Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality
We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the color...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
08.10.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1009.2136 |
Cover
Loading…
Abstract | We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case \(p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})\), where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field. |
---|---|
AbstractList | We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case \(p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})\), where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field. Annals of Applied Probability 2012, Vol. 22, No. 3, 1215-1242 We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here, the extra stress tensor of the fluid is given by a polynomial of degree p-1 of the rate of strain tensor, while the colored noise is considered as a random force. We focus on the shear thickening case, more precisely, on the case $p\in [1+{\frac{d}{2}},{\frac{2d}{d-2}})$, where d is the dimension of the space. We prove that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field. |
Author | Yoshida, Nobuo |
Author_xml | – sequence: 1 givenname: Nobuo surname: Yoshida fullname: Yoshida, Nobuo |
BackLink | https://doi.org/10.48550/arXiv.1009.2136$$DView paper in arXiv https://doi.org/10.1214/11-AAP794$$DView published paper (Access to full text may be restricted) |
BookMark | eNotkMFPwjAUxhujiYjcPZkmnoev7bp13gxRNCHxAPeldG9QmC10G4H_3gKevnx5v7z88j2QW-cdEvLEYJwqKeFVh6M9jBlAMeZMZDdkwIVgiUo5vyejtt0AAM9yLqUYkGbeebPWbWcNbdeoA-3W1mzRWbeiddPbqn2j8y74WI13BwwrdAapryOIdKobDFvrqN7tgj_aX91ZH5urLmd0kT9R3Pe6sd3pkdzVumlx9J9Dsvj8WEy-ktnP9HvyPku0ZJAoXoCQkAmJgmORA4dc66pGqAuhWWXydAlFlhepZmppYtRLpRUYLUEKVosheb6-vSxR7kLUCqfyvEh5XiQCL1cgOu97bLty4_vgolLJQWVcZpCD-AO_5mab |
ContentType | Paper Journal Article |
Copyright | 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1009.2136 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1009_2136 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a510-8290350635e32e970207aadfe0f93a1dc74b096794a18bc94afb8a80ca50531f3 |
IEDL.DBID | BENPR |
IngestDate | Wed Jul 23 00:00:17 EDT 2025 Mon Jun 30 09:31:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a510-8290350635e32e970207aadfe0f93a1dc74b096794a18bc94afb8a80ca50531f3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 IMS-AAP-AAP794 |
OpenAccessLink | https://www.proquest.com/docview/2086256070?pq-origsite=%requestingapplication% |
PQID | 2086256070 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1009_2136 proquest_journals_2086256070 |
PublicationCentury | 2000 |
PublicationDate | 20121008 |
PublicationDateYYYYMMDD | 2012-10-08 |
PublicationDate_xml | – month: 10 year: 2012 text: 20121008 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2012 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.4943584 |
SecondaryResourceType | preprint |
Snippet | We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a... Annals of Applied Probability 2012, Vol. 22, No. 3, 1215-1242 We consider a stochastic partial differential equation (SPDE) which describes the velocity field... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Fluid dynamics Fluid flow Galerkin method Incompressible flow Mathematical analysis Mathematics - Probability Newtonian fluids Non Newtonian fluids Partial differential equations Polynomials Shear thickening (liquids) Tensors Thickening Velocity distribution |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDI7GTlwQiNdgQA5cg9qkWRpuCLFNSMBhQ9qtStoEJqYO7YHGv8dOOi6IUyXXvTh17Dj-PhNyDXLnRC6ZT7xmmZU5MyqpGO8p77FHx2sEJz8994av2eNETlrkaouFMYvN9CvyA1ucOZLoG56K3g7Z4Rw7tgYvk3jZGJi4GvVfNcgwg-TPxhqiRX-f7DVpHr2L63JAWq4-JLPRal6-G2RGpkucJE2x2fzDYWmC-tl6Wi1v6Qhr0280dIMHYKSjcw-Kjg5gL8fKNg084JtpBB1SU1fhtQsoPuoiTPL7iIz7D-P7IWumHTADfsHwQlNISBikE9xpBWmcMqbyDmwoTFqVKrNw3AD3MWluS3h4m5s8wZEG4EdeHJN2Pa_dKaGl1RKJoXyalRijtHdCy0SAvBJeqQ45CVYqPiOhBfIW6wLt1yHdrd2K5l9eFhxPPZAYqeTs3w_PyS5kEjw2x3VJe7VYuwuI1it7GdbsB-I6lsY priority: 102 providerName: Cornell University |
Title | Stochastic shear thickening fluids: Strong convergence of the Galerkin approximation and the energy equality |
URI | https://www.proquest.com/docview/2086256070 https://arxiv.org/abs/1009.2136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5uRfDN307nyIOv0bZp18YXQdkmwuZwE_ZW0jbR4Wjnusl88W_3Lu30QfClpUmhcGnuLnfffUfIBYwrxUOfaVsL5sV-yGRgp8xtB1ojRkcLLE7uD9r3z97DxJ9UAbeiglVudKJR1GmeYIwcDunge4N5Duyb-TvDrlGYXa1aaNSIBSo49OvEuu0Mhk8_URb4JPjMvMxPGvKuK7lYTz8QHCAuXQeZmS0z8kcXGwPT3SXWUM7VYo9sqWyfbBtcZlIckNlomSevEsmUaYHNpyni098URjOonq2maXFNRxjOfqEGQG5qKRXNNbyoaA_UPwbDqaEOX0_LOkUqs9RMK1P4R1VZWfl5SMbdzvjunlUNEpiErcQwB8p98DF8xV0lAvD8AilTrUDsXDppEngxnFBgx0knjBO46TiUoY1dEGDraX5E6lmeqRNCk1j4yCWlHS9Bsya04sK3OYynXAdBgxwbKUXzkgMDqY5FhPJrkOZGblH1-xfR72Kd_j99RnbAA3FLUF2T1JeLlToHK7-MW6QWdnutakHhqfc4gWv_q_MNeAmsWQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGJgQ33oxnDnAsdE27NkiIAzAGGwhpQ-JWpW0CE1M71g3Gj-I_YqcbHJC4caqUVFXruLFjf_4McIDjSvHAs7StheVGXmBJ304sp-5rTRgdLag4-fau3nxwbx69xxJ8zmphCFY52xPNRp1kMcXI8ZCOvjeaZ98-G7xa1DWKsquzFhqFWrTUxzse2fLT6wtc30PHaVx2z5vWtKuAJVH_LEoccg8Ns6e4o4SP7pIvZaIVviuXtST23QjdelRTWQuiGC86CmRgU-sA1FfN8bFzUHE5F0TVHzSuvkM6-H3ooPMiGWqYwo7lcNJ7IySCOHJqRANdMSO_Nn5jzRpLULmXAzVchpJKV2DegEDjfBX6nVEWP0tibmY5dbpmBIZ_URQ6Ybo_7iX5CetQ7PyJGbS6KdxULNN4o2JXaGso8s4MT_mkVxRFMpkmZlqZKkOmijLOjzXo_ofc1qGcZqnaBBZHwiPiKl1zY7KhQisuPJvjeMK171dhw0gpHBSEG8SrLEKSXxV2ZnILp_9aHv5oxtbf0_uw0OzetsP29V1rGxbR9XEKNN8OlEfDsdpF92IU7ZlFZRD-sxJ9AcBc4qs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+shear+thickening+fluids%3A+Strong+convergence+of+the+Galerkin+approximation+and+the+energy+equality&rft.jtitle=arXiv.org&rft.au=Yoshida%2C+Nobuo&rft.date=2012-10-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1009.2136 |