A global soil data set for earth system modeling

We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30...

Full description

Saved in:
Bibliographic Details
Published inJournal of advances in modeling earth systems Vol. 6; no. 1; pp. 249 - 263
Main Authors Shangguan, Wei, Dai, Yongjiu, Duan, Qingyun, Liu, Baoyuan, Yuan, Hua
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points A global soil data set was developed for earth system modeling Various data sources were harmonized using consistent processes Examples of the data set were given show the vertical and horizontal variations
AbstractList We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle-size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30 double prime 30 double prime horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area-weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points * A global soil data set was developed for earth system modeling * Various data sources were harmonized using consistent processes * Examples of the data set were given show the vertical and horizontal variations
Abstract We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points A global soil data set was developed for earth system modeling Various data sources were harmonized using consistent processes Examples of the data set were given show the vertical and horizontal variations
We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle-size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area-weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling.
We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points A global soil data set was developed for earth system modeling Various data sources were harmonized using consistent processes Examples of the data set were given show the vertical and horizontal variations
Author Shangguan, Wei
Dai, Yongjiu
Yuan, Hua
Duan, Qingyun
Liu, Baoyuan
Author_xml – sequence: 1
  givenname: Wei
  surname: Shangguan
  fullname: Shangguan, Wei
  organization: Beijing Normal University
– sequence: 2
  givenname: Yongjiu
  surname: Dai
  fullname: Dai, Yongjiu
  organization: Beijing Normal University
– sequence: 3
  givenname: Qingyun
  surname: Duan
  fullname: Duan, Qingyun
  organization: Beijing Normal University
– sequence: 4
  givenname: Baoyuan
  surname: Liu
  fullname: Liu, Baoyuan
  organization: Beijing Normal University
– sequence: 5
  givenname: Hua
  surname: Yuan
  fullname: Yuan, Hua
  organization: Beijing Normal University
BookMark eNp90DtPwzAUBWALFYm2sPEDLLEwELh-pclYVeWlVgzAbDnOdUnlxsVOhfrvCSpDxcB0z_Dp6OqMyKANLRJyyeCWAfA7DkwsX6GPpTghQ1ZKnnGZ54OjfEZGKa0B8jznakhgSlc-VMbTFBpPa9MZmrCjLkSKJnYfNO1Thxu6CTX6pl2dk1NnfMKL3zsm7_fzt9ljtnh5eJpNF5lRDGTGHaIzRkk01cSC4tLW6BxHxxlXlXC5wMrIwjJj66JirrYFM8ryusACykqMyfWhdxvD5w5TpzdNsui9aTHskmZ9pRRQFKqnV3_oOuxi23-nOS9LpkopJ726OSgbQ0oRnd7GZmPiXjPQP_Pp4_l6Lg78q_G4_9fq5-lyzgEmUnwDXvlxng
CitedBy_id crossref_primary_10_1038_s41561_023_01345_6
crossref_primary_10_1371_journal_pone_0226617
crossref_primary_10_1007_s10533_021_00759_x
crossref_primary_10_1016_j_jclepro_2020_123308
crossref_primary_10_3390_land12030697
crossref_primary_10_3390_nitrogen3020023
crossref_primary_10_1016_j_agrformet_2024_110127
crossref_primary_10_5194_gmd_15_7835_2022
crossref_primary_10_1038_s41598_017_08066_y
crossref_primary_10_1139_cjce_2021_0507
crossref_primary_10_5194_hess_26_3537_2022
crossref_primary_10_1029_2019JD030818
crossref_primary_10_3390_ijerph19169887
crossref_primary_10_1111_gcb_14994
crossref_primary_10_1007_s11430_022_1120_5
crossref_primary_10_1038_s41588_022_01184_y
crossref_primary_10_1061_JHYEFF_HEENG_5833
crossref_primary_10_1029_2019MS001914
crossref_primary_10_1111_jfr3_12835
crossref_primary_10_1016_j_scitotenv_2017_09_136
crossref_primary_10_5194_essd_13_4263_2021
crossref_primary_10_3390_su10072418
crossref_primary_10_1016_j_jhydrol_2023_130425
crossref_primary_10_5194_hess_21_4825_2017
crossref_primary_10_1016_j_eja_2020_126032
crossref_primary_10_1088_1748_9326_ac2d67
crossref_primary_10_1016_j_geodrs_2020_e00306
crossref_primary_10_1111_nph_17686
crossref_primary_10_1016_j_pedsph_2023_06_005
crossref_primary_10_1002_ece3_6712
crossref_primary_10_1088_1755_1315_514_2_022029
crossref_primary_10_1016_j_jhydrol_2024_130700
crossref_primary_10_3390_agriculture13081514
crossref_primary_10_1007_s40333_022_0074_0
crossref_primary_10_1016_j_fcr_2017_06_011
crossref_primary_10_1029_2023MS004156
crossref_primary_10_5194_gmd_8_2893_2015
crossref_primary_10_5194_acp_23_6487_2023
crossref_primary_10_1021_acs_est_0c08004
crossref_primary_10_1111_gcb_15868
crossref_primary_10_1016_j_scitotenv_2017_08_112
crossref_primary_10_3389_fmars_2021_747083
crossref_primary_10_5194_hess_24_5745_2020
crossref_primary_10_1111_gcbb_12915
crossref_primary_10_1111_nph_16580
