A global soil data set for earth system modeling
We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30...
Saved in:
Published in | Journal of advances in modeling earth systems Vol. 6; no. 1; pp. 249 - 263 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling.
Key Points
A global soil data set was developed for earth system modeling
Various data sources were harmonized using consistent processes
Examples of the data set were given show the vertical and horizontal variations |
---|---|
AbstractList | We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle-size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30 double prime 30 double prime horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area-weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points * A global soil data set was developed for earth system modeling * Various data sources were harmonized using consistent processes * Examples of the data set were given show the vertical and horizontal variations Abstract We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points A global soil data set was developed for earth system modeling Various data sources were harmonized using consistent processes Examples of the data set were given show the vertical and horizontal variations We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle-size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area-weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information, such as soil particle‐size distribution, organic carbon, and nutrients, and quality control information in terms of confidence level at 30″ × 30″ horizontal resolution and for eight vertical layers to a depth of 2.3 m. The GSDE is based on the Soil Map of the World and various regional and national soil databases, including soil attribute data and soil maps. We used a standardized data structure and data processing procedures to harmonize the data collected from various sources. We then used a soil type linkage method (i.e., taxotransfer rules) and a polygon linkage method to derive the spatial distribution of the soil properties. To aggregate the attributes of different compositions of a mapping unit, we used three mapping approaches: the area‐weighting method, the dominant soil type method, and the dominant binned soil attribute method. The data set can also be aggregated to a lower resolution. In this paper, we only show the vertical and horizontal variations of sand, silt and clay contents, bulk density, and soil organic carbon as examples of the GSDE. The GSDE estimates of global soil organic carbon stock to the depths of 2.3, 1, and 0.3 m are 1922.7, 1455.4, and 720.1 Gt, respectively. This newly developed data set provides more accurate soil information and represents a step forward to advance earth system modeling. Key Points A global soil data set was developed for earth system modeling Various data sources were harmonized using consistent processes Examples of the data set were given show the vertical and horizontal variations |
Author | Shangguan, Wei Dai, Yongjiu Yuan, Hua Duan, Qingyun Liu, Baoyuan |
Author_xml | – sequence: 1 givenname: Wei surname: Shangguan fullname: Shangguan, Wei organization: Beijing Normal University – sequence: 2 givenname: Yongjiu surname: Dai fullname: Dai, Yongjiu organization: Beijing Normal University – sequence: 3 givenname: Qingyun surname: Duan fullname: Duan, Qingyun organization: Beijing Normal University – sequence: 4 givenname: Baoyuan surname: Liu fullname: Liu, Baoyuan organization: Beijing Normal University – sequence: 5 givenname: Hua surname: Yuan fullname: Yuan, Hua organization: Beijing Normal University |
BookMark | eNp90DtPwzAUBWALFYm2sPEDLLEwELh-pclYVeWlVgzAbDnOdUnlxsVOhfrvCSpDxcB0z_Dp6OqMyKANLRJyyeCWAfA7DkwsX6GPpTghQ1ZKnnGZ54OjfEZGKa0B8jznakhgSlc-VMbTFBpPa9MZmrCjLkSKJnYfNO1Thxu6CTX6pl2dk1NnfMKL3zsm7_fzt9ljtnh5eJpNF5lRDGTGHaIzRkk01cSC4tLW6BxHxxlXlXC5wMrIwjJj66JirrYFM8ryusACykqMyfWhdxvD5w5TpzdNsui9aTHskmZ9pRRQFKqnV3_oOuxi23-nOS9LpkopJ726OSgbQ0oRnd7GZmPiXjPQP_Pp4_l6Lg78q_G4_9fq5-lyzgEmUnwDXvlxng |
CitedBy_id | crossref_primary_10_1038_s41561_023_01345_6 crossref_primary_10_1371_journal_pone_0226617 crossref_primary_10_1007_s10533_021_00759_x crossref_primary_10_1016_j_jclepro_2020_123308 crossref_primary_10_3390_land12030697 crossref_primary_10_3390_nitrogen3020023 crossref_primary_10_1016_j_agrformet_2024_110127 crossref_primary_10_5194_gmd_15_7835_2022 crossref_primary_10_1038_s41598_017_08066_y crossref_primary_10_1139_cjce_2021_0507 crossref_primary_10_5194_hess_26_3537_2022 crossref_primary_10_1029_2019JD030818 crossref_primary_10_3390_ijerph19169887 crossref_primary_10_1111_gcb_14994 crossref_primary_10_1007_s11430_022_1120_5 crossref_primary_10_1038_s41588_022_01184_y crossref_primary_10_1061_JHYEFF_HEENG_5833 crossref_primary_10_1029_2019MS001914 crossref_primary_10_1111_jfr3_12835 crossref_primary_10_1016_j_scitotenv_2017_09_136 crossref_primary_10_5194_essd_13_4263_2021 crossref_primary_10_3390_su10072418 crossref_primary_10_1016_j_jhydrol_2023_130425 crossref_primary_10_5194_hess_21_4825_2017 crossref_primary_10_1016_j_eja_2020_126032 crossref_primary_10_1088_1748_9326_ac2d67 crossref_primary_10_1016_j_geodrs_2020_e00306 crossref_primary_10_1111_nph_17686 crossref_primary_10_1016_j_pedsph_2023_06_005 crossref_primary_10_1002_ece3_6712 crossref_primary_10_1088_1755_1315_514_2_022029 crossref_primary_10_1016_j_jhydrol_2024_130700 crossref_primary_10_3390_agriculture13081514 crossref_primary_10_1007_s40333_022_0074_0 crossref_primary_10_1016_j_fcr_2017_06_011 crossref_primary_10_1029_2023MS004156 crossref_primary_10_5194_gmd_8_2893_2015 crossref_primary_10_5194_acp_23_6487_2023 crossref_primary_10_1021_acs_est_0c08004 crossref_primary_10_1111_gcb_15868 crossref_primary_10_1016_j_scitotenv_2017_08_112 crossref_primary_10_3389_fmars_2021_747083 crossref_primary_10_5194_hess_24_5745_2020 crossref_primary_10_1111_gcbb_12915 crossref_primary_10_1111_nph_16580 crossref_primary_10_5194_essd_16_2007_2024 crossref_primary_10_1016_j_scitotenv_2018_11_225 crossref_primary_10_1029_2022GB007680 crossref_primary_10_1029_2023MS004142 crossref_primary_10_1038_s41558_024_01957_9 crossref_primary_10_3390_land11060770 crossref_primary_10_1002_hyp_15036 crossref_primary_10_1080_14772000_2022_2128928 crossref_primary_10_5194_gmd_11_989_2018 crossref_primary_10_1002_2016WR019967 crossref_primary_10_1007_s11027_017_9752_1 crossref_primary_10_1016_j_scitotenv_2023_168464 crossref_primary_10_1016_j_jhydrol_2021_125960 crossref_primary_10_1016_j_jhydrol_2022_129020 crossref_primary_10_1016_j_scitotenv_2020_142506 crossref_primary_10_3390_f9010024 crossref_primary_10_1111_jbi_13768 crossref_primary_10_1002_advs_202004036 crossref_primary_10_1109_TGRS_2024_3361890 crossref_primary_10_1186_s13068_021_01896_z crossref_primary_10_1029_2023MS004048 crossref_primary_10_3389_fenvs_2023_1069451 crossref_primary_10_1360_SSTe_2022_0372 crossref_primary_10_5194_bg_16_2857_2019 crossref_primary_10_5194_gmd_14_1987_2021 crossref_primary_10_1016_j_agrformet_2022_108905 crossref_primary_10_1016_j_fecs_2024_100193 crossref_primary_10_1016_j_jhydrol_2017_03_055 crossref_primary_10_1016_j_rse_2023_113569 crossref_primary_10_1111_gcb_15832 crossref_primary_10_30970_gpc_2020_1_3207 crossref_primary_10_5194_gmd_14_4429_2021 crossref_primary_10_1111_ecog_02443 crossref_primary_10_1016_j_jhydrol_2024_130986 crossref_primary_10_1029_2020JG006100 crossref_primary_10_5194_gmd_13_1201_2020 crossref_primary_10_3389_fpls_2022_1030929 crossref_primary_10_1111_1365_2745_14250 crossref_primary_10_1029_2024GB008098 crossref_primary_10_1029_2020GL088819 crossref_primary_10_1002_2017GB005714 crossref_primary_10_1016_j_rse_2023_113557 crossref_primary_10_1007_s11430_021_9852_2 crossref_primary_10_5194_gmd_10_959_2017 crossref_primary_10_1111_1365_2745_13275 crossref_primary_10_1029_2020EF001574 crossref_primary_10_1038_srep19327 crossref_primary_10_1016_j_earscirev_2021_103673 crossref_primary_10_1029_2021MS002802 crossref_primary_10_1038_s41598_018_27604_w crossref_primary_10_1038_s43016_022_00549_0 crossref_primary_10_1029_2019MS002036 crossref_primary_10_1016_j_ejrh_2023_101612 crossref_primary_10_1002_qj_4499 crossref_primary_10_3375_043_041_0207 crossref_primary_10_1038_s41467_022_28748_0 crossref_primary_10_5334_jcaa_132 crossref_primary_10_1016_j_geoderma_2020_114451 crossref_primary_10_1007_s00376_017_6251_y crossref_primary_10_1029_2023WR034431 crossref_primary_10_1029_2021JG006304 crossref_primary_10_1016_j_scitotenv_2014_11_076 crossref_primary_10_1029_2018MS001329 crossref_primary_10_1109_JSTARS_2021_3136565 crossref_primary_10_5194_gmd_9_3817_2016 crossref_primary_10_1038_s43016_021_00400_y crossref_primary_10_3389_fevo_2023_1233936 crossref_primary_10_1016_j_jhydrol_2024_131542 crossref_primary_10_3389_fsufs_2020_519324 crossref_primary_10_1002_2015MS000526 crossref_primary_10_1029_2020MS002121 crossref_primary_10_1016_j_catena_2024_108218 crossref_primary_10_1016_j_scitotenv_2018_02_267 crossref_primary_10_1016_j_scitotenv_2020_138214 crossref_primary_10_1088_1748_9326_abcc8c crossref_primary_10_3390_agronomy8120291 crossref_primary_10_5194_soil_1_351_2015 crossref_primary_10_5194_gmd_15_6637_2022 crossref_primary_10_1016_j_oneear_2023_11_006 crossref_primary_10_1029_2023GL105375 crossref_primary_10_1016_j_ecolmodel_2016_03_014 crossref_primary_10_1016_j_actatropica_2023_106848 crossref_primary_10_1088_1748_9326_ac2527 crossref_primary_10_3390_rs10030427 crossref_primary_10_3390_rs15133401 crossref_primary_10_1111_gcb_17410 crossref_primary_10_1080_10920277_2019_1667830 crossref_primary_10_1016_j_flora_2017_09_014 crossref_primary_10_1109_TGRS_2021_3119667 crossref_primary_10_1016_j_jhydrol_2021_126110 crossref_primary_10_1029_2022EA002756 crossref_primary_10_1175_JHM_D_19_0035_1 crossref_primary_10_1038_s41598_024_64269_0 crossref_primary_10_2166_wst_2023_297 crossref_primary_10_3390_land11010126 crossref_primary_10_3389_fdata_2019_00051 crossref_primary_10_1002_hyp_15028 crossref_primary_10_1029_2020MS002221 crossref_primary_10_5194_hess_28_479_2024 crossref_primary_10_1016_j_envpol_2022_120715 crossref_primary_10_1002_2015JD023446 crossref_primary_10_1175_JHM_D_17_0241_1 crossref_primary_10_1029_2020GB006836 crossref_primary_10_1016_j_envres_2023_117987 crossref_primary_10_5194_gmd_11_2009_2018 crossref_primary_10_5194_hess_21_2301_2017 crossref_primary_10_5194_gmd_7_2683_2014 crossref_primary_10_3390_atmos8080141 crossref_primary_10_1029_2023MS003922 crossref_primary_10_1175_JHM_D_18_0133_1 crossref_primary_10_5194_hess_24_4463_2020 crossref_primary_10_1029_2021EA001845 crossref_primary_10_1029_2018MS001377 crossref_primary_10_1016_j_scitotenv_2021_146696 crossref_primary_10_1007_s11258_023_01391_5 crossref_primary_10_1016_j_jclepro_2023_140371 crossref_primary_10_1109_JSTARS_2023_3289649 crossref_primary_10_1088_1748_9326_abf526 crossref_primary_10_3389_fpls_2018_01444 crossref_primary_10_1111_gcb_16731 crossref_primary_10_1016_j_ecolind_2023_110704 crossref_primary_10_1038_s41467_023_44433_2 crossref_primary_10_1016_j_resconrec_2024_107780 crossref_primary_10_1029_2021WR031778 crossref_primary_10_1111_1365_2435_14558 crossref_primary_10_1016_j_compag_2022_107533 crossref_primary_10_1038_s41588_024_01761_3 crossref_primary_10_5194_essd_13_5831_2021 crossref_primary_10_1016_j_jcis_2022_03_095 crossref_primary_10_1155_2014_913852 crossref_primary_10_1002_ldr_2656 crossref_primary_10_1016_j_eja_2018_10_006 crossref_primary_10_1016_j_agrformet_2023_109565 crossref_primary_10_1016_j_scitotenv_2024_172280 crossref_primary_10_5194_gmd_10_2761_2017 crossref_primary_10_1016_j_compag_2018_07_027 crossref_primary_10_1007_s13762_021_03676_6 crossref_primary_10_1016_j_jhydrol_2023_130294 crossref_primary_10_1007_s10661_018_6845_6 crossref_primary_10_1029_2023GL105291 crossref_primary_10_5194_gmd_12_4443_2019 crossref_primary_10_1007_s11119_018_9608_z crossref_primary_10_5194_bg_15_4301_2018 crossref_primary_10_1029_2018GB005880 crossref_primary_10_5194_essd_15_2781_2023 crossref_primary_10_1016_j_aeolia_2015_07_009 crossref_primary_10_1111_gwat_13357 crossref_primary_10_1038_s41586_020_2128_9 crossref_primary_10_1002_2015JG003023 crossref_primary_10_1038_s41586_024_07491_0 crossref_primary_10_1029_2018MS001606 crossref_primary_10_1029_2020GB006585 crossref_primary_10_1016_j_geoderma_2022_116239 crossref_primary_10_1029_2018JD028554 crossref_primary_10_1111_geb_13796 crossref_primary_10_1007_s11119_018_9582_5 crossref_primary_10_1016_j_energy_2018_10_159 crossref_primary_10_1088_1748_9326_ac0f26 crossref_primary_10_3389_fpls_2023_1125019 crossref_primary_10_1038_s41467_022_28345_1 crossref_primary_10_5194_hess_28_2107_2024 crossref_primary_10_1016_j_ecolmodel_2019_03_008 crossref_primary_10_3390_atmos14010040 crossref_primary_10_1038_s41598_019_52923_x crossref_primary_10_1080_01431161_2015_1040131 crossref_primary_10_5194_acp_15_12845_2015 crossref_primary_10_5194_bg_15_4459_2018 crossref_primary_10_5194_hess_22_4959_2018 crossref_primary_10_5194_acp_15_11593_2015 crossref_primary_10_1029_2022JD038217 crossref_primary_10_3389_fpls_2023_1174697 crossref_primary_10_1016_j_jhydrol_2015_12_019 crossref_primary_10_1029_2020MS002403 crossref_primary_10_1029_2019GB006251 crossref_primary_10_1029_2022EF003215 crossref_primary_10_1016_j_agrformet_2017_11_034 crossref_primary_10_3389_fenrg_2023_1070186 crossref_primary_10_3390_land10050544 crossref_primary_10_1111_gcb_16132 crossref_primary_10_1038_s41598_018_28244_w crossref_primary_10_3390_agriculture14030379 crossref_primary_10_1016_j_agrformet_2023_109758 crossref_primary_10_1016_j_agrformet_2023_109634 crossref_primary_10_1016_j_fcr_2021_108098 crossref_primary_10_1088_1748_9326_ac953f crossref_primary_10_1016_j_jhydrol_2019_05_058 crossref_primary_10_1088_1748_9326_ac7b38 crossref_primary_10_1029_2020GB006688 crossref_primary_10_1088_1748_9326_aca5a2 crossref_primary_10_1007_s00704_022_04015_6 crossref_primary_10_1016_j_jclepro_2017_02_120 crossref_primary_10_1038_nclimate3061 crossref_primary_10_5194_hess_20_3859_2016 crossref_primary_10_1029_2021GB007061 crossref_primary_10_1002_2015JG003130 crossref_primary_10_1016_j_advwatres_2023_104604 crossref_primary_10_1016_j_geoderma_2018_08_013 crossref_primary_10_1007_s42860_023_00243_7 crossref_primary_10_1111_nph_19294 crossref_primary_10_1016_j_geoderma_2024_116908 crossref_primary_10_1029_2022WR033597 crossref_primary_10_1016_j_agwat_2020_106479 crossref_primary_10_3390_w11061214 crossref_primary_10_1016_j_accre_2022_10_003 crossref_primary_10_1111_gcb_16154 crossref_primary_10_1029_2021WR029638 crossref_primary_10_1002_hyp_14509 crossref_primary_10_1186_s13717_021_00356_8 crossref_primary_10_3390_agriculture13040781 crossref_primary_10_1016_j_scitotenv_2019_133755 crossref_primary_10_1016_j_agee_2016_12_024 crossref_primary_10_1016_j_soilbio_2023_109025 crossref_primary_10_1029_2019MS001784 crossref_primary_10_1016_j_jhydrol_2023_129936 crossref_primary_10_1016_j_jia_2022_08_054 crossref_primary_10_1007_s10340_023_01694_6 crossref_primary_10_1007_s10592_021_01396_5 crossref_primary_10_1016_j_jhydrol_2024_131068 crossref_primary_10_5194_acp_23_3629_2023 crossref_primary_10_1016_j_envsoft_2023_105769 crossref_primary_10_1016_j_catena_2017_12_040 crossref_primary_10_3390_rs12193241 crossref_primary_10_1029_2021MS002460 crossref_primary_10_1029_2020GB006774 crossref_primary_10_1029_2020MS002444 crossref_primary_10_1002_2015JD024558 crossref_primary_10_1016_j_jhydrol_2022_128855 crossref_primary_10_1175_JHM_D_21_0101_1 crossref_primary_10_1016_j_jhydrol_2019_124048 crossref_primary_10_1016_j_jhydrol_2022_127895 crossref_primary_10_1111_geb_13457 crossref_primary_10_1016_j_compag_2022_107494 crossref_primary_10_3389_feart_2022_1077791 crossref_primary_10_1029_2022JD038021 crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1016_j_geoderma_2020_114912 crossref_primary_10_1002_2017EF000768 crossref_primary_10_1002_ecm_1454 crossref_primary_10_1002_ird_2857 crossref_primary_10_1016_j_iswcr_2022_08_001 crossref_primary_10_1098_rspb_2019_0179 crossref_primary_10_1029_2021JD035753 crossref_primary_10_1080_02571862_2016_1141249 crossref_primary_10_1038_s41586_021_03306_8 crossref_primary_10_1016_j_jhydrol_2018_09_042 crossref_primary_10_1016_j_soilbio_2024_109318 crossref_primary_10_1007_s11629_021_7126_3 crossref_primary_10_1038_nature20139 crossref_primary_10_1016_j_jhydrol_2017_07_033 crossref_primary_10_1016_j_jhydrol_2015_03_019 crossref_primary_10_1016_j_jhydrol_2017_07_035 crossref_primary_10_5194_esd_13_1119_2022 crossref_primary_10_1111_nph_16702 crossref_primary_10_1038_s41598_022_25025_4 crossref_primary_10_1111_eva_13673 crossref_primary_10_1007_s00382_024_07133_1 crossref_primary_10_1175_JHM_D_15_0189_1 crossref_primary_10_5194_bg_19_4671_2022 crossref_primary_10_3390_jof9060607 crossref_primary_10_1038_s41477_024_01654_7 crossref_primary_10_5194_soil_5_137_2019 crossref_primary_10_1016_j_oneear_2024_01_021 crossref_primary_10_5194_soil_7_217_2021 crossref_primary_10_1016_j_jhydrol_2024_131099 crossref_primary_10_2136_vzj2015_02_0032 crossref_primary_10_1175_JHM_D_19_0060_1 crossref_primary_10_1007_s13593_023_00942_4 crossref_primary_10_1002_2016MS000827 crossref_primary_10_1002_2017WR020401 crossref_primary_10_1002_2017WR020642 crossref_primary_10_1029_2021JD036379 crossref_primary_10_3390_f9040172 crossref_primary_10_1016_j_jhydrol_2023_129604 crossref_primary_10_1016_j_scitotenv_2024_173903 crossref_primary_10_1016_j_ecolind_2023_110694 crossref_primary_10_1016_j_jhydrol_2022_128028 crossref_primary_10_1007_s11430_020_9821_0 crossref_primary_10_1016_j_eja_2021_126276 crossref_primary_10_5194_hess_24_655_2020 crossref_primary_10_3390_w11102012 crossref_primary_10_1175_JHM_D_21_0059_1 crossref_primary_10_1175_JHM_D_20_0298_1 crossref_primary_10_5194_acp_21_4319_2021 crossref_primary_10_1038_s41467_023_42932_w crossref_primary_10_1029_2022MS003241 crossref_primary_10_1016_j_catena_2023_107517 crossref_primary_10_1111_geb_13374 crossref_primary_10_1002_2014MS000330 crossref_primary_10_1111_geb_13251 crossref_primary_10_1111_geb_13372 crossref_primary_10_1016_j_jhydrol_2023_129820 crossref_primary_10_1080_03036758_2022_2108071 crossref_primary_10_1098_rstb_2015_0311 crossref_primary_10_1111_1365_2745_13997 crossref_primary_10_1016_j_rineng_2023_101647 crossref_primary_10_5194_essd_13_5591_2021 crossref_primary_10_1002_joc_6748 crossref_primary_10_1016_j_geoderma_2021_115153 crossref_primary_10_3390_land8010012 crossref_primary_10_1029_2023JD039420 crossref_primary_10_1038_nplants_2016_193 crossref_primary_10_3390_w13192777 crossref_primary_10_1360_N072022_0336 crossref_primary_10_1111_nph_15123 crossref_primary_10_1093_jme_tjx072 crossref_primary_10_3390_land11122309 crossref_primary_10_1029_2022JG006917 crossref_primary_10_5194_bg_20_1313_2023 crossref_primary_10_1038_s41467_023_38803_z crossref_primary_10_5194_hess_24_2141_2020 crossref_primary_10_2478_johh_2020_0038 crossref_primary_10_1029_2019MS001709 crossref_primary_10_3390_w15061019 crossref_primary_10_3390_rs15184534 crossref_primary_10_3390_w15030584 crossref_primary_10_1111_gcb_17038 crossref_primary_10_1016_j_envsoft_2019_05_012 crossref_primary_10_1016_j_rse_2022_113423 crossref_primary_10_1111_ejss_13086 crossref_primary_10_1111_nph_17771 crossref_primary_10_1016_j_scitotenv_2024_171412 crossref_primary_10_1175_JHM_D_14_0198_1 crossref_primary_10_1029_2021WR029901 crossref_primary_10_3390_rs14174401 crossref_primary_10_1029_2020JD034340 crossref_primary_10_1111_jbi_14589 crossref_primary_10_36074_grail_of_science_26_08_2022_69 crossref_primary_10_1029_2021MS002861 crossref_primary_10_36783_18069657rbcs20230130 crossref_primary_10_1029_2023JD040343 crossref_primary_10_1007_s00376_016_5226_8 crossref_primary_10_3390_agriculture13010176 crossref_primary_10_1155_2016_4323742 crossref_primary_10_1038_s41597_019_0228_x crossref_primary_10_1016_j_ejrh_2021_100943 crossref_primary_10_1029_2021JD035363 crossref_primary_10_1007_s11430_022_1180_8 crossref_primary_10_2166_wcc_2020_011 crossref_primary_10_3390_su15076175 crossref_primary_10_1016_j_ecolind_2016_12_014 crossref_primary_10_3390_land11040502 crossref_primary_10_1002_hyp_13952 crossref_primary_10_1007_s11367_016_1158_x crossref_primary_10_1007_s11769_019_1075_6 crossref_primary_10_1029_2019MS001723 crossref_primary_10_3390_rs15153834 crossref_primary_10_1007_s11629_014_3133_y crossref_primary_10_1016_j_scitotenv_2017_10_203 crossref_primary_10_1016_j_scitotenv_2022_159390 crossref_primary_10_1016_j_ejrh_2022_101088 crossref_primary_10_1016_j_scitotenv_2023_162984 crossref_primary_10_1109_JSTARS_2022_3166978 crossref_primary_10_1016_j_scitotenv_2017_07_082 crossref_primary_10_3389_feart_2020_556781 crossref_primary_10_5194_gmd_15_4881_2022 |
Cites_doi | 10.1029/2000WR900130 10.1016/j.geoderma.2010.02.003 10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2 10.1016/S0098-3004(01)00011-5 10.5194/bgd-6-9891-2009 10.1016/S0016-7061(99)00003-8 10.5194/bg-10-1717-2013 10.1016/j.geoderma.2011.01.013 10.1175/JHM-D-12-0149.1 10.1016/j.geoderma.2012.05.026 10.1126/science.1175084 10.1002/joc.3370050202 10.1016/j.ecolmodel.2005.04.008 10.1080/01431160410001680428 10.1016/j.geoderma.2009.12.017 10.1029/92GB01822 10.1002/jame.20026 10.13031/2013.23637 10.2136/sh2004.4.0129 10.1016/j.ecolmodel.2005.01.025 10.1175/BAMS-84-8-1013 |
ContentType | Journal Article |
Copyright | 2014. American Geophysical Union. All Rights Reserved. 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2014. American Geophysical Union. All Rights Reserved. – notice: 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TG ABUWG AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1002/2013MS000293 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1942-2466 |
EndPage | 263 |
ExternalDocumentID | 10_1002_2013MS000293 JAME20074 |
Genre | article |
GeographicLocations | Canada Australia United States--US China |
GeographicLocations_xml | – name: China – name: Canada – name: United States--US – name: Australia |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: Natural Science Foundation of China funderid: 41205037 ; 2010CB951802 |
GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAHHS AAZKR ABDBF ACCFJ ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ IAO IGS IPNFZ K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PIMPY PROAC RIG RNS TUS WIN ~OA AAYXX CITATION ITC 7TG ABUWG AZQEC DWQXO F1W H96 KL. L.G PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-a5104-2feefaa54eab7c0524cdeff2ef2125b3f63eba48c1acd8b1fdc81a5c2d8e809b3 |
IEDL.DBID | BENPR |
ISSN | 1942-2466 |
IngestDate | Sun May 12 04:22:11 EDT 2024 Thu Oct 10 18:40:35 EDT 2024 Thu Sep 26 16:48:17 EDT 2024 Sat Aug 24 01:05:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5104-2feefaa54eab7c0524cdeff2ef2125b3f63eba48c1acd8b1fdc81a5c2d8e809b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2299159447?pq-origsite=%requestingapplication% |
PQID | 2299159447 |
PQPubID | 616667 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1524430885 proquest_journals_2299159447 crossref_primary_10_1002_2013MS000293 wiley_primary_10_1002_2013MS000293_JAME20074 |
PublicationCentury | 2000 |
PublicationDate | March 2014 2014-03-00 20140301 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of advances in modeling earth systems |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1993; 7 1989; 43 2012 1985; 5 2011 2010 2008b 2008a 2004; 25 2004; 45 1998 2009 2007 2006 2001c 1995 2001b 2005 2004 2001a 2007; 50 2003 2002 2013; 5 1999 2002; 28 2012; 171–172 2013; 14 2001 2000; 36 2005; 187 2000 2013; 10 2005; 189 2012; 189–190 2010; 156 2010; 155 1986 1998; 2 2009; 6 2013 1999; 91 2003; 84 2009; 325 e_1_2_6_51_1 e_1_2_6_53_1 Hiederer R. (e_1_2_6_28_1) 2012 NCSS (e_1_2_6_32_1) 2012 CSIRO (e_1_2_6_13_1) 2001 FAO/ISRIC (e_1_2_6_22_1) 2003 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 FAO/IIASA/ISRIC/ISS‐CAS/JRC (e_1_2_6_21_1) 2012 e_1_2_6_43_1 e_1_2_6_41_1 e_1_2_6_60_1 FAO/UNEP/ISRIC/CIP (e_1_2_6_23_1) 1998 e_1_2_6_9_1 Reybold W. U. (e_1_2_6_40_1) 1989; 43 e_1_2_6_5_1 FAO (e_1_2_6_19_1) 1998 e_1_2_6_7_1 Millennium Ecosystem Assessment (e_1_2_6_30_1) 2005 e_1_2_6_24_1 e_1_2_6_3_1 cr-split#-e_1_2_6_10_1.1 cr-split#-e_1_2_6_10_1.2 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_31_1 CSIRO (e_1_2_6_12_1) 2001 CSIRO (e_1_2_6_14_1) 2001 Soil Survey Staff (e_1_2_6_49_1) 1999 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 Spaargaren O. C. (e_1_2_6_50_1) 1995 FAO (e_1_2_6_18_1) 1995 e_1_2_6_8_1 USDA‐NCSS (e_1_2_6_54_1) 2006 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Quattrochi D. A. (e_1_2_6_39_1) 2001 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 FAO/IIASA/ISRIC/ISS‐CAS/JRC (e_1_2_6_20_1) 2009 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2011 – year: 2009 – volume: 155 start-page: 344 year: 2010 end-page: 350 article-title: Cross‐reference for relating Genetic Soil Classification of China with WRB at different scales publication-title: Geoderma – year: 2008b – volume: 171–172 start-page: 85 year: 2012 end-page: 91 article-title: A soil particle‐size distribution dataset for regional land and climate modelling in China publication-title: Geoderma – volume: 14 start-page: 869 year: 2013 end-page: 887 article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: J. Hydrometeorol. – volume: 189 start-page: 25 year: 2005 end-page: 48 article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model publication-title: Ecol. Modell. – year: 2005 – year: 2001a – volume: 189–190 start-page: 153 year: 2012 end-page: 163 article-title: Equal‐area spline functions applied to a legacy soil database to create weighted‐means maps of soil organic carbon at a continental scale publication-title: Geoderma – start-page: 13 year: 2001 end-page: 34 – year: 2001c – year: 2007 – year: 2003 – volume: 10 start-page: 1717 year: 2013 end-page: 1736 article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations publication-title: Biogeosciences – year: 2000 – volume: 91 start-page: 27 year: 1999 end-page: 45 article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines publication-title: Geoderma – volume: 6 start-page: 9891 year: 2009 end-page: 9944 article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere publication-title: Biogeosciences – volume: 2 start-page: 1 year: 1998 end-page: 26 article-title: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling publication-title: Earth Interact. – volume: 43 start-page: 226 year: 1989 end-page: 229 article-title: Soil geographic data bases publication-title: J. Soil Water Conserv. – year: 1998 – year: 2010 – year: 2012 – volume: 45 start-page: 129 year: 2004 end-page: 136 article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system publication-title: Soil Surv. Horizons – volume: 28 start-page: 21 issue: 1 year: 2002 end-page: 31 article-title: A visual basic program for histogram and variogram scaling publication-title: Comput. and Geosci. – volume: 5 start-page: 119 year: 1985 end-page: 143 article-title: A global archive of land cover and soils data for use in general circulation climate models publication-title: J. Climatol. – volume: 325 start-page: 680 year: 2009 end-page: 681 article-title: Digital soil map of the world publication-title: Science – year: 2008a – volume: 36 start-page: 3653 year: 2000 end-page: 3662 article-title: Estimating soil water‐holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions publication-title: Water Resour. Res. – volume: 5 start-page: 212 year: 2013 end-page: 224 article-title: A China dataset of soil properties for land surface modeling publication-title: J. Adv. Model. Earth Syst. – year: 2002 – volume: 156 start-page: 75 issue: 3–4 year: 2010 end-page: 83 article-title: A critical review of the conventional SOC to SOM conversion factor publication-title: Geoderma – year: 2001b – year: 2006 – start-page: 79 year: 2012 – year: 2004 – start-page: 27 year: 2009 – start-page: 33 year: 1986 – volume: 25 start-page: 4961 year: 2004 end-page: 4979 article-title: Up‐scaling methods based on variability‐weighting and simulation for inferring spatial information across scales publication-title: J. Remote Sens. – year: 1995 – volume: 7 start-page: 97 year: 1993 end-page: 108 article-title: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water‐holding capacities publication-title: Global Biogeochem. Cycles – volume: 84 start-page: 1013 year: 2003 end-page: 1023 article-title: The common land model publication-title: Bull. Am. Meteorol. Soc. – start-page: 257 year: 2010 – volume: 50 start-page: 1211 issue: 4 year: 2007 end-page: 2150 article-title: The soil and water assessment tool: Historical development, applications, and future research directions publication-title: Trans. ASABE – volume: 187 start-page: 27 year: 2005 end-page: 39 article-title: Sensitivity of the SWAT model to the soil and land use data parameterisation: A case study in the Thyle catchment, Belgium publication-title: Ecol. Modell. – year: 2013 – year: 1999 – volume-title: Soil Thickness for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping) year: 2001 ident: e_1_2_6_13_1 contributor: fullname: CSIRO – ident: e_1_2_6_41_1 doi: 10.1029/2000WR900130 – ident: e_1_2_6_38_1 doi: 10.1016/j.geoderma.2010.02.003 – ident: e_1_2_6_31_1 doi: 10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2 – ident: e_1_2_6_29_1 – volume-title: Harmonized World Soil Database (version 1.1) year: 2009 ident: e_1_2_6_20_1 contributor: fullname: FAO/IIASA/ISRIC/ISS‐CAS/JRC – ident: e_1_2_6_59_1 – ident: e_1_2_6_36_1 – ident: e_1_2_6_4_1 – volume-title: Harmonized World Soil Database (ver. 1.2) year: 2012 ident: e_1_2_6_21_1 contributor: fullname: FAO/IIASA/ISRIC/ISS‐CAS/JRC – ident: e_1_2_6_37_1 doi: 10.1016/S0098-3004(01)00011-5 – start-page: 13 volume-title: Modelling Scale in Geographical Information System year: 2001 ident: e_1_2_6_39_1 contributor: fullname: Quattrochi D. A. – volume-title: Soil Bulk Density for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping) year: 2001 ident: e_1_2_6_12_1 contributor: fullname: CSIRO – volume-title: Digital General Soil Map of U.S year: 2006 ident: e_1_2_6_54_1 contributor: fullname: USDA‐NCSS – ident: e_1_2_6_56_1 doi: 10.5194/bgd-6-9891-2009 – ident: e_1_2_6_3_1 – volume: 43 start-page: 226 year: 1989 ident: e_1_2_6_40_1 article-title: Soil geographic data bases publication-title: J. Soil Water Conserv. contributor: fullname: Reybold W. U. – ident: e_1_2_6_9_1 – ident: e_1_2_6_11_1 doi: 10.1016/S0016-7061(99)00003-8 – ident: e_1_2_6_6_1 – ident: e_1_2_6_53_1 doi: 10.5194/bg-10-1717-2013 – ident: #cr-split#-e_1_2_6_10_1.2 – ident: e_1_2_6_26_1 – ident: e_1_2_6_44_1 doi: 10.1016/j.geoderma.2011.01.013 – volume-title: The Digitized Soil Map of the World Including Derived Soil Properties year: 1995 ident: e_1_2_6_18_1 contributor: fullname: FAO – volume-title: Soil Sand, Silt and Clay Content for Australian Areas of Intensive Agriculture of Layer 1 and 2 (Derived from Soil Mapping) year: 2001 ident: e_1_2_6_14_1 contributor: fullname: CSIRO – ident: e_1_2_6_16_1 doi: 10.1175/JHM-D-12-0149.1 – volume-title: Soil and Terrain Digital Database for Latin America and the Caribbean at 1:5 Million Scale year: 1998 ident: e_1_2_6_23_1 contributor: fullname: FAO/UNEP/ISRIC/CIP – volume-title: Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys year: 1999 ident: e_1_2_6_49_1 contributor: fullname: Soil Survey Staff – ident: e_1_2_6_51_1 – ident: e_1_2_6_48_1 – ident: e_1_2_6_34_1 doi: 10.1016/j.geoderma.2012.05.026 – ident: e_1_2_6_60_1 – ident: e_1_2_6_7_1 – ident: e_1_2_6_43_1 doi: 10.1126/science.1175084 – ident: e_1_2_6_58_1 doi: 10.1002/joc.3370050202 – ident: e_1_2_6_52_1 doi: 10.1016/j.ecolmodel.2005.04.008 – ident: e_1_2_6_17_1 – volume-title: Soil and Terrain Database for Southern Africa year: 2003 ident: e_1_2_6_22_1 contributor: fullname: FAO/ISRIC – ident: e_1_2_6_25_1 – ident: e_1_2_6_33_1 – ident: #cr-split#-e_1_2_6_10_1.1 – ident: e_1_2_6_5_1 – ident: e_1_2_6_2_1 – ident: e_1_2_6_27_1 – ident: e_1_2_6_55_1 doi: 10.1080/01431160410001680428 – ident: e_1_2_6_47_1 doi: 10.1016/j.geoderma.2009.12.017 – ident: e_1_2_6_8_1 – ident: e_1_2_6_57_1 doi: 10.1029/92GB01822 – ident: e_1_2_6_45_1 doi: 10.1002/jame.20026 – volume-title: Report on the Classification into FAO‐UNESCO Soil Units of Profiles Selected from the NRCS pedon Database for IGBP‐DIS, ISRIC year: 1995 ident: e_1_2_6_50_1 contributor: fullname: Spaargaren O. C. – ident: e_1_2_6_24_1 doi: 10.13031/2013.23637 – start-page: 79 volume-title: Global Soil Organic Carbon Estimates and the Harmonized World Soil Database year: 2012 ident: e_1_2_6_28_1 contributor: fullname: Hiederer R. – ident: e_1_2_6_35_1 – ident: e_1_2_6_46_1 doi: 10.2136/sh2004.4.0129 – volume-title: World Reference Base for Soil Resources year: 1998 ident: e_1_2_6_19_1 contributor: fullname: FAO – volume-title: Ecosystems and Human Well‐Being: A Framework for Assessment year: 2005 ident: e_1_2_6_30_1 contributor: fullname: Millennium Ecosystem Assessment – volume-title: National Cooperative Soil Characterization Database year: 2012 ident: e_1_2_6_32_1 contributor: fullname: NCSS – ident: e_1_2_6_42_1 doi: 10.1016/j.ecolmodel.2005.01.025 – ident: e_1_2_6_15_1 doi: 10.1175/BAMS-84-8-1013 |
SSID | ssj0066625 |
Score | 2.537981 |
Snippet | We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil information,... Abstract We developed a comprehensive, gridded Global Soil Dataset for use in Earth System Models (GSDE) and other applications. The GSDE provides soil... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 249 |
SubjectTerms | Biogeochemistry Carbon Classification Clay Data Data analysis Data processing Datasets Earth earth system modeling Ecosystems global soil data set legacy soil data Mapping Modelling Nutrients Organic carbon Organic soils Procedures Quality control Resolution Size distribution Soil density soil linkage method soil mapping Soil maps Soil properties Spatial distribution Taxonomy |
SummonAdditionalLinks | – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIT4xWWUE9GZpsdjfpsZSWIlQELfQW9omFkkiT_n9nN-nDi-Axu1kCk5n5vsxuvkHo0cZSaMViiG8pQhprEoooUmFmVMoEt4pLr_b5xicz-jpn87bg5v6FafQhtgU3Fxk-X7sAF7Lq7URDAbmS6YeL6H5yiI6caIzTzif0fZOJgZn7pqvwnU5CQjlvD77Dkt7-6t-QtOOZ-2zVw834FJ20PBEPmhd7hg5McY6CKVDccuUr4fgZD5cL4Jv-6gJFA9yIe-CqXCyxO_mJK1NjIKUYvLn-wo1oM_a9bwCwLtFsPPocTsK2HUIoIHBoSKwxVghGjZCpihihShtribEAP0wmlidGCpqpWCidydhqlcWCKaIzk0V9mVyhTlEW5hphGJRCqr5RnFOuU6dqzzUTgkdWwlCAnjYWyb8b1Yu80Tcm-b7lAtTdmCtvfb_KCSAckCRK0wA9bKfBa91WhChMua5yYA2UJpDhWIBevJn_fE4OCDRyVVV687_bb9ExTNDm0FgXderV2twBi6jlvXeVHxz4vmc priority: 102 providerName: Wiley-Blackwell |
Title | A global soil data set for earth system modeling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2013MS000293 https://www.proquest.com/docview/2299159447 https://search.proquest.com/docview/1524430885 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5svXgRnxitZQX1ZDDZ7G7Sk1SpiKAUH-At7BMLpamm_n9nN6mPS4_ZsCzMzuOb2eEbgFOXKmk0T9G-lYxZamgsk0THhdU5l8JpoQLb56O4e2X3b_ytLbjVbVvl0icGR20q7WvklxT9JoZexvKr-Ufsp0b519V2hEYH1ilmCkkX1q9Hj-OnpS9GbE552-6Opo-Zfpo9PHsvMMj-B6JfdPkXo4Ygc7sFmy06JMPmOrdhzc52IHpAYFt9hvo3OSc30wmizPC1C8mQNJQepK4mU-L7PUltFwShKEEdXryThqqZhIk3GKb24PV29HJzF7dDEGKJ5sJi6qx1UnJmpcp1winTxjpHrcOgw1XmRGaVZIVOpTaFSp3RRSq5pqawRTJQ2T50Z9XMHgDBRSWVHlgtBBMm91z2wnApReIULkVwtpRIOW-4LsqG1ZiWfyUXQW8prrLV-Lr8vZ8ITn5-o676Bwg5s9VXXSJWYCxDv8YjuAhiXnlOiXFn5Gup7HD1iUewgftY0xrWg-7i88seI1ZYqD50KBv3W7Xoh4z7G7hhv1w |
link.rule.ids | 315,783,787,867,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58HPQiPnF9RlBPLu4jSbcnqdJStS2iFnpb8sRC2a3d-v-d7G6tXjxuFhKYTOb7Mhm-Abi0oRRasRDPtxQ-DXXkiyBQfmJUgwluFZel2ueAd4f0acRGdcKtqMsqFzGxDNQ6Vy5Hfhth3ETopbRxN_30Xdco97pat9BYhXUnVYWXr_X79uDldRGLkZtHrC53x6OPN_0w7r-5KNCM_wLRkl3-5qglyHS2Yatmh6RVbecOrJhsF7w-Ett8Vua_yTV5mIyRZZZfexC0SCXpQYp8PCGu3pMUZk6QihL04fkHqaSaSdnxBmFqH4ad9vtD16-bIPgCjwv1I2uMFYJRI2RDBSyiShtrI2MRdJiMLY-NFDRRoVA6kaHVKgkFU5FOTBI0ZXwAa1memUMgOCiFVE2jOKdcN5yWPddMCB5YiUMeXC0skk4rrYu0UjWO0t-W8-BkYa609vgiXe6PBxc_v9FX3QOEyEz-VaTIFSiNMa4xD25KM_-7Toq403a5VHr0_4rnsNF97_fS3uPg-Rg2cQ5alYmdwNp89mVOkTfM5VntHN_zv8CK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oC-JFXDGuI6gng1lmJulJXFrq0lJcoLcwKxak0ab9_74kU60Xj5lABt68-b4vM4_vAZzaUAqtWIj7WwqfhjryRRAoPzUqYYJbxWXl9tnn3Tf6MGRDV_9UuLLKOSZWQK1zVZ6RX0aIm0i9lCaX1pVFDO46V59fftlBqrxpde00lqGZUB4HDWjetPuD5zkuo06PmCt9RxjAv_4w7r2UiNCK_5LSr9Jc1KsV4XTWYc0pRXJdL-0GLJnxJng9FLn5pDoLJ-fk9mOEirN62oLgmtT2HqTIRx-krP0khZkSlKUE83n6TmrbZlJ1v0HK2oa3Tvv1tuu7hgi-wK1D_cgaY4Vg1AiZqIBFVGljbWQsEhCTseWxkYKmKhRKpzK0WqWhYCrSqUmDlox3oDHOx2YXCA5KIVXLKM4p10npa881E4IHVuKQB2fziGSfte9FVjscR9li5Dw4mIcrc9lfZL9r5cHJz2vM2_IyQoxNPisy1A2UxohxzIOLKsz_zpMhB7XLc1W69_-Mx7CCeZE93fcf92EVP0HrirEDaEwnM3OIEmIqj1xufAPRkMS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+soil+data+set+for+earth+system+modeling&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Shangguan%2C+Wei&rft.au=Dai%2C+Yongjiu&rft.au=Duan%2C+Qingyun&rft.au=Liu%2C+Baoyuan&rft.date=2014-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1942-2466&rft.volume=6&rft.issue=1&rft.spage=249&rft.epage=263&rft_id=info:doi/10.1002%2F2013MS000293&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |