bJ9zb9MtF68-8k-I1Zx5-mYcCEUMXgxcEgxR8j5sH0PjvsOhuwfNcwRTUTsqS4H5WKcyGY0gV9fge9iWMq1_pDKSmU0lCoZ3-HP6a-PU8BZnug3CjnhKsjQsHsWmBKC8xtC8yhBUX2-o7M-cEOPu5W4Lv7xLAX76bH1P-V_AYBhsxW
CitedBy_id crossref_primary_10_1021_acssensors_3c02004
crossref_primary_10_1016_j_snb_2023_134354
crossref_primary_10_1016_j_bbrc_2023_05_032
crossref_primary_10_1016_j_nanoen_2024_110194
crossref_primary_10_1016_j_jsams_2023_01_010
crossref_primary_10_1021_acsmaterialsau_4c00125
crossref_primary_10_1021_acs_molpharmaceut_4c01266
crossref_primary_10_1002_admi_202400789
crossref_primary_10_1016_j_sajb_2023_08_034
crossref_primary_10_1016_j_biosx_2024_100500
crossref_primary_10_1039_D4BM00794H
crossref_primary_10_1016_j_cca_2023_117668
crossref_primary_10_1021_acssensors_3c02086
crossref_primary_10_3390_bios13060630
crossref_primary_10_3390_bios13070726
crossref_primary_10_1021_acssensors_2c02780
crossref_primary_10_1038_s43246_024_00468_6
crossref_primary_10_1039_D4SD00066H
crossref_primary_10_1021_acssensors_4c00142
crossref_primary_10_1002_SMMD_20220023
crossref_primary_10_1002_adhm_202303921
crossref_primary_10_3390_bios13030313
crossref_primary_10_1021_acsapm_3c02206
crossref_primary_10_1149_2754_2726_ad15a2
crossref_primary_10_1149_2754_2726_ad15a1
crossref_primary_10_1016_j_addr_2024_115341
crossref_primary_10_1002_adfm_202208534
crossref_primary_10_1002_adhm_202404193
crossref_primary_10_1021_acs_analchem_4c06519
crossref_primary_10_1039_D4SD00192C
crossref_primary_10_1109_TBCAS_2024_3405815
crossref_primary_10_1002_smsc_202300358
crossref_primary_10_1002_adma_202313743
crossref_primary_10_1039_D2TB02600G
crossref_primary_10_1016_j_device_2023_100092
crossref_primary_10_1016_j_asems_2025_100139
crossref_primary_10_1021_acs_langmuir_4c00585
crossref_primary_10_3390_mi13071099
crossref_primary_10_1016_j_cej_2024_156130
crossref_primary_10_3390_bios12100782
crossref_primary_10_1002_smll_202207539
crossref_primary_10_1002_admt_202400619
crossref_primary_10_1039_D4CS00001C
crossref_primary_10_3390_chemosensors11080459
crossref_primary_10_1016_j_trac_2023_117467
crossref_primary_10_1021_acssensors_2c02409
crossref_primary_10_1021_acs_analchem_2c03970
crossref_primary_10_1021_acssensors_3c01381
crossref_primary_10_1016_j_bios_2025_117373
crossref_primary_10_1039_D2AN02096C
crossref_primary_10_1021_acssensors_4c00516
crossref_primary_10_1039_D2LC00790H
crossref_primary_10_1002_smll_202206753
crossref_primary_10_1021_acs_analchem_4c01043
crossref_primary_10_1016_j_jconrel_2024_11_020
crossref_primary_10_1021_acs_analchem_4c05004
crossref_primary_10_1021_acsami_2c22741
crossref_primary_10_1016_j_bios_2023_115918
crossref_primary_10_1016_j_coelec_2023_101286
crossref_primary_10_2174_0115680266304711240327072348
crossref_primary_10_1021_acssensors_2c01428
crossref_primary_10_1149_2754_2726_accd7e
crossref_primary_10_1016_j_snb_2024_136731
crossref_primary_10_1002_adfm_202424463
crossref_primary_10_1039_D3SD00165B
crossref_primary_10_1021_acs_chemrev_3c00078
crossref_primary_10_1126_sciadv_abq4539
crossref_primary_10_1016_j_bios_2023_115802
crossref_primary_10_1016_j_snr_2024_100260
crossref_primary_10_1002_ange_202316678
crossref_primary_10_1016_j_bios_2023_115408
crossref_primary_10_1007_s00216_023_04805_5
crossref_primary_10_3390_nano14242014
crossref_primary_10_1016_j_heliyon_2024_e36677
crossref_primary_10_1002_adma_202402009
crossref_primary_10_1002_pat_70020
crossref_primary_10_1080_17425247_2024_2384696
crossref_primary_10_1016_j_snb_2024_136518
crossref_primary_10_1002_anie_202316678
crossref_primary_10_1038_s44222_023_00094_w
crossref_primary_10_3390_bios13080828
crossref_primary_10_3390_antibiotics12101478