crossref_primary_10_5194_essd_16_2007_2024
crossref_primary_10_1016_j_scitotenv_2018_11_225
crossref_primary_10_1029_2022GB007680
crossref_primary_10_1029_2023MS004142
crossref_primary_10_1038_s41558_024_01957_9
crossref_primary_10_3390_land11060770
crossref_primary_10_1002_hyp_15036
crossref_primary_10_1080_14772000_2022_2128928
crossref_primary_10_5194_gmd_11_989_2018
crossref_primary_10_1002_2016WR019967
crossref_primary_10_1007_s11027_017_9752_1
crossref_primary_10_1016_j_scitotenv_2023_168464
crossref_primary_10_1016_j_jhydrol_2021_125960
crossref_primary_10_1016_j_jhydrol_2022_129020
crossref_primary_10_1016_j_scitotenv_2020_142506
crossref_primary_10_3390_f9010024
crossref_primary_10_1111_jbi_13768
crossref_primary_10_1002_advs_202004036
crossref_primary_10_1109_TGRS_2024_3361890
crossref_primary_10_1186_s13068_021_01896_z
crossref_primary_10_1029_2023MS004048
crossref_primary_10_3389_fenvs_2023_1069451
crossref_primary_10_1360_SSTe_2022_0372
crossref_primary_10_5194_bg_16_2857_2019
crossref_primary_10_5194_gmd_14_1987_2021
crossref_primary_10_1016_j_agrformet_2022_108905
crossref_primary_10_1016_j_fecs_2024_100193
crossref_primary_10_1016_j_jhydrol_2017_03_055
crossref_primary_10_1016_j_rse_2023_113569
crossref_primary_10_1111_gcb_15832
crossref_primary_10_30970_gpc_2020_1_3207
crossref_primary_10_5194_gmd_14_4429_2021
crossref_primary_10_1111_ecog_02443
crossref_primary_10_1016_j_jhydrol_2024_130986
crossref_primary_10_1029_2020JG006100
crossref_primary_10_5194_gmd_13_1201_2020
crossref_primary_10_3389_fpls_2022_1030929
crossref_primary_10_1111_1365_2745_14250
crossref_primary_10_1029_2024GB008098
crossref_primary_10_1029_2020GL088819
crossref_primary_10_1002_2017GB005714
crossref_primary_10_1016_j_rse_2023_113557
crossref_primary_10_1007_s11430_021_9852_2
crossref_primary_10_5194_gmd_10_959_2017
crossref_primary_10_1111_1365_2745_13275
crossref_primary_10_1029_2020EF001574
crossref_primary_10_1038_srep19327
crossref_primary_10_1016_j_earscirev_2021_103673
crossref_primary_10_1029_2021MS002802
crossref_primary_10_1038_s41598_018_27604_w
crossref_primary_10_1038_s43016_022_00549_0
crossref_primary_10_1029_2019MS002036
crossref_primary_10_1016_j_ejrh_2023_101612
crossref_primary_10_1002_qj_4499
crossref_primary_10_3375_043_041_0207
crossref_primary_10_1038_s41467_022_28748_0
crossref_primary_10_5334_jcaa_132
crossref_primary_10_1016_j_geoderma_2020_114451
crossref_primary_10_1007_s00376_017_6251_y
crossref_primary_10_1029_2023WR034431
crossref_primary_10_1029_2021JG006304
crossref_primary_10_1016_j_scitotenv_2014_11_076
crossref_primary_10_1029_2018MS001329
crossref_primary_10_1109_JSTARS_2021_3136565
crossref_primary_10_5194_gmd_9_3817_2016
crossref_primary_10_1038_s43016_021_00400_y
crossref_primary_10_3389_fevo_2023_1233936
crossref_primary_10_1016_j_jhydrol_2024_131542
crossref_primary_10_3389_fsufs_2020_519324
crossref_primary_10_1002_2015MS000526
crossref_primary_10_1029_2020MS002121
crossref_primary_10_1016_j_catena_2024_108218
crossref_primary_10_1016_j_scitotenv_2018_02_267
crossref_primary_10_1016_j_scitotenv_2020_138214
crossref_primary_10_1088_1748_9326_abcc8c
crossref_primary_10_3390_agronomy8120291
crossref_primary_10_5194_soil_1_351_2015
crossref_primary_10_5194_gmd_15_6637_2022
crossref_primary_10_1016_j_oneear_2023_11_006
crossref_primary_10_1029_2023GL105375
crossref_primary_10_1016_j_ecolmodel_2016_03_014
crossref_primary_10_1016_j_actatropica_2023_106848
crossref_primary_10_1088_1748_9326_ac2527
crossref_primary_10_3390_rs10030427
crossref_primary_10_3390_rs15133401
crossref_primary_10_1111_gcb_17410
crossref_primary_10_1080_10920277_2019_1667830
crossref_primary_10_1016_j_flora_2017_09_014
crossref_primary_10_1109_TGRS_2021_3119667
crossref_primary_10_1016_j_jhydrol_2021_126110
crossref_primary_10_1029_2022EA002756
crossref_primary_10_1175_JHM_D_19_0035_1
crossref_primary_10_1038_s41598_024_64269_0
crossref_primary_10_2166_wst_2023_297
crossref_primary_10_3390_land11010126
crossref_primary_10_3389_fdata_2019_00051
crossref_primary_10_1002_hyp_15028
crossref_primary_10_1029_2020MS002221
crossref_primary_10_5194_hess_28_479_2024
crossref_primary_10_1016_j_envpol_2022_120715
crossref_primary_10_1002_2015JD023446
crossref_primary_10_1175_JHM_D_17_0241_1
crossref_primary_10_1029_2020GB006836
crossref_primary_10_1016_j_envres_2023_117987
crossref_primary_10_5194_gmd_11_2009_2018
crossref_primary_10_5194_hess_21_2301_2017
crossref_primary_10_5194_gmd_7_2683_2014
crossref_primary_10_3390_atmos8080141
crossref_primary_10_1029_2023MS003922
crossref_primary_10_1175_JHM_D_18_0133_1
crossref_primary_10_5194_hess_24_4463_2020
crossref_primary_10_1029_2021EA001845
crossref_primary_10_1029_2018MS001377
crossref_primary_10_1016_j_scitotenv_2021_146696
crossref_primary_10_1007_s11258_023_01391_5
crossref_primary_10_1016_j_jclepro_2023_140371
crossref_primary_10_1109_JSTARS_2023_3289649
crossref_primary_10_1088_1748_9326_abf526
crossref_primary_10_3389_fpls_2018_01444
crossref_primary_10_1111_gcb_16731
crossref_primary_10_1016_j_ecolind_2023_110704
crossref_primary_10_1038_s41467_023_44433_2
crossref_primary_10_1016_j_resconrec_2024_107780
crossref_primary_10_1029_2021WR031778
crossref_primary_10_1111_1365_2435_14558
crossref_primary_10_1016_j_compag_2022_107533
crossref_primary_10_1038_s41588_024_01761_3
crossref_primary_10_5194_essd_13_5831_2021
crossref_primary_10_1016_j_jcis_2022_03_095
crossref_primary_10_1155_2014_913852
crossref_primary_10_1002_ldr_2656
crossref_primary_10_1016_j_eja_2018_10_006
crossref_primary_10_1016_j_agrformet_2023_109565
crossref_primary_10_1016_j_scitotenv_2024_172280
crossref_primary_10_5194_gmd_10_2761_2017
crossref_primary_10_1016_j_compag_2018_07_027
crossref_primary_10_1007_s13762_021_03676_6
crossref_primary_10_1016_j_jhydrol_2023_130294
crossref_primary_10_1007_s10661_018_6845_6
crossref_primary_10_1029_2023GL105291
crossref_primary_10_5194_gmd_12_4443_2019
crossref_primary_10_1007_s11119_018_9608_z
crossref_primary_10_5194_bg_15_4301_2018
crossref_primary_10_1029_2018GB005880
crossref_primary_10_5194_essd_15_2781_2023
crossref_primary_10_1016_j_aeolia_2015_07_009
crossref_primary_10_1111_gwat_13357
crossref_primary_10_1038_s41586_020_2128_9
crossref_primary_10_1002_2015JG003023
crossref_primary_10_1038_s41586_024_07491_0
crossref_primary_10_1029_2018MS001606
crossref_primary_10_1029_2020GB006585
crossref_primary_10_1016_j_geoderma_2022_116239
crossref_primary_10_1029_2018JD028554
crossref_primary_10_1111_geb_13796
crossref_primary_10_1007_s11119_018_9582_5
crossref_primary_10_1016_j_energy_2018_10_159
crossref_primary_10_1088_1748_9326_ac0f26
crossref_primary_10_3389_fpls_2023_1125019
crossref_primary_10_1038_s41467_022_28345_1
crossref_primary_10_5194_hess_28_2107_2024
crossref_primary_10_1016_j_ecolmodel_2019_03_008
crossref_primary_10_3390_atmos14010040
crossref_primary_10_1038_s41598_019_52923_x
crossref_primary_10_1080_01431161_2015_1040131
crossref_primary_10_5194_acp_15_12845_2015
crossref_primary_10_5194_bg_15_4459_2018
crossref_primary_10_5194_hess_22_4959_2018
crossref_primary_10_5194_acp_15_11593_2015
crossref_primary_10_1029_2022JD038217
crossref_primary_10_3389_fpls_2023_1174697
crossref_primary_10_1016_j_jhydrol_2015_12_019
crossref_primary_10_1029_2020MS002403
crossref_primary_10_1029_2019GB006251
crossref_primary_10_1029_2022EF003215
crossref_primary_10_1016_j_agrformet_2017_11_034
crossref_primary_10_3389_fenrg_2023_1070186
crossref_primary_10_3390_land10050544
crossref_primary_10_1111_gcb_16132
crossref_primary_10_1038_s41598_018_28244_w
crossref_primary_10_3390_agriculture14030379
crossref_primary_10_1016_j_agrformet_2023_109758
crossref_primary_10_1016_j_agrformet_2023_109634
crossref_primary_10_1016_j_fcr_2021_108098
crossref_primary_10_1088_1748_9326_ac953f
crossref_primary_10_1016_j_jhydrol_2019_05_058
crossref_primary_10_1088_1748_9326_ac7b38
crossref_primary_10_1029_2020GB006688
crossref_primary_10_1088_1748_9326_aca5a2
crossref_primary_10_1007_s00704_022_04015_6
crossref_primary_10_1016_j_jclepro_2017_02_120
crossref_primary_10_1038_nclimate3061
crossref_primary_10_5194_hess_20_3859_2016
crossref_primary_10_1029_2021GB007061
crossref_primary_10_1002_2015JG003130
crossref_primary_10_1016_j_advwatres_2023_104604
crossref_primary_10_1016_j_geoderma_2018_08_013
crossref_primary_10_1007_s42860_023_00243_7
crossref_primary_10_1111_nph_19294
crossref_primary_10_1016_j_geoderma_2024_116908
crossref_primary_10_1029_2022WR033597
crossref_primary_10_1016_j_agwat_2020_106479
crossref_primary_10_3390_w11061214
crossref_primary_10_1016_j_accre_2022_10_003
crossref_primary_10_1111_gcb_16154
crossref_primary_10_1029_2021WR029638
crossref_primary_10_1002_hyp_14509
crossref_primary_10_1186_s13717_021_00356_8
crossref_primary_10_3390_agriculture13040781
crossref_primary_10_1016_j_scitotenv_2019_133755
crossref_primary_10_1016_j_agee_2016_12_024
crossref_primary_10_1016_j_soilbio_2023_109025
crossref_primary_10_1029_2019MS001784
crossref_primary_10_1016_j_jhydrol_2023_129936
crossref_primary_10_1016_j_jia_2022_08_054
crossref_primary_10_1007_s10340_023_01694_6
crossref_primary_10_1007_s10592_021_01396_5
crossref_primary_10_1016_j_jhydrol_2024_131068
crossref_primary_10_5194_acp_23_3629_2023
crossref_primary_10_1016_j_envsoft_2023_105769
crossref_primary_10_1016_j_catena_2017_12_040
crossref_primary_10_3390_rs12193241
crossref_primary_10_1029_2021MS002460
crossref_primary_10_1029_2020GB006774
crossref_primary_10_1029_2020MS002444
crossref_primary_10_1002_2015JD024558
crossref_primary_10_1016_j_jhydrol_2022_128855
crossref_primary_10_1175_JHM_D_21_0101_1
crossref_primary_10_1016_j_jhydrol_2019_124048
crossref_primary_10_1016_j_jhydrol_2022_127895
crossref_primary_10_1111_geb_13457
crossref_primary_10_1016_j_compag_2022_107494
crossref_primary_10_3389_feart_2022_1077791
crossref_primary_10_1029_2022JD038021
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1016_j_geoderma_2020_114912
crossref_primary_10_1002_2017EF000768
crossref_primary_10_1002_ecm_1454
crossref_primary_10_1002_ird_2857
crossref_primary_10_1016_j_iswcr_2022_08_001
crossref_primary_10_1098_rspb_2019_0179
crossref_primary_10_1029_2021JD035753
crossref_primary_10_1080_02571862_2016_1141249
crossref_primary_10_1038_s41586_021_03306_8
crossref_primary_10_1016_j_jhydrol_2018_09_042
crossref_primary_10_1016_j_soilbio_2024_109318
crossref_primary_10_1007_s11629_021_7126_3
crossref_primary_10_1038_nature20139
crossref_primary_10_1016_j_jhydrol_2017_07_033
crossref_primary_10_1016_j_jhydrol_2015_03_019
crossref_primary_10_1016_j_jhydrol_2017_07_035
crossref_primary_10_5194_esd_13_1119_2022
crossref_primary_10_1111_nph_16702
crossref_primary_10_1038_s41598_022_25025_4
crossref_primary_10_1111_eva_13673
crossref_primary_10_1007_s00382_024_07133_1
crossref_primary_10_1175_JHM_D_15_0189_1
crossref_primary_10_5194_bg_19_4671_2022
crossref_primary_10_3390_jof9060607
crossref_primary_10_1038_s41477_024_01654_7
crossref_primary_10_5194_soil_5_137_2019
crossref_primary_10_1016_j_oneear_2024_01_021
crossref_primary_10_5194_soil_7_217_2021
crossref_primary_10_1016_j_jhydrol_2024_131099
crossref_primary_10_2136_vzj2015_02_0032
crossref_primary_10_1175_JHM_D_19_0060_1
crossref_primary_10_1007_s13593_023_00942_4
crossref_primary_10_1002_2016MS000827
crossref_primary_10_1002_2017WR020401
crossref_primary_10_1002_2017WR020642
crossref_primary_10_1029_2021JD036379
crossref_primary_10_3390_f9040172
crossref_primary_10_1016_j_jhydrol_2023_129604
crossref_primary_10_1016_j_scitotenv_2024_173903
crossref_primary_10_1016_j_ecolind_2023_110694
crossref_primary_10_1016_j_jhydrol_2022_128028
crossref_primary_10_1007_s11430_020_9821_0
crossref_primary_10_1016_j_eja_2021_126276
crossref_primary_10_5194_hess_24_655_2020
crossref_primary_10_3390_w11102012
crossref_primary_10_1175_JHM_D_21_0059_1
crossref_primary_10_1175_JHM_D_20_0298_1
crossref_primary_10_5194_acp_21_4319_2021
crossref_primary_10_1038_s41467_023_42932_w
crossref_primary_10_1029_2022MS003241
crossref_primary_10_1016_j_catena_2023_107517
crossref_primary_10_1111_geb_13374
crossref_primary_10_1002_2014MS000330
crossref_primary_10_1111_geb_13251
crossref_primary_10_1111_geb_13372
crossref_primary_10_1016_j_jhydrol_2023_129820
crossref_primary_10_1080_03036758_2022_2108071
crossref_primary_10_1098_rstb_2015_0311
crossref_primary_10_1111_1365_2745_13997
crossref_primary_10_1016_j_rineng_2023_101647
crossref_primary_10_5194_essd_13_5591_2021
crossref_primary_10_1002_joc_6748
crossref_primary_10_1016_j_geoderma_2021_115153
crossref_primary_10_3390_land8010012
crossref_primary_10_1029_2023JD039420
crossref_primary_10_1038_nplants_2016_193
crossref_primary_10_3390_w13192777
crossref_primary_10_1360_N072022_0336
crossref_primary_10_1111_nph_15123
crossref_primary_10_1093_jme_tjx072
crossref_primary_10_3390_land11122309
crossref_primary_10_1029_2022JG006917
crossref_primary_10_5194_bg_20_1313_2023
crossref_primary_10_1038_s41467_023_38803_z
crossref_primary_10_5194_hess_24_2141_2020
crossref_primary_10_2478_johh_2020_0038
crossref_primary_10_1029_2019MS001709
crossref_primary_10_3390_w15061019
crossref_primary_10_3390_rs15184534
crossref_primary_10_3390_w15030584
crossref_primary_10_1111_gcb_17038
crossref_primary_10_1016_j_envsoft_2019_05_012
crossref_primary_10_1016_j_rse_2022_113423
crossref_primary_10_1111_ejss_13086
crossref_primary_10_1111_nph_17771
crossref_primary_10_1016_j_scitotenv_2024_171412
crossref_primary_10_1175_JHM_D_14_0198_1
crossref_primary_10_1029_2021WR029901
crossref_primary_10_3390_rs14174401
crossref_primary_10_1029_2020JD034340
crossref_primary_10_1111_jbi_14589
crossref_primary_10_36074_grail_of_science_26_08_2022_69
crossref_primary_10_1029_2021MS002861
crossref_primary_10_36783_18069657rbcs20230130
crossref_primary_10_1029_2023JD040343
crossref_primary_10_1007_s00376_016_5226_8
crossref_primary_10_3390_agriculture13010176
crossref_primary_10_1155_2016_4323742
crossref_primary_10_1038_s41597_019_0228_x
crossref_primary_10_1016_j_ejrh_2021_100943
crossref_primary_10_1029_2021JD035363
crossref_primary_10_1007_s11430_022_1180_8
crossref_primary_10_2166_wcc_2020_011
crossref_primary_10_3390_su15076175
crossref_primary_10_1016_j_ecolind_2016_12_014
crossref_primary_10_3390_land11040502
crossref_primary_10_1002_hyp_13952
crossref_primary_10_1007_s11367_016_1158_x
crossref_primary_10_1007_s11769_019_1075_6
crossref_primary_10_1029_2019MS001723
crossref_primary_10_3390_rs15153834
crossref_primary_10_1007_s11629_014_3133_y
crossref_primary_10_1016_j_scitotenv_2017_10_203
crossref_primary_10_1016_j_scitotenv_2022_159390
crossref_primary_10_1016_j_ejrh_2022_101088
crossref_primary_10_1016_j_scitotenv_2023_162984
crossref_primary_10_1109_JSTARS_2022_3166978
crossref_primary_10_1016_j_scitotenv_2017_07_082
crossref_primary_10_3389_feart_2020_556781
crossref_primary_10_5194_gmd_15_4881_2022
Cites_doi 10.1029/2000WR900130
10.1016/j.geoderma.2010.02.003
10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
10.1016/S0098-3004(01)00011-5
10.5194/bgd-6-9891-2009
10.1016/S0016-7061(99)00003-8
10.5194/bg-10-1717-2013
10.1016/j.geoderma.2011.01.013
10.1175/JHM-D-12-0149.1
10.1016/j.geoderma.2012.05.026
10.1126/science.1175084
10.1002/joc.3370050202
10.1016/j.ecolmodel.2005.04.008
10.1080/01431160410001680428
10.1016/j.geoderma.2009.12.017
10.1029/92GB01822
10.1002/jame.20026
10.13031/2013.23637
10.2136/sh2004.4.0129
10.1016/j.ecolmodel.2005.01.025
10.1175/BAMS-84-8-1013
ContentType Journal Article
Copyright 2014. American Geophysical Union. All Rights Reserved.
2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. American Geophysical Union. All Rights Reserved.
– notice: 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TG
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1002/2013MS000293
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage 263
ExternalDocumentID 10_1002_2013MS000293
JAME20074
Genre article
GeographicLocations Canada
Australia
United States--US
China
GeographicLocations_xml – name: China
– name: Canada
– name: United States--US
– name: Australia
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: Natural Science Foundation of China
  funderid: 41205037 ; 2010CB951802
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAYXX
CITATION
ITC
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-a5104-2feefaa54eab7c0524cdeff2ef2125b3f63eba48c1acd8b1fdc81a5c2d8e809b3
IEDL.DBID BENPR
ISSN 1942-2466
IngestDate Sun May 12 04:22:11 EDT 2024
Thu Oct 10 18:40:35 EDT 2024
Thu Sep 26 16:48:17 EDT 2024
Sat Aug 24 01:05:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5104-2feefaa54eab7c0524cdeff2ef2125b3f63eba48c1acd8b1fdc81a5c2d8e809b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/2299159447?pq-origsite=%requestingapplication%
PQID 2299159447
PQPubID 616667
PageCount 15
ParticipantIDs proquest_miscellaneous_1524430885
proquest_journals_2299159447
crossref_primary_10_1002_2013MS000293
wiley_primary_10_1002_2013MS000293_JAME20074
PublicationCentury 2000
PublicationDate March 2014
2014-03-00
20140301
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2014
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1993; 7
1989; 43
2012
1985; 5
2011
2010
2008b
2008a
2004; 25
2004; 45
1998
2009
2007
2006
2001c
1995
2001b
2005
2004
2001a
2007; 50
2003
2002
2013; 5
1999
2002; 28
2012; 171–172
2013; 14
2001
2000; 36
2005; 187
2000
2013; 10
2005; 189
2012; 189–190
2010; 156
2010; 155
1986
1998; 2
2009; 6
2013
1999; 91
2003; 84
2009; 325
e_1_2_6_51_1
e_1_2_6_53_1
Hiederer R. (e_1_2_6_28_1) 2012
NCSS (e_1_2_6_32_1) 2012
CSIRO (e_1_2_6_13_1) 2001
FAO/ISRIC (e_1_2_6_22_1) 2003
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
FAO/IIASA/ISRIC/ISS‐CAS/JRC (e_1_2_6_21_1) 2012
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_60_1
FAO/UNEP/ISRIC/CIP (e_1_2_6_23_1) 1998
e_1_2_6_9_1
Reybold W. U. (e_1_2_6_40_1) 1989; 43
e_1_2_6_5_1
FAO (e_1_2_6_19_1) 1998
e_1_2_6_7_1
Millennium Ecosystem Assessment (e_1_2_6_30_1) 2005
e_1_2_6_24_1
e_1_2_6_3_1
cr-split#-e_1_2_6_10_1.1
cr-split#-e_1_2_6_10_1.2
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_31_1
CSIRO (e_1_2_6_12_1) 2001
CSIRO (e_1_2_6_14_1) 2001
Soil Survey Staff (e_1_2_6_49_1) 1999
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
Spaargaren O. C. (e_1_2_6_50_1) 1995
FAO (e_1_2_6_18_1) 1995
e_1_2_6_8_1
USDA‐NCSS (e_1_2_6_54_1) 2006
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Quattrochi D. A. (e_1_2_6_39_1) 2001
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
FAO/IIASA/ISRIC/ISS‐CAS/JRC (e_1_2_6_20_1) 2009
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– year: 2009
– volume: 155
  start-page: 344
  year: 2010
  end-page: 350
  article-title: Cross‐reference for relating Genetic Soil Classification of China with WRB at different scales
  publication-title: Geoderma
– year: 2008b
– volume: 171–172
  start-page: 85
  year: 2012
  end-page: 91
  article-title: A soil particle‐size distribution dataset for regional land and climate modelling in China
  publication-title: Geoderma
– volume: 14
  start-page: 869
  year: 2013
  end-page: 887
  article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling
  publication-title: J. Hydrometeorol.
– volume: 189
  start-page: 25
  year: 2005
  end-page: 48
  article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model
  publication-title: Ecol. Modell.
– year: 2005
– year: 2001a
– volume: 189–190
  start-page: 153
  year: 2012
  end-page: 163
  article-title: Equal‐area spline functions applied to a legacy soil database to create weighted‐means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
– start-page: 13
  year: 2001
  end-page: 34
– year: 2001c
– year: 2007
– year: 2003
– volume: 10
  start-page: 1717
  year: 2013
  end-page: 1736
  article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
  publication-title: Biogeosciences
– year: 2000
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines
  publication-title: Geoderma
– volume: 6
  start-page: 9891
  year: 2009
  end-page: 9944
  article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
  publication-title: Biogeosciences
– volume: 2
  start-page: 1
  year: 1998
  end-page: 26
  article-title: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling
  publication-title: Earth Interact.
– volume: 43
  start-page: 226
  year: 1989
  end-page: 229
  article-title: Soil geographic data bases
  publication-title: J. Soil Water Conserv.
– year: 1998
– year: 2010
– year: 2012
– volume: 45
  start-page: 129
  year: 2004
  end-page: 136
  article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system
  publication-title: Soil Surv. Horizons
– volume: 28
  start-page: 21
  issue: 1
  year: 2002
  end-page: 31
  article-title: A visual basic program for histogram and variogram scaling
  publication-title: Comput. and Geosci.
– volume: 5
  start-page: 119
  year: 1985
  end-page: 143
  article-title: A global archive of land cover and soils data for use in general circulation climate models
  publication-title: J. Climatol.
– volume: 325
  start-page: 680
  year: 2009
  end-page: 681
  article-title: Digital soil map of the world
  publication-title: Science
– year: 2008a
– volume: 36
  start-page: 3653
  year: 2000
  end-page: 3662
  article-title: Estimating soil water‐holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 212
  year: 2013
  end-page: 224
  article-title: A China dataset of soil properties for land surface modeling
  publication-title: J. Adv. Model. Earth Syst.
– year: 2002
– volume: 156
  start-page: 75
  issue: 3–4
  year: 2010
  end-page: 83
  article-title: A critical review of the conventional SOC to SOM conversion factor
  publication-title: Geoderma
– year: 2001b
– year: 2006
– start-page: 79
  year: 2012
– year: 2004
– start-page: 27
  year: 2009
– start-page: 33
  year: 1986
– volume: 25
  start-page: 4961
  year: 2004
  end-page: 4979
  article-title: Up‐scaling methods based on variability‐weighting and simulation for inferring spatial information across scales
  publication-title: J. Remote Sens.
– year: 1995
– volume: 7
  start-page: 97
  year: 1993
  end-page: 108
  article-title: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water‐holding capacities
  publication-title: Global Biogeochem. Cycles
– volume: 84
  start-page: 1013
  year: 2003
  end-page: 1023
  article-title: The common land model
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 257
  year: 2010
– volume: 50
  start-page: 1211
  issue: 4
  year: 2007
  end-page: 2150
  article-title: The soil and water assessment tool: Historical development, applications, and future research directions
  publication-title: Trans. ASABE
– volume: 187
  start-page: 27
  year: 2005
  end-page: 39
  article-title: Sensitivity of the SWAT model to the soil and land use data parameterisation: A case study in the Thyle catchment, Belgium
  publication-title: Ecol. Modell.
– year: 2013
– year: 1999
– volume-title: Soil Thickness for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping)
  year: 2001
  ident: e_1_2_6_13_1
  contributor:
    fullname: CSIRO
– ident: e_1_2_6_41_1
  doi: 10.1029/2000WR900130
– ident: e_1_2_6_38_1
  doi: 10.1016/j.geoderma.2010.02.003
– ident: e_1_2_6_31_1
  doi: 10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
– ident: e_1_2_6_29_1
– volume-title: Harmonized World Soil Database (version 1.1)
  year: 2009
  ident: e_1_2_6_20_1
  contributor:
    fullname: FAO/IIASA/ISRIC/ISS‐CAS/JRC
– ident: e_1_2_6_59_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
– volume-title: Harmonized World Soil Database (ver. 1.2)
  year: 2012
  ident: e_1_2_6_21_1
  contributor:
    fullname: FAO/IIASA/ISRIC/ISS‐CAS/JRC
– ident: e_1_2_6_37_1
  doi: 10.1016/S0098-3004(01)00011-5
– start-page: 13
  volume-title: Modelling Scale in Geographical Information System
  year: 2001
  ident: e_1_2_6_39_1
  contributor:
    fullname: Quattrochi D. A.
– volume-title: Soil Bulk Density for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping)
  year: 2001
  ident: e_1_2_6_12_1
  contributor:
    fullname: CSIRO
– volume-title: Digital General Soil Map of U.S
  year: 2006
  ident: e_1_2_6_54_1
  contributor:
    fullname: USDA‐NCSS
– ident: e_1_2_6_56_1
  doi: 10.5194/bgd-6-9891-2009
– ident: e_1_2_6_3_1
– volume: 43
  start-page: 226
  year: 1989
  ident: e_1_2_6_40_1
  article-title: Soil geographic data bases
  publication-title: J. Soil Water Conserv.
  contributor:
    fullname: Reybold W. U.
– ident: e_1_2_6_9_1
– ident: e_1_2_6_11_1
  doi: 10.1016/S0016-7061(99)00003-8
– ident: e_1_2_6_6_1
– ident: e_1_2_6_53_1
  doi: 10.5194/bg-10-1717-2013
– ident: #cr-split#-e_1_2_6_10_1.2
– ident: e_1_2_6_26_1
– ident: e_1_2_6_44_1
  doi: 10.1016/j.geoderma.2011.01.013
– volume-title: The Digitized Soil Map of the World Including Derived Soil Properties
  year: 1995
  ident: e_1_2_6_18_1
  contributor:
    fullname: FAO
– volume-title: Soil Sand, Silt and Clay Content for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping)
  year: 2001
  ident: e_1_2_6_14_1
  contributor:
    fullname: CSIRO
– ident: e_1_2_6_16_1
  doi: 10.1175/JHM-D-12-0149.1
– volume-title: Soil and Terrain Digital Database for Latin America and the Caribbean at 1:5 Million Scale
  year: 1998
  ident: e_1_2_6_23_1
  contributor:
    fullname: FAO/UNEP/ISRIC/CIP
– volume-title: Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys
  year: 1999
  ident: e_1_2_6_49_1
  contributor:
    fullname: Soil Survey Staff
– ident: e_1_2_6_51_1
– ident: e_1_2_6_48_1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.geoderma.2012.05.026
– ident: e_1_2_6_60_1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_43_1
  doi: 10.1126/science.1175084
– ident: e_1_2_6_58_1
  doi: 10.1002/joc.3370050202
– ident: e_1_2_6_52_1
  doi: 10.1016/j.ecolmodel.2005.04.008
– ident: e_1_2_6_17_1
– volume-title: Soil and Terrain Database for Southern Africa
  year: 2003
  ident: e_1_2_6_22_1
  contributor:
    fullname: FAO/ISRIC
– ident: e_1_2_6_25_1
– ident: e_1_2_6_33_1
– ident: #cr-split#-e_1_2_6_10_1.1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_55_1
  doi: 10.1080/01431160410001680428
– ident: e_1_2_6_47_1
  doi: 10.1016/j.geoderma.2009.12.017
– ident: e_1_2_6_8_1
– ident: e_1_2_6_57_1
  doi: 10.1029/92GB01822
– ident: e_1_2_6_45_1
  doi: 10.1002/jame.20026
– volume-title: Report on the Classification into FAO‐UNESCO Soil Units of Profiles Selected from the NRCS pedon Database for IGBP‐DIS, ISRIC
  year: 1995
  ident: e_1_2_6_50_1
  contributor:
    fullname: Spaargaren O. C.
– ident: e_1_2_6_24_1
  doi: 10.13031/2013.23637
– start-page: 79
  volume-title: Global Soil Organic Carbon Estimates and the Harmonized World Soil Database
  year: 2012
  ident: e_1_2_6_28_1
  contributor:
    fullname: Hiederer R.
– ident: e_1_2_6_35_1
– ident: e_1_2_6_46_1
  doi: 10.2136/sh2004.4.0129
– volume-title: World Reference Base for Soil Resources
  year: 1998
  ident: e_1_2_6_19_1
  contributor:
    fullname: FAO
– volume-title: Ecosystems and Human Well‐Being: A Framework for Assessment
  year: 2005
  ident: e_1_2_6_30_1
  contributor:
    fullname: Millennium Ecosystem Assessment
– volume-title: National Cooperative Soil Characterization Database
  year: 2012
  ident: e_1_2_6_32_1
  contributor:
    fullname: NCSS
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ecolmodel.2005.01.025
– ident: e_1_2_6_15_1
  doi: 10.1175/BAMS-84-8-1013
SSID ssj0066625
Score 2.537981
Snippet We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information,...
Abstract We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 249
SubjectTerms Biogeochemistry
Carbon
Classification
Clay
Data
Data analysis
Data processing
Datasets
Earth
earth system modeling
Ecosystems
global soil data set
legacy soil data
Mapping
Modelling
Nutrients
Organic carbon
Organic soils
Procedures
Quality control
Resolution
Size distribution
Soil density
soil linkage method
soil mapping
Soil maps
Soil properties
Spatial distribution
Taxonomy
SummonAdditionalLinks – databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIT4xWWUE9GZpsdjfpsZSWIlQELfQW9omFkkiT_n9nN-nDi-Axu1kCk5n5vsxuvkHo0cZSaMViiG8pQhprEoooUmFmVMoEt4pLr_b5xicz-jpn87bg5v6FafQhtgU3Fxk-X7sAF7Lq7URDAbmS6YeL6H5yiI6caIzTzif0fZOJgZn7pqvwnU5CQjlvD77Dkt7-6t-QtOOZ-2zVw834FJ20PBEPmhd7hg5McY6CKVDccuUr4fgZD5cL4Jv-6gJFA9yIe-CqXCyxO_mJK1NjIKUYvLn-wo1oM_a9bwCwLtFsPPocTsK2HUIoIHBoSKwxVghGjZCpihihShtribEAP0wmlidGCpqpWCidydhqlcWCKaIzk0V9mVyhTlEW5hphGJRCqr5RnFOuU6dqzzUTgkdWwlCAnjYWyb8b1Yu80Tcm-b7lAtTdmCtvfb_KCSAckCRK0wA9bKfBa91WhChMua5yYA2UJpDhWIBevJn_fE4OCDRyVVV687_bb9ExTNDm0FgXderV2twBi6jlvXeVHxz4vmc
  priority: 102
  providerName: Wiley-Blackwell
Title A global soil data set for earth system modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2013MS000293
https://www.proquest.com/docview/2299159447
https://search.proquest.com/docview/1524430885
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5svXgRnxitZQX1ZDDZ7G7Sk1SpiKAUH-At7BMLpamm_n9nN6mPS4_ZsCzMzuOb2eEbgFOXKmk0T9G-lYxZamgsk0THhdU5l8JpoQLb56O4e2X3b_ytLbjVbVvl0icGR20q7WvklxT9JoZexvKr-Ufsp0b519V2hEYH1ilmCkkX1q9Hj-OnpS9GbE552-6Opo-Zfpo9PHsvMMj-B6JfdPkXo4Ygc7sFmy06JMPmOrdhzc52IHpAYFt9hvo3OSc30wmizPC1C8mQNJQepK4mU-L7PUltFwShKEEdXryThqqZhIk3GKb24PV29HJzF7dDEGKJ5sJi6qx1UnJmpcp1winTxjpHrcOgw1XmRGaVZIVOpTaFSp3RRSq5pqawRTJQ2T50Z9XMHgDBRSWVHlgtBBMm91z2wnApReIULkVwtpRIOW-4LsqG1ZiWfyUXQW8prrLV-Lr8vZ8ITn5-o676Bwg5s9VXXSJWYCxDv8YjuAhiXnlOiXFn5Gup7HD1iUewgftY0xrWg-7i88seI1ZYqD50KBv3W7Xoh4z7G7hhv1w
link.rule.ids 315,783,787,867,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58HPQiPnF9RlBPLu4jSbcnqdJStS2iFnpb8sRC2a3d-v-d7G6tXjxuFhKYTOb7Mhm-Abi0oRRasRDPtxQ-DXXkiyBQfmJUgwluFZel2ueAd4f0acRGdcKtqMsqFzGxDNQ6Vy5Hfhth3ETopbRxN_30Xdco97pat9BYhXUnVYWXr_X79uDldRGLkZtHrC53x6OPN_0w7r-5KNCM_wLRkl3-5qglyHS2Yatmh6RVbecOrJhsF7w-Ett8Vua_yTV5mIyRZZZfexC0SCXpQYp8PCGu3pMUZk6QihL04fkHqaSaSdnxBmFqH4ad9vtD16-bIPgCjwv1I2uMFYJRI2RDBSyiShtrI2MRdJiMLY-NFDRRoVA6kaHVKgkFU5FOTBI0ZXwAa1memUMgOCiFVE2jOKdcN5yWPddMCB5YiUMeXC0skk4rrYu0UjWO0t-W8-BkYa609vgiXe6PBxc_v9FX3QOEyEz-VaTIFSiNMa4xD25KM_-7Toq403a5VHr0_4rnsNF97_fS3uPg-Rg2cQ5alYmdwNp89mVOkTfM5VntHN_zv8CK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oC-JFXDGuI6gng1lmJulJXFrq0lJcoLcwKxak0ab9_74kU60Xj5lABt68-b4vM4_vAZzaUAqtWIj7WwqfhjryRRAoPzUqYYJbxWXl9tnn3Tf6MGRDV_9UuLLKOSZWQK1zVZ6RX0aIm0i9lCaX1pVFDO46V59fftlBqrxpde00lqGZUB4HDWjetPuD5zkuo06PmCt9RxjAv_4w7r2UiNCK_5LSr9Jc1KsV4XTWYc0pRXJdL-0GLJnxJng9FLn5pDoLJ-fk9mOEirN62oLgmtT2HqTIRx-krP0khZkSlKUE83n6TmrbZlJ1v0HK2oa3Tvv1tuu7hgi-wK1D_cgaY4Vg1AiZqIBFVGljbWQsEhCTseWxkYKmKhRKpzK0WqWhYCrSqUmDlox3oDHOx2YXCA5KIVXLKM4p10npa881E4IHVuKQB2fziGSfte9FVjscR9li5Dw4mIcrc9lfZL9r5cHJz2vM2_IyQoxNPisy1A2UxohxzIOLKsz_zpMhB7XLc1W69_-Mx7CCeZE93fcf92EVP0HrirEDaEwnM3OIEmIqj1xufAPRkMS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+soil+data+set+for+earth+system+modeling&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Shangguan%2C+Wei&rft.au=Dai%2C+Yongjiu&rft.au=Duan%2C+Qingyun&rft.au=Liu%2C+Baoyuan&rft.date=2014-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1942-2466&rft.volume=6&rft.issue=1&rft.spage=249&rft.epage=263&rft_id=info:doi/10.1002%2F2013MS000293&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon