Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality

We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the color...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Yoshida, Nobuo
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.10.2012
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1009.2136

Cover

Loading…
Abstract We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case \(p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})\), where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.
AbstractList We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case \(p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})\), where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.
Annals of Applied Probability 2012, Vol. 22, No. 3, 1215-1242 We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case $p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})$, where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.
Author Yoshida, Nobuo
Author_xml – sequence: 1
  givenname: Nobuo
  surname: Yoshida
  fullname: Yoshida, Nobuo
BackLink https://doi.org/10.48550/arXiv.1009.2136$$DView paper in arXiv
https://doi.org/10.1214/11-AAP794$$DView published paper (Access to full text may be restricted)
BookMark eNotkMFPwjAUxhujiYjcPZkmnoev7bp13gxRNCHxAPeldG9QmC10G4H_3gKevnx5v7z88j2QW-cdEvLEYJwqKeFVh6M9jBlAMeZMZDdkwIVgiUo5vyejtt0AAM9yLqUYkGbeebPWbWcNbdeoA-3W1mzRWbeiddPbqn2j8y74WI13BwwrdAapryOIdKobDFvrqN7tgj_aX91ZH5urLmd0kT9R3Pe6sd3pkdzVumlx9J9Dsvj8WEy-ktnP9HvyPku0ZJAoXoCQkAmJgmORA4dc66pGqAuhWWXydAlFlhepZmppYtRLpRUYLUEKVosheb6-vSxR7kLUCqfyvEh5XiQCL1cgOu97bLty4_vgolLJQWVcZpCD-AO_5mab
ContentType Paper
Journal Article
Copyright 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1009.2136
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1009_2136
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a510-8290350635e32e970207aadfe0f93a1dc74b096794a18bc94afb8a80ca50531f3
IEDL.DBID BENPR
IngestDate Wed Jul 23 00:00:17 EDT 2025
Mon Jun 30 09:31:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a510-8290350635e32e970207aadfe0f93a1dc74b096794a18bc94afb8a80ca50531f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
IMS-AAP-AAP794
OpenAccessLink https://www.proquest.com/docview/2086256070?pq-origsite=%requestingapplication%
PQID 2086256070
PQPubID 2050157
ParticipantIDs arxiv_primary_1009_2136
proquest_journals_2086256070
PublicationCentury 2000
PublicationDate 20121008
PublicationDateYYYYMMDD 2012-10-08
PublicationDate_xml – month: 10
  year: 2012
  text: 20121008
  day: 08
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2012
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4943584
SecondaryResourceType preprint
Snippet We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a...
Annals of Applied Probability 2012, Vol. 22, No. 3, 1215-1242 We consider a stochastic partial differential equation (SPDE) which describes the velocity field...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Fluid dynamics
Fluid flow
Galerkin method
Incompressible flow
Mathematical analysis
Mathematics - Probability
Newtonian fluids
Non Newtonian fluids
Partial differential equations
Polynomials
Shear thickening (liquids)
Tensors
Thickening
Velocity distribution
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDI7GTlwQiNdgQA5cg9qkWRpuCLFNSMBhQ9qtStoEJqYO7YHGv8dOOi6IUyXXvTh17Dj-PhNyDXLnRC6ZT7xmmZU5MyqpGO8p77FHx2sEJz8994av2eNETlrkaouFMYvN9CvyA1ucOZLoG56K3g7Z4Rw7tgYvk3jZGJi4GvVfNcgwg-TPxhqiRX-f7DVpHr2L63JAWq4-JLPRal6-G2RGpkucJE2x2fzDYWmC-tl6Wi1v6Qhr0280dIMHYKSjcw-Kjg5gL8fKNg084JtpBB1SU1fhtQsoPuoiTPL7iIz7D-P7IWumHTADfsHwQlNISBikE9xpBWmcMqbyDmwoTFqVKrNw3AD3MWluS3h4m5s8wZEG4EdeHJN2Pa_dKaGl1RKJoXyalRijtHdCy0SAvBJeqQ45CVYqPiOhBfIW6wLt1yHdrd2K5l9eFhxPPZAYqeTs3w_PyS5kEjw2x3VJe7VYuwuI1it7GdbsB-I6lsY
  priority: 102
  providerName: Cornell University
Title Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality
URI https://www.proquest.com/docview/2086256070
https://arxiv.org/abs/1009.2136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5uRfDN307nyIOv0bZp18YXQdkmwuZwE_ZW0jbR4Wjnusl88W_3Lu30QfClpUmhcGnuLnfffUfIBYwrxUOfaVsL5sV-yGRgp8xtB1ojRkcLLE7uD9r3z97DxJ9UAbeiglVudKJR1GmeYIwcDunge4N5Duyb-TvDrlGYXa1aaNSIBSo49OvEuu0Mhk8_URb4JPjMvMxPGvKuK7lYTz8QHCAuXQeZmS0z8kcXGwPT3SXWUM7VYo9sqWyfbBtcZlIckNlomSevEsmUaYHNpyni098URjOonq2maXFNRxjOfqEGQG5qKRXNNbyoaA_UPwbDqaEOX0_LOkUqs9RMK1P4R1VZWfl5SMbdzvjunlUNEpiErcQwB8p98DF8xV0lAvD8AilTrUDsXDppEngxnFBgx0knjBO46TiUoY1dEGDraX5E6lmeqRNCk1j4yCWlHS9Bsya04sK3OYynXAdBgxwbKUXzkgMDqY5FhPJrkOZGblH1-xfR72Kd_j99RnbAA3FLUF2T1JeLlToHK7-MW6QWdnutakHhqfc4gWv_q_MNeAmsWQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGJgQ33oxnDnAsdE27NkiIAzAGGwhpQ-JWpW0CE1M71g3Gj-I_YqcbHJC4caqUVFXruLFjf_4McIDjSvHAs7StheVGXmBJ304sp-5rTRgdLag4-fau3nxwbx69xxJ8zmphCFY52xPNRp1kMcXI8ZCOvjeaZ98-G7xa1DWKsquzFhqFWrTUxzse2fLT6wtc30PHaVx2z5vWtKuAJVH_LEoccg8Ns6e4o4SP7pIvZaIVviuXtST23QjdelRTWQuiGC86CmRgU-sA1FfN8bFzUHE5F0TVHzSuvkM6-H3ooPMiGWqYwo7lcNJ7IySCOHJqRANdMSO_Nn5jzRpLULmXAzVchpJKV2DegEDjfBX6nVEWP0tibmY5dbpmBIZ_URQ6Ybo_7iX5CetQ7PyJGbS6KdxULNN4o2JXaGso8s4MT_mkVxRFMpkmZlqZKkOmijLOjzXo_ofc1qGcZqnaBBZHwiPiKl1zY7KhQisuPJvjeMK171dhw0gpHBSEG8SrLEKSXxV2ZnILp_9aHv5oxtbf0_uw0OzetsP29V1rGxbR9XEKNN8OlEfDsdpF92IU7ZlFZRD-sxJ9AcBc4qs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+shear+thickening+fluids%3A+Strong+convergence+of+the+Galerkin+approximation+and+the+energy+equality&rft.jtitle=arXiv.org&rft.au=Yoshida%2C+Nobuo&rft.date=2012-10-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1009.2136