crossref_primary_10_1016_j_biosx_2023_100405
crossref_primary_10_3390_molecules29204891
crossref_primary_10_1039_D3LC00210A
crossref_primary_10_1149_2754_2726_ace068
crossref_primary_10_1063_5_0154637
crossref_primary_10_1002_advs_202306560
crossref_primary_10_1021_acssensors_3c01172
crossref_primary_10_1038_s44222_023_00141_6
crossref_primary_10_1126_sciadv_adn5875
crossref_primary_10_3390_bios14080391
crossref_primary_10_1016_j_tibtech_2022_12_005
crossref_primary_10_1021_acssensors_3c02279
crossref_primary_10_1021_acssensors_4c03637
crossref_primary_10_1016_j_bios_2024_116697
crossref_primary_10_1021_acssensors_3c01868
crossref_primary_10_1038_s41551_022_00998_9
crossref_primary_10_1021_acsomega_2c04789
crossref_primary_10_1002_advs_202411433
crossref_primary_10_1021_acs_analchem_4c01167
crossref_primary_10_1039_D4MA00479E
crossref_primary_10_1021_acs_analchem_2c05158
crossref_primary_10_1021_acssensors_2c01910
crossref_primary_10_1093_jac_dkad289
crossref_primary_10_1002_advs_202309027
Cites_doi 10.1038/s42003-018-0170-z
10.1016/s0140-6736(09)60743-1
10.1007/s00216-020-03087-5
10.1021/acs.jproteome.7b00642
10.1021/acssensors.9b01616
10.2174/0929867003375489
10.1016/j.bios.2017.01.016
10.1002/btm2.10201
10.1021/acssensors.7b00787
10.1021/acssensors.1c01183
10.1021/acs.analchem.9b05109
10.2174/1389200219666171227200547
10.1021/acsami.9b22385
10.1038/nprot.2007.413
10.1016/j.trechm.2020.02.009
10.3389/fmolb.2019.00069
10.1177/1932296817699637
10.1021/jacs.0c01883
10.1039/c9sc01495k
10.1007/978-1-0716-1803-5_25
10.1016/j.cobme.2021.100312
10.1021/acs.analchem.9b03853
10.1093/annonc/mds627
10.1016/j.bios.2021.113404
10.1128/AAC.02042-17
10.1038/sj.bjc.6602403
10.1021/acssensors.9b01127
10.1002/elan.201100361
10.1080/10428190500353430
10.1002/adhm.202002255
10.1126/scitranslmed.3007095
10.1586/14787210.2014.912942
10.1007/s004210050679
10.1093/cid/ciaa1354
10.1021/acssensors.0c01318
10.1039/c6an02625g
10.1021/acssensors.0c02455
10.1016/0304-386x(76)90004-9
10.1073/pnas.1613458114
10.1021/acsptsci.8b00033
10.1039/d0ay00026d
10.1177/0003702816662607
10.1038/346818a0
10.1126/science.2200121
10.1016/j.jconrel.2012.01.042
10.1126/scitranslmed.aaw0285
10.1021/acs.analchem.9b02553
10.1007/s00277-017-3160-1
10.1111/bcp.13070
10.1002/anie.200500989
10.1016/j.jconrel.2019.10.022
10.1002/elan.200403224
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright American Chemical Society Jun 14, 2022
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Jun 14, 2022
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
DOI 10.1021/acs.analchem.2c00829
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 8345
ExternalDocumentID PMC9202557
35653647
10_1021_acs_analchem_2c00829
a276806168
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007445
– fundername: ;
  grantid: 7505508-5108014 (2018PG-TI0061)
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
ABFRP
ABHFT
ABHMW
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a510t-7ec076435339e8a815d779831e27bdcd6bd3379c591a1b77ee8723a908b6e2e43
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Aug 21 18:36:58 EDT 2025
Fri Jul 11 03:03:10 EDT 2025
Thu Jul 10 22:13:46 EDT 2025
Mon Jun 30 08:36:26 EDT 2025
Thu Apr 03 07:08:28 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Tue Jul 01 03:28:09 EDT 2025
Thu Jul 06 08:30:34 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a510t-7ec076435339e8a815d779831e27bdcd6bd3379c591a1b77ee8723a908b6e2e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper was originally published ASAP on June 2, 2022, with an error in Figure 6G. The corrected version was reposted on June 3, 2022.
ORCID 0000-0003-0025-4732
0000-0002-2740-6276
0000-0003-1296-6569
0000-0002-5478-5291
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9202557
PMID 35653647
PQID 2677657780
PQPubID 45400
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202557
proquest_miscellaneous_2718256337
proquest_miscellaneous_2673355278
proquest_journals_2677657780
pubmed_primary_35653647
crossref_primary_10_1021_acs_analchem_2c00829
crossref_citationtrail_10_1021_acs_analchem_2c00829
acs_journals_10_1021_acs_analchem_2c00829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-14
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
Dauphin-Ducharme P. (ref36/cit36) 2022; 2393
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
Torrisi R. (ref50/cit50) 2006; 26
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1038/s42003-018-0170-z
– ident: ref10/cit10
  doi: 10.1016/s0140-6736(09)60743-1
– ident: ref44/cit44
  doi: 10.1007/s00216-020-03087-5
– ident: ref16/cit16
  doi: 10.1021/acs.jproteome.7b00642
– ident: ref41/cit41
  doi: 10.1021/acssensors.9b01616
– ident: ref52/cit52
  doi: 10.2174/0929867003375489
– ident: ref24/cit24
  doi: 10.1016/j.bios.2017.01.016
– ident: ref5/cit5
  doi: 10.1002/btm2.10201
– ident: ref9/cit9
  doi: 10.1021/acssensors.7b00787
– ident: ref53/cit53
  doi: 10.1021/acssensors.1c01183
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.9b05109
– ident: ref14/cit14
  doi: 10.2174/1389200219666171227200547
– ident: ref34/cit34
  doi: 10.1021/acsami.9b22385
– ident: ref39/cit39
  doi: 10.1038/nprot.2007.413
– ident: ref7/cit7
  doi: 10.1016/j.trechm.2020.02.009
– ident: ref4/cit4
  doi: 10.3389/fmolb.2019.00069
– volume: 26
  start-page: 3861
  year: 2006
  ident: ref50/cit50
  publication-title: Anticancer Res.
– ident: ref18/cit18
  doi: 10.1177/1932296817699637
– ident: ref28/cit28
  doi: 10.1021/jacs.0c01883
– ident: ref45/cit45
  doi: 10.1039/c9sc01495k
– volume: 2393
  start-page: 479
  volume-title: Biomedical Engineering Technologies
  year: 2022
  ident: ref36/cit36
  doi: 10.1007/978-1-0716-1803-5_25
– ident: ref6/cit6
  doi: 10.1016/j.cobme.2021.100312
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.9b03853
– ident: ref51/cit51
  doi: 10.1093/annonc/mds627
– ident: ref33/cit33
  doi: 10.1016/j.bios.2021.113404
– ident: ref12/cit12
  doi: 10.1128/AAC.02042-17
– ident: ref49/cit49
  doi: 10.1038/sj.bjc.6602403
– ident: ref23/cit23
  doi: 10.1021/acssensors.9b01127
– ident: ref26/cit26
  doi: 10.1002/elan.201100361
– ident: ref46/cit46
  doi: 10.1080/10428190500353430
– ident: ref19/cit19
  doi: 10.1002/adhm.202002255
– ident: ref8/cit8
  doi: 10.1126/scitranslmed.3007095
– ident: ref15/cit15
  doi: 10.1586/14787210.2014.912942
– ident: ref11/cit11
  doi: 10.1007/s004210050679
– ident: ref42/cit42
  doi: 10.1093/cid/ciaa1354
– ident: ref1/cit1
  doi: 10.1021/acssensors.0c01318
– ident: ref25/cit25
  doi: 10.1039/c6an02625g
– ident: ref40/cit40
  doi: 10.1021/acssensors.0c02455
– ident: ref43/cit43
  doi: 10.1016/0304-386x(76)90004-9
– ident: ref3/cit3
  doi: 10.1073/pnas.1613458114
– ident: ref2/cit2
  doi: 10.1021/acsptsci.8b00033
– ident: ref35/cit35
  doi: 10.1039/d0ay00026d
– ident: ref13/cit13
  doi: 10.1177/0003702816662607
– ident: ref31/cit31
  doi: 10.1038/346818a0
– ident: ref30/cit30
  doi: 10.1126/science.2200121
– ident: ref21/cit21
  doi: 10.1016/j.jconrel.2012.01.042
– ident: ref17/cit17
  doi: 10.1126/scitranslmed.aaw0285
– ident: ref38/cit38
  doi: 10.1021/acs.analchem.9b02553
– ident: ref48/cit48
  doi: 10.1007/s00277-017-3160-1
– ident: ref47/cit47
  doi: 10.1111/bcp.13070
– ident: ref29/cit29
  doi: 10.1002/anie.200500989
– ident: ref22/cit22
  doi: 10.1016/j.jconrel.2019.10.022
– ident: ref37/cit37
  doi: 10.1002/elan.200403224
SSID ssj0011016
Score 2.6554499
Snippet The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose,...
The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose,...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8335
SubjectTerms Analytical chemistry
Animal models
Animals
Aptamers
Arrays
Biomarkers
Biomarkers - analysis
Biomedical materials
Biomedical research
blood
Chemical sensors
Chemistry
Drug Monitoring - methods
drugs
Electrochemistry
Extracellular Fluid - chemistry
Fabrication
Medical research
Metabolites
Monitoring
Needles
Oligonucleotides - analysis
physiology
Redox reactions
rodents
Sensor arrays
Sensors
therapeutics
Translation
Title Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring
URI http://dx.doi.org/10.1021/acs.analchem.2c00829
https://www.ncbi.nlm.nih.gov/pubmed/35653647
https://www.proquest.com/docview/2677657780
https://www.proquest.com/docview/2673355278
https://www.proquest.com/docview/2718256337
https://pubmed.ncbi.nlm.nih.gov/PMC9202557
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPFAqUQEFG4oKEl42dxPGx3baqkAoSbUVvkV9ARZtWm-TCr2cmr-22gsIx8UP2eGx_o_F8A_BWZsETzRUXRgeeaIvnoE-mPP9mjEWj2SZtIO3Bp2z_OPl4kp4sDMXrHnwRfzCumhgUKs7hfCJcGwx6F-6JDDWNoNDscPQakCU6ZMgjh-oQKveHXuhCctXyhXQDZV5_LHnl9tlbg89DDE_36OTnpKntxP26Sen4jxN7BA97IMq2Os15DHdCuQ73Z0P-t3VYvUJV-AS-HtDLPfz0Z4FtXdbmPMz5Nl6Bnh2iJXwxrxjCX0ZkV6dlc9FU79kXxKCcQkzY0SLIi-3Mm--sO0mo56dwvLd7NNvnfVIGbnD71lwFN1UIYxAm6pCbPE69UjqXcRDKeucz66VU2qU6NrFVKoRcCWn0NLdZECGRz2ClxOE-B5Z6iX3qzATi0AkSmxOc8Vpqp4VyEbxDGRX9pqqK1l8u4oJ-DoIresFFIIdVLFzPbk5JNs5uacXHVpcdu8ct9TcHBVkMS2RKZalS-TSCN2MxLha5XkwZUORUR0oiu8v_UgdhAgJQlF4EG53OjYOSiLuJ6T8CtaSNYwViCV8uKU9_tGzhWpDZqF78hzBfwgNBUR6UoinZhJV63oRXiL1q-7rdcL8BUvcrzA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vcig98CivQAEjcUHC242dxPFxWagW6PZAt9Bb5NiGVrRptUku_Hpmskm2WwRVj3Fsazwe2581nm8A3sjEO6K54sJozyOd4z7ooiFPfxiT46U5j5pA2ul-MjmMPh_FR2sQd7EwKESJPZWNE3_JLhDuUJlB3eJQzgbCNjGht-A24hFBGRtG44PeeUAX0i5RHvlVu4i5f_RC55ItV8-lv8Dm1TeTlw6h3XvwrRe_eXvya1BX-cD-vsLseOPx3Ye7LSxlo4UdPYA1X2zBxrjLBrcFm5eICx_C9ym948NPd-rZ6KIyZ37O3-OB6NgB3ovP5yVDMMyI-uqkqM_r8h37ioiUU8AJmy1DvtiHef2TLfYV6vkRHO5-nI0nvE3RwA0u5oorb4cKQQ2CRu1Tk4axU0qnMvRC5c66JHdSKm1jHZowV8r7VAlp9DDNEy98JB_DeoHiPgUWO4l96sR4YtTxEpsTuHFaaquFsgG8RR1l7RIrs8Z7LsKMCjvFZa3iApDdZGa25TqnlBun17TifauLBdfHNfW3OztZiiUSpZJYqXQYwOv-N04WOWJM4VHlVEdKor5L_1MHQQPCUdReAE8WptcLJdHqifc_ALVilH0F4gxf_VOcHDfc4VrQJVI9u4EyX8HGZDbdy_Y-7X95DncExX9Q8qZoG9aree1fICqr8pfNGvwD-PY0LQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkXgceJRXoICRuCDhZWNn4_i4bFmVRytEW1FxifwqVLTpapNc-PXMZJN0twgqOMaxLXs8tr_ReL4BeCHT4InmigujA0-0xXPQJ0OeHRpj0Wi2SRNIu72Tbu0n7w9GB0upvnAQJfZUNk582tUzf9gyDMSvqdygfHE6JwPhmrjQy3CFPHeUtWE82e0dCGSUdsnyyLfaRc39oRe6m1y5ejf9BjjPv5tcuoimt-BrP4Xm_cmPQV3Zgft5jt3xv-Z4G2628JSNF_p0By6FYh2uTbqscOtwY4nA8C582ab3fPjpjwMbzypzEub8DV6Mnu2ifXw6LxmCYkYUWEdFfVqXr9hnRKacAk_Y3lnoF9uc19_Y4nyhnu_B_vTt3mSLt6kauMFNXXEV3FAhuEHwqENmsnjkldKZjINQ1jufWi-l0m6kYxNbpULIlJBGDzObBhESeR_WChzuQ2AjL7FPnZpAzDpBYnMCOV5L7bRQLoKXKKO83Wpl3njRRZxTYSe4vBVcBLJb0Ny1nOeUeuP4gla8bzVbcH5cUH-j05WzYYlUKdRLlQ0jeN7_xsUih4wpAoqc6khJFHjZX-ogeEBYitKL4MFC_fpBSdR84v-PQK0oZl-BuMNX_xRH3xsOcS3ImFSP_kGYz-Dqp81p_vHdzofHcF1QGAjlcEo2YK2a1-EJgrPKPm224S-9Hjaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microneedle+Aptamer-Based+Sensors+for+Continuous%2C+Real-Time+Therapeutic+Drug+Monitoring&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wu%2C+Yao&rft.au=Tehrani%2C+Farshad&rft.au=Teymourian%2C+Hazhir&rft.au=Mack%2C+John&rft.date=2022-06-14&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=94&rft.issue=23&rft.spage=8335&rft_id=info:doi/10.1021%2Facs.analchem.2c00829&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon