Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysi...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ding, Edwin, Tang, A Y S, Chow, K W, Malomed, Boris A
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 20.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
AbstractList We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
Author Malomed, Boris A
Chow, K W
Ding, Edwin
Tang, A Y S
Author_xml – sequence: 1
  givenname: Edwin
  surname: Ding
  fullname: Ding, Edwin
– sequence: 2
  givenname: A
  surname: Tang
  middlename: Y S
  fullname: Tang, A Y S
– sequence: 3
  givenname: K
  surname: Chow
  middlename: W
  fullname: Chow, K W
– sequence: 4
  givenname: Boris
  surname: Malomed
  middlename: A
  fullname: Malomed, Boris A
BackLink https://doi.org/10.1098/rsta.2014.0018$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1404.5056$$DView paper in arXiv
BookMark eNotj01Lw0AQhhdRsNbePUnAc-Lsx2TToxStQqEeeg-TzVa3pLs1m1r7791aTwMzD_O-zw279MFbxu44FKpChEfqf9x3wRWoAgHLCzYSUvK8UkJcs0mMGwAQpRaIcsSW785722bb0NqYOZ8Nh5C3bmt9dMFTl3UhxmPW0TA4k4iDGz7TzqTLByWcfJulAp3zlno3HG_Z1Zq6aCf_c8xWL8-r2Wu-WM7fZk-LnJBDzu1aQKUbNJKrBjXXWsuyIRC6MVBh1YAENCiRpJRtSYYqo61quDKiVSDH7P789k-23vVuS_2xPknXJ-kEPJyBXR--9jYO9Sbs-yQU65QspoByCvIXgU9bOw
ContentType Paper
Journal Article
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
DOI 10.48550/arxiv.1404.5056
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Nonlinear Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1404_5056
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
ID FETCH-LOGICAL-a510-1ef2087b5c314b57177736ba027bc0858b0305c535a333d6aca8c7e4b14c2d403
IEDL.DBID GOX
IngestDate Tue Jul 22 23:19:21 EDT 2025
Mon Jun 30 09:31:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a510-1ef2087b5c314b57177736ba027bc0858b0305c535a333d6aca8c7e4b14c2d403
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1404.5056
PQID 2082905390
PQPubID 2050157
ParticipantIDs arxiv_primary_1404_5056
proquest_journals_2082905390
PublicationCentury 2000
PublicationDate 20140420
2014-04-20
PublicationDateYYYYMMDD 2014-04-20
PublicationDate_xml – month: 04
  year: 2014
  text: 20140420
  day: 20
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5344852
SecondaryResourceType preprint
Snippet We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes...
We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bistability
Computer simulation
Defocusing
Eigenvalues
Embedded systems
Lattice vibration
Lattices (mathematics)
Nonlinearity
Physics - Optics
Physics - Pattern Formation and Solitons
Solitary waves
Stability analysis
Waveguides
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60RfDmbrXKHLymJpkl6UlQWopgLVKhtzBbpFDS2sTt3_veJNWD4DUDCfNm8taP7yPkSoSqHzuhA54oF3DHwA8aE-Gk0FrLbaR9a-BhLEfP_H4mZk3DrWxglRuf6B21XRrskUORjiM_ASX6zeo1QNUonK42EhrbpA0uOE1bpH07GE-efrossUwgZ2b1fNKTd12r9ef8vYesMj2M_pCU-id_fLEPMMM90p6olVvvky1XHJAdj8s05SF5nKA2lqUoWFPSeUGrj2VgkZG_ZtOgCwhyX3ShKgSxlRTbqtTHJ_oCNT9VhaVFzYahUKbuiEyHg-ndKGg0EAIlEDfhcth4ooVhEdcCaq8kYVIrKCa1gWwp1fjDGsGEYoxZqYxKTeK4jriJLQ_ZMWnBV9wpocqlUSJ1HmrX5zJN-k6qPJfS5hJeG7MOOfGGyFY1zUWGJsrQRB3S3Zgma254mf2ex9n_y-dkF5IMj3aJwy5pVes3dwGBvNKXzWl9AwXUnfY
  priority: 102
  providerName: ProQuest
Title Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity
URI https://www.proquest.com/docview/2082905390
https://arxiv.org/abs/1404.5056
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3JTsMwEB215cIFgdgKJfjANZB4S3IE1EVIXYSK1FvkLahSVVATtgvfju2kXBAXHywv0oztN2OP3wBcsUhk2DAZ0kSYkBpiz0GlYvdSqLWmOpb-amA84aMn-rBgixZcbv_CiM3n8r3mB5bljeN-uXYY3YY2xi5iazhd1I-Nnomraf7bzFqYvubPwerRYrAPe42Zh25rvRxAy6wPYTpzia40ctlnSrRco-rjJdSOXr-mxkAri1hfaCUqF5FWIndHijzYoGfrwCPr9KN1TW0hXM65I5gP-vP7UdgkNAgFc0EQpsBRmkimSEwls45UkhAuhfUMpbKmTyrd7lOMMEEI0VwokarEUBlThTWNyDF07CzmFJAwaZxwWUTSZJSnSWa4KArOdcHtsJh04cQLIn-tOStyJ6LciagLva1o8ma5ljl2P2ztdsyis387nsOuNRZ81AqOetCpNm_mwgJyJQNop4NhADt3_cnsMfBKsuX4u_8DoqqPOQ
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB2FIAQdN-HcAkpD7D2cFIgCCAl3ESQ6ay8jJJSEOBD4KP6RmTWBAomO1rbG0uzuzJtj3wDsyrpuJl6aSKTaR8JztIPWxlQpdM4JF5uQGri6Vu07cX4v7yvwMbkLQ22VE5sYDLXrW8qRY5BOJT-JIfrR4DmiqVFUXZ2M0Ci3xYV_H2PIVhx2TnB995Kkddo9bkdfUwUiLakTwecoKjXS8lgYidFMmnJlNIZnxiL-aBg6AlZyqTnnTmmrGzb1wsTCJk7UOYqdgmnB0ZHTxfTW2XdKJ1EpAnReFkMDU9iBHr49vu4Thc0-QQ1EwOHJL8MfvFlrHqZv9cAPF6Die4swE5pAbbEEN7c0iMsxmo5TsMceG437kSP6_5K6gz2hR31nT3pEHXMFoxwuC86QPWj8XPcc65XUG5pm4i1D9z9UswJV_ItfA6Z9I06VyevGN4VqpE2vdJ4r5XKFYhNeg9WgiGxQcmpkpKKMVFSDzYlqsq_jVGQ_i7_-9-sdmG13ry6zy871xQbMIboJbTZJfROqo-GL30IEMTLbYd0YZP-8Tz4BXVHW4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pinned+modes+in+two-dimensional+lossy+lattices+with+local+gain+and+nonlinearity&rft.jtitle=arXiv.org&rft.au=Ding%2C+Edwin&rft.au=Tang%2C+A+Y+S&rft.au=Chow%2C+K+W&rft.au=Malomed%2C+Boris+A&rft.date=2014-04-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1404.5056