Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation

Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize orga...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 10; pp. 5868 - 5875
Main Authors Zhang, Tao, Chen, Yin, Wang, Yuru, Le Roux, Julien, Yang, Yang, Croué, Jean-Philippe
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 20.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.
AbstractList Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.
Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.
Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 ...M) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. (ProQuest: ... denotes formulae/symbols omitted.)
Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 mu M) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.
Author Le Roux, Julien
Chen, Yin
Yang, Yang
Croué, Jean-Philippe
Zhang, Tao
Wang, Yuru
AuthorAffiliation Advanced Nanofabrication Imaging and Characterization Lab
Solar and Photovoltaics Engineering Center
Water Desalination and Reuse Center
King Abdullah University of Science and Technology
AuthorAffiliation_xml – name: King Abdullah University of Science and Technology
– name: Advanced Nanofabrication Imaging and Characterization Lab
– name: Water Desalination and Reuse Center
– name: Solar and Photovoltaics Engineering Center
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Yin
  surname: Chen
  fullname: Chen, Yin
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Yuru
  surname: Wang
  fullname: Wang, Yuru
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Julien
  surname: Le Roux
  fullname: Le Roux, Julien
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Jean-Philippe
  surname: Croué
  fullname: Croué, Jean-Philippe
  email: jp.croue@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512966$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24779765$$D View this record in MEDLINE/PubMed
https://enpc.hal.science/hal-01211451$$DView record in HAL
BookMark eNqN0ltrFDEUB_AgFbutPvgFZEAEfRib-2Qel9qLsOhSFX0bYuakpsxO2iSzuN--me50KyroUyD55fY_5wDt9b4HhJ4T_JZgSo4gCkwoUfYRmhFBcSmUIHtohjFhZc3kt310EOMVxpgyrJ6gfcqrqq6kmKH1ibXOOOhTsYTgf25aF4fO6gTF3CS31sn5vlgGbyDG4oNPxQV0G9dfFnn60yQvdOuM7ooz6CFsd1gfiq95LRRL33VD0vmCd3AZdHu3_hQ9trqL8GwaD9GX05PPx-fl4uPZ--P5otQCq1Ra2VZAaq4MVkzIylSgJdWY1lzWDERLsLC6xlTVjGqOOVe4FZYQ4AIka9kherM994fumuvgVjpsGq9dcz5fNOPcmBvhgqxJtq-39jr4mwFialYuGug63YMfYkPH_IjgnP-TEiFz9Jxx9R-UyopRqVimL3-jV34Ifc4nK0apxFSOd7-Y1PB9Be3uV_c1zeDVBHTMVbFB98bFB5d7g9ZSZne0dSb4GAPYxrh0V50UtOsagpuxu5pddz2kudtxf-jf7PQKbeIv__jD3QJqp9dw
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_jhazmat_2019_121209
crossref_primary_10_1016_j_watres_2017_03_035
crossref_primary_10_1016_j_cej_2019_122768
crossref_primary_10_1016_j_cej_2024_150214
crossref_primary_10_1016_j_scitotenv_2023_168679
crossref_primary_10_1007_s11356_016_7015_4
crossref_primary_10_1007_s11356_023_25504_9
crossref_primary_10_1016_j_arabjc_2021_103463
crossref_primary_10_1016_j_jece_2021_106178
crossref_primary_10_2139_ssrn_4154290
crossref_primary_10_1016_j_colsurfa_2024_136088
crossref_primary_10_1016_j_heliyon_2021_e07451
crossref_primary_10_1016_j_apcatb_2024_123997
crossref_primary_10_1016_j_scitotenv_2020_144743
crossref_primary_10_1016_j_jcis_2023_08_091
crossref_primary_10_1016_j_jcis_2022_05_045
crossref_primary_10_1016_j_cej_2021_129902
crossref_primary_10_1016_j_jclepro_2020_124645
crossref_primary_10_1021_acsestwater_3c00319
crossref_primary_10_2166_wrd_2021_102
crossref_primary_10_1016_j_cej_2016_10_138
crossref_primary_10_1016_j_jhazmat_2018_06_048
crossref_primary_10_1039_D3EW00009E
crossref_primary_10_1039_D3NJ04129H
crossref_primary_10_1021_acs_est_7b05543
crossref_primary_10_1016_j_ijhydene_2024_11_310
crossref_primary_10_1016_j_jcis_2021_04_095
crossref_primary_10_1016_j_jece_2022_107654
crossref_primary_10_2166_wst_2021_177
crossref_primary_10_3390_ma12060968
crossref_primary_10_1007_s40974_022_00250_9
crossref_primary_10_1016_j_apcatb_2018_11_058
crossref_primary_10_1016_j_cej_2022_134546
crossref_primary_10_1016_j_cclet_2023_108903
crossref_primary_10_1016_j_scitotenv_2020_142794
crossref_primary_10_1016_j_scitotenv_2019_134379
crossref_primary_10_1016_j_cej_2019_123987
crossref_primary_10_1016_j_chemosphere_2018_02_110
crossref_primary_10_1016_j_jhazmat_2023_132417
crossref_primary_10_1016_j_chemosphere_2018_02_113
crossref_primary_10_1016_j_scitotenv_2023_166121
crossref_primary_10_1016_j_seppur_2016_04_051
crossref_primary_10_1016_j_cej_2016_01_007
crossref_primary_10_1016_j_cej_2021_128703
crossref_primary_10_1016_j_scitotenv_2018_03_342
crossref_primary_10_1021_acs_est_1c06721
crossref_primary_10_1016_j_cej_2020_126127
crossref_primary_10_1016_j_jhazmat_2019_121105
crossref_primary_10_1016_j_cclet_2020_06_040
crossref_primary_10_1007_s11270_023_06770_2
crossref_primary_10_1016_j_apcatb_2020_119146
crossref_primary_10_1007_s11356_024_33404_9
crossref_primary_10_1016_j_envres_2020_110496
crossref_primary_10_1016_j_apcatb_2024_124749
crossref_primary_10_1016_j_seppur_2021_119260
crossref_primary_10_1007_s11356_022_21347_y
crossref_primary_10_1016_j_cej_2019_123726
crossref_primary_10_1016_j_seppur_2022_120671
crossref_primary_10_1016_j_cej_2019_123724
crossref_primary_10_1080_10934529_2024_2313931
crossref_primary_10_1039_D1TA02237G
crossref_primary_10_1016_j_coche_2022_100870
crossref_primary_10_1016_j_jelechem_2015_12_045
crossref_primary_10_3390_molecules26195748
crossref_primary_10_1016_j_watres_2017_10_018
crossref_primary_10_1016_j_jhazmat_2022_129172
crossref_primary_10_1016_j_cej_2021_134385
crossref_primary_10_1016_j_chemosphere_2019_04_149
crossref_primary_10_1016_j_seppur_2020_116935
crossref_primary_10_1016_j_cej_2021_134026
crossref_primary_10_1016_j_jhazmat_2023_132751
crossref_primary_10_1007_s11783_024_1894_2
crossref_primary_10_1016_j_chemosphere_2023_137970
crossref_primary_10_1021_acssuschemeng_6b03035
crossref_primary_10_1016_j_cej_2020_126232
crossref_primary_10_1016_j_apcatb_2024_124850
crossref_primary_10_1016_j_chemosphere_2017_08_169
crossref_primary_10_1016_j_seppur_2022_121432
crossref_primary_10_1016_j_cossms_2021_100921
crossref_primary_10_1016_j_jhazmat_2019_121767
crossref_primary_10_1021_acsestengg_4c00666
crossref_primary_10_1021_acsestengg_3c00294
crossref_primary_10_1016_j_apcatb_2019_117806
crossref_primary_10_1016_j_jwpe_2023_104354
crossref_primary_10_3390_app112110447
crossref_primary_10_1016_j_watres_2016_07_004
crossref_primary_10_1016_j_seppur_2023_125195
crossref_primary_10_1016_j_jcis_2020_10_021
crossref_primary_10_1016_j_cattod_2020_01_047
crossref_primary_10_1016_j_cej_2022_136755
crossref_primary_10_1016_j_chemosphere_2022_137120
crossref_primary_10_1021_acs_est_1c03758
crossref_primary_10_1039_D1EW00731A
crossref_primary_10_1007_s11356_021_12545_1
crossref_primary_10_1016_j_seppur_2024_127931
crossref_primary_10_1016_j_seppur_2024_126841
crossref_primary_10_1016_j_cej_2024_149782
crossref_primary_10_1021_acs_est_9b04696
crossref_primary_10_1016_j_cej_2017_11_164
crossref_primary_10_1016_j_jhazmat_2019_121518
crossref_primary_10_2139_ssrn_3994601
crossref_primary_10_1016_j_cej_2020_128312
crossref_primary_10_1039_D0EN00050G
crossref_primary_10_1021_cs5017613
crossref_primary_10_1039_D4SC02462A
crossref_primary_10_1016_j_mssp_2023_107414
crossref_primary_10_1002_smtd_202300588
crossref_primary_10_1016_j_jece_2024_113852
crossref_primary_10_1016_j_apsusc_2024_162007
crossref_primary_10_1039_C6RA12706A
crossref_primary_10_1016_j_watres_2020_116777
crossref_primary_10_1016_j_jwpe_2020_101403
crossref_primary_10_1016_j_seppur_2023_126058
crossref_primary_10_1016_j_apcatb_2019_04_094
crossref_primary_10_1016_j_cclet_2024_110000
crossref_primary_10_1016_j_jhazmat_2019_121995
crossref_primary_10_1039_C7RA09949E
crossref_primary_10_1039_C7TA08472B
crossref_primary_10_1016_j_cej_2017_11_174
crossref_primary_10_1016_j_cej_2019_122828
crossref_primary_10_1002_smll_202203269
crossref_primary_10_1016_j_seppur_2021_120288
crossref_primary_10_1016_j_jhazmat_2019_121789
crossref_primary_10_3390_c9040107
crossref_primary_10_1016_j_cej_2018_12_139
crossref_primary_10_1016_j_chemosphere_2020_129394
crossref_primary_10_1016_j_synthmet_2020_116479
crossref_primary_10_1016_j_jhazmat_2020_122808
crossref_primary_10_1016_j_apcatb_2021_120460
crossref_primary_10_1016_j_apcatb_2022_122285
crossref_primary_10_1016_j_jcis_2020_10_120
crossref_primary_10_1016_j_carbon_2019_06_107
crossref_primary_10_1016_j_cej_2017_04_018
crossref_primary_10_1039_C9EN01250H
crossref_primary_10_1016_j_apcatb_2018_03_088
crossref_primary_10_1016_j_chemosphere_2018_04_173
crossref_primary_10_1016_j_apcatb_2024_124941
crossref_primary_10_1016_j_cej_2020_126158
crossref_primary_10_1016_j_jwpe_2023_104440
crossref_primary_10_1016_j_cej_2019_122837
crossref_primary_10_1016_j_mcat_2021_111430
crossref_primary_10_1016_j_colsurfa_2022_128731
crossref_primary_10_1016_j_jece_2024_113517
crossref_primary_10_1016_j_apcatb_2018_02_059
crossref_primary_10_1016_j_colsurfa_2020_124904
crossref_primary_10_1016_j_jclepro_2020_123572
crossref_primary_10_1016_j_jece_2024_113634
crossref_primary_10_1039_D1DT02367E
crossref_primary_10_1039_D0GC00717J
crossref_primary_10_1016_j_cej_2016_04_096
crossref_primary_10_1021_acsami_1c15061
crossref_primary_10_1016_j_apcatb_2021_120593
crossref_primary_10_1016_j_cej_2022_138605
crossref_primary_10_1016_j_watres_2021_116856
crossref_primary_10_1016_j_cej_2018_12_036
crossref_primary_10_1016_j_cej_2022_139810
crossref_primary_10_1016_j_scitotenv_2019_07_043
crossref_primary_10_1039_D0EN00848F
crossref_primary_10_1016_j_carbon_2016_06_016
crossref_primary_10_1016_j_jece_2022_107712
crossref_primary_10_1007_s11356_023_26347_0
crossref_primary_10_1016_j_cej_2020_127242
crossref_primary_10_1016_j_ceja_2021_100201
crossref_primary_10_1016_j_envres_2021_112529
crossref_primary_10_1016_j_scitotenv_2019_05_098
crossref_primary_10_1039_D3EN00729D
crossref_primary_10_54097_ajst_v7i2_11773
crossref_primary_10_1016_j_colsurfa_2022_128627
crossref_primary_10_1016_j_cej_2021_131256
crossref_primary_10_1007_s11783_024_1912_4
crossref_primary_10_1016_j_cej_2020_125538
crossref_primary_10_1021_acs_est_5b02705
crossref_primary_10_1016_j_seppur_2021_119318
crossref_primary_10_1016_j_apcatb_2019_118549
crossref_primary_10_2166_wpt_2024_184
crossref_primary_10_1016_j_jhazmat_2022_130580
crossref_primary_10_1016_j_apcatb_2018_03_106
crossref_primary_10_1073_pnas_2003362117
crossref_primary_10_1016_j_apcatb_2017_11_071
crossref_primary_10_1016_j_jhazmat_2017_05_007
crossref_primary_10_1016_j_seppur_2021_120305
crossref_primary_10_1016_j_seppur_2016_02_051
crossref_primary_10_1016_j_apcatb_2016_01_059
crossref_primary_10_1021_acssuschemeng_1c01781
crossref_primary_10_1007_s10661_022_09964_z
crossref_primary_10_1016_j_jhazmat_2021_125810
crossref_primary_10_1016_j_ijbiomac_2022_12_220
crossref_primary_10_1021_acsami_8b07637
crossref_primary_10_1039_C7TA07942G
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_jece_2019_103450
crossref_primary_10_1007_s11783_025_1928_4
crossref_primary_10_1016_j_jclepro_2022_133995
crossref_primary_10_1021_acssuschemeng_8b05257
crossref_primary_10_1016_j_apcatb_2023_122558
crossref_primary_10_1016_j_seppur_2024_128770
crossref_primary_10_1007_s11783_021_1457_8
crossref_primary_10_1016_j_jclepro_2022_130480
crossref_primary_10_1016_j_jhazmat_2022_129357
crossref_primary_10_1016_j_jhazmat_2023_131842
crossref_primary_10_1002_adfm_202111565
crossref_primary_10_1016_j_apcatb_2022_122136
crossref_primary_10_1016_j_cej_2021_129188
crossref_primary_10_1016_j_cej_2020_127972
crossref_primary_10_1016_j_cej_2020_127619
crossref_primary_10_1016_j_cej_2020_127738
crossref_primary_10_1016_j_cej_2022_139048
crossref_primary_10_1039_C8TA07915C
crossref_primary_10_1016_j_jes_2023_05_021
crossref_primary_10_1016_j_memsci_2018_10_078
crossref_primary_10_1021_acs_est_0c08531
crossref_primary_10_1016_j_efmat_2022_12_001
crossref_primary_10_1039_D4NJ04685D
crossref_primary_10_3390_molecules27207064
crossref_primary_10_1088_2053_1591_ab664f
crossref_primary_10_1016_j_cej_2021_133588
crossref_primary_10_1016_j_jece_2021_105145
crossref_primary_10_1016_j_jece_2022_108210
crossref_primary_10_1016_j_seppur_2017_04_045
crossref_primary_10_1021_acs_est_5b00623
crossref_primary_10_1016_j_scitotenv_2022_158532
crossref_primary_10_1016_j_apcatb_2025_125038
crossref_primary_10_1016_j_jenvman_2023_118418
crossref_primary_10_2166_aqua_2018_096
crossref_primary_10_1016_j_cej_2014_12_065
crossref_primary_10_3390_coatings15030346
crossref_primary_10_1021_acs_est_2c04312
crossref_primary_10_1021_acs_est_9b03067
crossref_primary_10_1016_j_cej_2018_05_177
crossref_primary_10_1016_j_apcatb_2016_01_036
crossref_primary_10_1016_j_cej_2020_127842
crossref_primary_10_1016_j_jece_2024_112184
crossref_primary_10_1016_j_cej_2020_125425
crossref_primary_10_1016_j_cej_2020_124456
crossref_primary_10_1016_j_cej_2023_143339
crossref_primary_10_1016_j_watres_2018_06_038
crossref_primary_10_1016_j_cej_2020_126758
crossref_primary_10_1016_j_envadv_2023_100341
crossref_primary_10_1016_j_chemosphere_2019_125066
crossref_primary_10_1016_j_cej_2024_152212
crossref_primary_10_1016_j_jece_2022_107595
crossref_primary_10_1007_s11356_019_06390_6
crossref_primary_10_1016_j_apsusc_2019_143577
crossref_primary_10_1016_j_carbon_2017_01_058
crossref_primary_10_1016_j_scitotenv_2021_150768
crossref_primary_10_1021_acs_chemrev_1c00527
crossref_primary_10_1039_D1NJ02307A
crossref_primary_10_1007_s11814_018_0074_0
crossref_primary_10_1016_j_jhazmat_2018_08_028
crossref_primary_10_1021_acs_est_8b00959
crossref_primary_10_1016_j_cej_2020_125458
crossref_primary_10_1021_acscatal_1c03099
crossref_primary_10_1016_j_jes_2021_10_030
crossref_primary_10_1016_j_scitotenv_2021_149833
crossref_primary_10_1038_s41565_018_0216_x
crossref_primary_10_1007_s11356_019_06899_w
crossref_primary_10_1016_j_jhazmat_2021_127082
crossref_primary_10_1016_j_jclepro_2022_134519
crossref_primary_10_1016_j_cej_2021_133004
crossref_primary_10_1080_09593330_2020_1782994
crossref_primary_10_1016_j_cej_2025_161675
crossref_primary_10_1016_j_seppur_2022_121716
crossref_primary_10_1016_j_seppur_2022_121717
crossref_primary_10_1080_17480272_2022_2095670
crossref_primary_10_1016_j_cej_2017_03_047
crossref_primary_10_1021_acs_est_6b02841
crossref_primary_10_1016_j_cej_2023_145973
crossref_primary_10_1016_j_jece_2017_11_014
crossref_primary_10_1016_j_jwpe_2024_106423
crossref_primary_10_1016_j_molcata_2015_10_036
crossref_primary_10_1016_j_chemosphere_2021_129629
crossref_primary_10_1016_j_cej_2023_144765
crossref_primary_10_1016_j_matchemphys_2022_126257
crossref_primary_10_1016_j_jwpe_2024_106307
crossref_primary_10_1007_s40831_023_00758_2
crossref_primary_10_2166_wst_2021_369
crossref_primary_10_1016_j_jcis_2020_11_106
crossref_primary_10_1016_j_jece_2021_106267
crossref_primary_10_1016_j_cej_2021_132387
crossref_primary_10_1016_j_jhazmat_2016_10_013
crossref_primary_10_1016_j_apcatb_2023_123606
crossref_primary_10_1016_j_watres_2017_02_016
crossref_primary_10_1016_j_jhazmat_2021_128044
crossref_primary_10_1007_s11814_024_00108_2
crossref_primary_10_1016_j_jhazmat_2022_130536
crossref_primary_10_1016_j_seppur_2022_122912
crossref_primary_10_1016_j_xcrp_2021_100550
crossref_primary_10_1016_j_cej_2020_125356
crossref_primary_10_1016_j_seppur_2021_119697
crossref_primary_10_1016_j_jhazmat_2017_11_023
crossref_primary_10_1039_C9EN00500E
crossref_primary_10_1016_j_jhazmat_2020_123742
crossref_primary_10_1007_s40843_024_2979_6
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1039_C9GC01843C
crossref_primary_10_1002_ange_202207268
crossref_primary_10_1021_acs_est_6b00632
crossref_primary_10_1016_j_chemosphere_2021_130949
crossref_primary_10_1016_j_jhazmat_2016_10_020
crossref_primary_10_1039_C5CC05101K
crossref_primary_10_2139_ssrn_4114269
crossref_primary_10_1016_j_watres_2016_02_045
crossref_primary_10_1016_j_cej_2017_10_097
crossref_primary_10_1007_s11356_023_30163_x
crossref_primary_10_1016_j_apcatb_2019_117783
crossref_primary_10_1016_j_cej_2021_134238
crossref_primary_10_1016_j_apcatb_2019_117782
crossref_primary_10_1016_j_jece_2021_106276
crossref_primary_10_1016_j_cattod_2019_02_025
crossref_primary_10_1021_acs_est_4c06608
crossref_primary_10_1016_j_cej_2024_149003
crossref_primary_10_1016_j_jcis_2016_01_067
crossref_primary_10_1016_j_cej_2020_125351
crossref_primary_10_1016_j_surfin_2021_101482
crossref_primary_10_1039_D1RA08954D
crossref_primary_10_3390_w16060875
crossref_primary_10_1016_j_seppur_2022_121961
crossref_primary_10_1021_acs_est_8b01817
crossref_primary_10_1016_j_seppur_2019_115967
crossref_primary_10_1016_j_cej_2017_01_118
crossref_primary_10_1016_j_cej_2020_125107
crossref_primary_10_1016_j_jaap_2023_106310
crossref_primary_10_1016_j_jhazmat_2022_129655
crossref_primary_10_1021_acs_accounts_7b00535
crossref_primary_10_1016_j_optmat_2022_113088
crossref_primary_10_1016_j_watres_2017_04_070
crossref_primary_10_1021_acs_est_6b05090
crossref_primary_10_1016_j_cej_2021_133134
crossref_primary_10_1016_j_chemosphere_2023_137810
crossref_primary_10_1039_D0EN00840K
crossref_primary_10_1016_j_watres_2020_115862
crossref_primary_10_1016_j_jtice_2019_05_022
crossref_primary_10_1016_j_jhazmat_2021_127054
crossref_primary_10_1016_j_apcatb_2020_118819
crossref_primary_10_1016_j_jece_2022_107559
crossref_primary_10_1016_j_cej_2018_03_010
crossref_primary_10_1016_j_jcis_2018_05_077
crossref_primary_10_1016_j_cej_2018_08_216
crossref_primary_10_1016_j_cej_2023_146234
crossref_primary_10_1016_j_envpol_2016_04_088
crossref_primary_10_1016_j_watres_2024_122224
crossref_primary_10_1016_j_psep_2024_08_083
crossref_primary_10_1021_acs_est_6b02079
crossref_primary_10_1016_j_cej_2020_124725
crossref_primary_10_5004_dwt_2023_29657
crossref_primary_10_1016_j_jhazmat_2020_122316
crossref_primary_10_1016_j_wasman_2023_10_028
crossref_primary_10_1016_j_jssc_2021_122565
crossref_primary_10_1016_j_cclet_2023_109334
crossref_primary_10_1016_j_seppur_2024_128024
crossref_primary_10_3390_min10010002
crossref_primary_10_1016_j_cej_2022_139545
crossref_primary_10_1021_acscatal_5b00774
crossref_primary_10_1039_D1TA02953C
crossref_primary_10_1073_pnas_2119492119
crossref_primary_10_1016_j_watres_2022_118529
crossref_primary_10_1016_j_cej_2019_123057
crossref_primary_10_1016_j_memsci_2018_11_057
crossref_primary_10_1016_j_scitotenv_2019_133836
crossref_primary_10_1016_j_cej_2019_03_249
crossref_primary_10_1039_D1EW00683E
crossref_primary_10_1016_j_chemosphere_2020_126655
crossref_primary_10_1016_j_chemosphere_2018_06_019
crossref_primary_10_1016_j_envres_2022_113970
crossref_primary_10_1021_acs_est_2c00369
crossref_primary_10_1016_j_jphotochem_2021_113291
crossref_primary_10_1016_j_cej_2020_124714
crossref_primary_10_1016_j_cej_2022_137493
crossref_primary_10_1016_j_chemosphere_2023_140203
crossref_primary_10_1016_j_scitotenv_2019_02_173
crossref_primary_10_1016_j_apsusc_2017_05_224
crossref_primary_10_1039_D3RA01291C
crossref_primary_10_1016_j_chemosphere_2018_07_043
crossref_primary_10_1016_j_watres_2021_117288
crossref_primary_10_1016_j_apcatb_2020_118601
crossref_primary_10_1016_j_cej_2024_154133
crossref_primary_10_2139_ssrn_4183196
crossref_primary_10_1021_acs_analchem_4c00019
crossref_primary_10_1016_j_envres_2020_109922
crossref_primary_10_1002_adma_202311416
crossref_primary_10_1016_j_cej_2021_131776
crossref_primary_10_1016_j_cej_2021_133834
crossref_primary_10_1016_j_cej_2023_145012
crossref_primary_10_1016_j_seppur_2023_124769
crossref_primary_10_1080_09593330_2017_1293164
crossref_primary_10_1016_j_cej_2020_124864
crossref_primary_10_1016_j_seppur_2017_11_072
crossref_primary_10_1016_j_seppur_2020_117232
crossref_primary_10_1016_j_jhazmat_2022_129722
crossref_primary_10_1007_s11356_022_20847_1
crossref_primary_10_1016_j_apsusc_2024_160630
crossref_primary_10_1080_21622515_2021_1986575
crossref_primary_10_1016_j_cej_2019_04_135
crossref_primary_10_1016_j_cej_2021_129590
crossref_primary_10_1016_j_cej_2018_02_125
crossref_primary_10_1016_j_jhazmat_2024_136621
crossref_primary_10_1016_j_cej_2019_124009
crossref_primary_10_1021_acssuschemeng_0c00882
crossref_primary_10_1016_j_envres_2022_113601
crossref_primary_10_1016_j_inoche_2020_108282
crossref_primary_10_1016_j_cej_2023_146565
crossref_primary_10_1016_j_jwpe_2025_106989
crossref_primary_10_1016_j_scitotenv_2020_140828
crossref_primary_10_1016_j_jhazmat_2022_129611
crossref_primary_10_1021_acssuschemeng_8b01634
crossref_primary_10_1021_acsanm_3c03743
crossref_primary_10_1021_acsestengg_1c00464
crossref_primary_10_1002_adsu_201900149
crossref_primary_10_1016_j_envres_2021_112160
crossref_primary_10_1016_j_jtice_2019_02_033
crossref_primary_10_1039_D2TC01835G
crossref_primary_10_3390_catal14110789
crossref_primary_10_1016_j_apsusc_2020_146482
crossref_primary_10_1016_j_jallcom_2020_154036
crossref_primary_10_3390_catal12030342
crossref_primary_10_1007_s11164_019_03807_2
crossref_primary_10_1021_acs_est_3c04134
crossref_primary_10_1002_adma_202401454
crossref_primary_10_1016_j_cej_2019_122070
crossref_primary_10_3390_catal12080882
crossref_primary_10_1016_j_cclet_2020_08_014
crossref_primary_10_1016_j_cej_2017_07_132
crossref_primary_10_1016_j_cej_2018_03_050
crossref_primary_10_1016_j_jhazmat_2016_05_031
crossref_primary_10_1016_j_cej_2021_129122
crossref_primary_10_1021_acsestwater_2c00237
crossref_primary_10_1016_j_jes_2019_02_015
crossref_primary_10_1016_j_jhazmat_2020_124411
crossref_primary_10_1016_j_jhazmat_2022_128975
crossref_primary_10_1016_j_watres_2022_118322
crossref_primary_10_1016_j_cclet_2021_10_005
crossref_primary_10_1016_j_jhazmat_2022_129944
crossref_primary_10_1021_acs_est_1c05374
crossref_primary_10_1002_advs_202307151
crossref_primary_10_1016_j_seppur_2020_118025
crossref_primary_10_1016_j_apcata_2020_117828
crossref_primary_10_1016_j_seppur_2022_123052
crossref_primary_10_1016_j_jcis_2020_03_116
crossref_primary_10_1007_s11270_022_05848_7
crossref_primary_10_1016_j_jre_2021_07_013
crossref_primary_10_1021_acs_est_3c05153
crossref_primary_10_1016_j_chemosphere_2017_12_152
crossref_primary_10_1016_j_jece_2017_01_013
crossref_primary_10_1007_s11696_020_01354_4
crossref_primary_10_1007_s11356_022_19230_x
crossref_primary_10_1016_j_cej_2018_01_034
crossref_primary_10_1007_s11356_018_3323_1
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1016_j_scitotenv_2020_138826
crossref_primary_10_1016_j_catcom_2017_08_016
crossref_primary_10_1016_j_jhazmat_2021_126152
crossref_primary_10_1016_j_envres_2021_112060
crossref_primary_10_1016_j_jhazmat_2020_123691
crossref_primary_10_1021_acs_est_7b02519
crossref_primary_10_1016_j_jhazmat_2021_126029
crossref_primary_10_1016_j_watres_2024_122255
crossref_primary_10_1016_j_apcatb_2019_118232
crossref_primary_10_1016_j_cherd_2024_09_030
crossref_primary_10_1016_j_watres_2019_115043
crossref_primary_10_1007_s11814_019_0398_4
crossref_primary_10_1016_j_chemosphere_2018_01_079
crossref_primary_10_1021_acs_est_6b00701
crossref_primary_10_1016_j_cej_2018_09_203
crossref_primary_10_1016_j_apcatb_2024_124118
crossref_primary_10_1016_j_colsurfa_2020_125895
crossref_primary_10_1016_j_chemosphere_2022_135635
crossref_primary_10_1021_acs_est_0c04867
crossref_primary_10_1016_j_apcatb_2018_07_058
crossref_primary_10_1016_j_cej_2021_129027
crossref_primary_10_1039_C6CY02317G
crossref_primary_10_1016_j_jece_2021_106545
crossref_primary_10_1016_j_jhazmat_2024_135946
crossref_primary_10_1016_j_apcatb_2017_10_007
crossref_primary_10_1016_j_chemosphere_2016_11_134
crossref_primary_10_1016_j_cej_2020_124549
crossref_primary_10_1016_j_cej_2020_125638
crossref_primary_10_1016_j_jhazmat_2020_124436
crossref_primary_10_5004_dwt_2021_27472
crossref_primary_10_1016_j_cej_2022_137188
crossref_primary_10_1016_j_cej_2020_127818
crossref_primary_10_1016_j_cej_2024_152020
crossref_primary_10_1016_j_cej_2016_07_027
crossref_primary_10_1016_j_jclepro_2021_128781
crossref_primary_10_1016_j_memsci_2024_123444
crossref_primary_10_1016_j_apcatb_2017_11_051
crossref_primary_10_1016_j_scitotenv_2022_160097
crossref_primary_10_1016_j_jece_2023_110729
crossref_primary_10_1016_j_jes_2020_04_026
crossref_primary_10_1016_j_jmst_2022_05_023
crossref_primary_10_1016_j_apcatb_2022_121753
crossref_primary_10_1016_j_watres_2017_01_052
crossref_primary_10_1016_j_jiec_2024_03_016
crossref_primary_10_1016_j_cej_2019_03_261
crossref_primary_10_2139_ssrn_3989903
crossref_primary_10_1016_j_jhazmat_2022_128726
crossref_primary_10_54097_hset_v67i_11575
crossref_primary_10_1021_acs_est_1c05048
crossref_primary_10_1007_s00706_022_02897_w
crossref_primary_10_1021_acsestengg_3c00521
crossref_primary_10_1016_j_cej_2020_127921
crossref_primary_10_1016_j_seppur_2021_118772
crossref_primary_10_1016_j_jhazmat_2015_04_014
crossref_primary_10_3390_environments10080147
crossref_primary_10_1016_j_watres_2021_117266
crossref_primary_10_1016_j_jece_2023_111712
crossref_primary_10_1016_j_cej_2019_04_076
crossref_primary_10_1016_j_scitotenv_2019_134715
crossref_primary_10_1016_j_cej_2019_123361
crossref_primary_10_1016_j_jcis_2022_07_002
crossref_primary_10_1039_D1TA01063H
crossref_primary_10_1016_j_jece_2022_107276
crossref_primary_10_1016_j_jhazmat_2024_134871
crossref_primary_10_1016_j_watres_2018_10_087
crossref_primary_10_1016_j_jhazmat_2023_133009
crossref_primary_10_1039_D4QI01635A
crossref_primary_10_1016_j_watres_2023_119926
crossref_primary_10_1016_j_jclepro_2023_139334
crossref_primary_10_1016_j_cej_2021_128406
crossref_primary_10_1016_j_cej_2016_05_085
crossref_primary_10_1021_acs_est_9b07082
crossref_primary_10_1016_j_jhazmat_2020_124454
crossref_primary_10_2174_2213335610666230213113809
crossref_primary_10_1039_C5RA21117D
crossref_primary_10_1016_j_watres_2024_121417
crossref_primary_10_1016_j_colsurfa_2023_131192
crossref_primary_10_1016_j_jwpe_2023_103981
crossref_primary_10_1016_j_jclepro_2021_128441
crossref_primary_10_1016_j_jes_2019_11_014
crossref_primary_10_1039_D2EE03357G
crossref_primary_10_1016_j_cej_2020_125094
crossref_primary_10_1016_j_cej_2021_129971
crossref_primary_10_1016_j_cej_2018_08_049
crossref_primary_10_1002_slct_202304966
crossref_primary_10_1016_j_cej_2018_09_093
crossref_primary_10_1016_j_cej_2024_148789
crossref_primary_10_1016_j_chemosphere_2018_11_200
crossref_primary_10_1016_j_jcis_2021_06_099
crossref_primary_10_1002_wer_10927
crossref_primary_10_1021_es5061512
crossref_primary_10_3390_catal10121373
crossref_primary_10_1016_j_jhazmat_2023_133344
crossref_primary_10_1039_C7TA10877J
crossref_primary_10_1515_revce_2022_0037
crossref_primary_10_5004_dwt_2022_28647
crossref_primary_10_1016_j_cej_2021_131930
crossref_primary_10_1021_acsami_9b11322
crossref_primary_10_1021_acsestengg_1c00091
crossref_primary_10_1021_acs_iecr_9b04581
crossref_primary_10_1007_s10853_022_07683_x
crossref_primary_10_1002_smll_201805478
crossref_primary_10_1016_j_apcatb_2022_121709
crossref_primary_10_1016_j_jhazmat_2020_124351
crossref_primary_10_1016_j_cej_2021_130743
crossref_primary_10_1016_j_scitotenv_2024_178216
crossref_primary_10_1016_j_seppur_2021_120086
crossref_primary_10_1007_s11157_023_09645_4
crossref_primary_10_1016_j_cej_2017_06_068
crossref_primary_10_1016_j_seppur_2020_117630
crossref_primary_10_1016_j_envpol_2023_121685
crossref_primary_10_1039_D2EN00305H
crossref_primary_10_1016_j_cej_2017_06_067
crossref_primary_10_1016_j_jhazmat_2024_133753
crossref_primary_10_1016_j_cej_2023_141719
crossref_primary_10_1007_s11356_022_21747_0
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1016_j_jhazmat_2016_07_038
crossref_primary_10_1016_j_seppur_2017_07_006
crossref_primary_10_1016_j_jwpe_2022_103239
crossref_primary_10_1021_acs_est_9b01449
crossref_primary_10_2139_ssrn_4132895
crossref_primary_10_1016_j_apcatb_2016_12_046
crossref_primary_10_1016_j_cej_2021_131721
crossref_primary_10_1016_j_cej_2020_127172
crossref_primary_10_1007_s42114_023_00757_7
crossref_primary_10_1016_j_cej_2019_123555
crossref_primary_10_1016_j_scitotenv_2020_141095
crossref_primary_10_1016_j_jclepro_2023_138336
crossref_primary_10_1016_j_scitotenv_2017_07_151
crossref_primary_10_1016_j_jes_2021_08_003
crossref_primary_10_1016_j_jhazmat_2018_05_065
crossref_primary_10_1016_j_seppur_2022_122107
crossref_primary_10_1016_j_ecoenv_2019_109891
crossref_primary_10_1016_j_cej_2021_130998
crossref_primary_10_1016_j_seppur_2023_124936
crossref_primary_10_1021_acsomega_3c04333
crossref_primary_10_1016_j_cej_2016_11_002
crossref_primary_10_1007_s41742_020_00296_9
crossref_primary_10_1016_j_apcatb_2016_04_043
crossref_primary_10_1016_j_jhazmat_2021_126686
crossref_primary_10_1021_acscatal_1c02031
crossref_primary_10_1016_j_cej_2018_08_066
crossref_primary_10_1021_acs_est_7b00399
crossref_primary_10_1016_j_cej_2022_136100
crossref_primary_10_1021_acs_est_6b04528
crossref_primary_10_1016_j_jclepro_2021_129652
crossref_primary_10_1016_j_chemosphere_2023_138788
crossref_primary_10_1007_s11356_018_2974_2
crossref_primary_10_1016_j_seppur_2024_129287
crossref_primary_10_1021_acsami_1c03601
crossref_primary_10_1002_slct_202203483
crossref_primary_10_1021_acs_est_8b00015
crossref_primary_10_3390_ijerph192214805
crossref_primary_10_1007_s11356_021_17088_z
crossref_primary_10_1016_j_chemosphere_2016_02_055
crossref_primary_10_3390_su15129601
crossref_primary_10_1016_j_jcis_2020_05_096
crossref_primary_10_1021_acs_est_9b03873
crossref_primary_10_1016_j_cej_2023_147369
crossref_primary_10_1016_j_envres_2024_120634
crossref_primary_10_1016_j_apcatb_2018_09_056
crossref_primary_10_1016_j_watres_2024_122783
crossref_primary_10_1039_C7TA11052A
crossref_primary_10_3390_w14233816
crossref_primary_10_1007_s11356_024_32232_1
crossref_primary_10_1016_j_cej_2019_02_196
crossref_primary_10_1016_j_jwpe_2023_103781
crossref_primary_10_1007_s11356_017_8811_1
crossref_primary_10_1016_j_apcata_2017_03_020
crossref_primary_10_1021_acs_est_1c01618
crossref_primary_10_1021_acs_iecr_9b05346
crossref_primary_10_3390_nano13182565
crossref_primary_10_1016_j_cej_2022_137686
crossref_primary_10_1016_j_mtcomm_2022_105022
crossref_primary_10_1021_acs_est_9b03648
crossref_primary_10_1016_j_cej_2021_131741
crossref_primary_10_1016_j_cej_2024_156009
crossref_primary_10_1002_advs_202101824
crossref_primary_10_1021_acsestengg_2c00129
crossref_primary_10_1016_j_cej_2019_122563
crossref_primary_10_1016_j_apcatb_2024_124520
crossref_primary_10_1016_j_cej_2021_129667
crossref_primary_10_1016_j_mssp_2022_106502
crossref_primary_10_1016_j_molliq_2024_125468
crossref_primary_10_1002_anie_202207268
crossref_primary_10_1016_j_watres_2020_116371
crossref_primary_10_1016_j_envpol_2021_117991
crossref_primary_10_1016_j_seppur_2021_118717
crossref_primary_10_1021_acsami_0c19013
crossref_primary_10_1016_j_cej_2020_126090
crossref_primary_10_1016_j_cej_2020_127185
crossref_primary_10_1080_03067319_2022_2060091
crossref_primary_10_1021_acs_est_9b01354
crossref_primary_10_1016_j_cej_2018_08_038
crossref_primary_10_1016_j_jece_2025_116114
crossref_primary_10_1016_j_chemosphere_2021_131237
crossref_primary_10_1016_j_ces_2024_120791
crossref_primary_10_1016_j_cej_2022_136250
crossref_primary_10_1016_S1872_2067_23_64611_X
crossref_primary_10_1016_j_apcatb_2020_119585
crossref_primary_10_1016_j_jece_2023_109460
crossref_primary_10_1016_j_chemosphere_2019_124687
crossref_primary_10_1016_j_carbon_2019_09_033
crossref_primary_10_1016_j_jece_2023_111424
crossref_primary_10_1016_j_jwpe_2021_102078
crossref_primary_10_1016_j_cej_2022_140629
crossref_primary_10_1016_j_watres_2018_01_050
crossref_primary_10_1016_j_watres_2018_09_037
crossref_primary_10_1016_j_cej_2022_136135
crossref_primary_10_12677_OJNS_2023_113058
crossref_primary_10_1016_j_jece_2023_109586
crossref_primary_10_1016_j_cej_2023_144191
crossref_primary_10_1021_acs_est_8b04669
crossref_primary_10_1016_j_cej_2018_07_103
crossref_primary_10_1016_j_dib_2020_105626
crossref_primary_10_1016_j_seppur_2023_125811
crossref_primary_10_1039_C5NR01428J
crossref_primary_10_1016_j_seppur_2023_123997
crossref_primary_10_1002_cctc_202301108
crossref_primary_10_1016_j_jes_2021_08_028
crossref_primary_10_1016_j_jhazmat_2021_127612
crossref_primary_10_1016_j_envint_2024_108466
crossref_primary_10_1016_j_cej_2021_130679
crossref_primary_10_1007_s11356_022_23024_6
crossref_primary_10_1016_j_ijbiomac_2024_137390
crossref_primary_10_1016_j_cclet_2024_109882
crossref_primary_10_1016_j_apcatb_2016_04_003
crossref_primary_10_1021_acs_est_2c01759
crossref_primary_10_1016_j_surfin_2023_103338
crossref_primary_10_1016_j_jiec_2018_11_026
crossref_primary_10_1039_D3SC05275C
crossref_primary_10_1038_s44221_025_00400_3
crossref_primary_10_1002_wer_1090
crossref_primary_10_1016_j_chemosphere_2017_12_088
crossref_primary_10_1016_j_chemosphere_2023_138469
crossref_primary_10_5004_dwt_2021_27741
crossref_primary_10_1016_j_cej_2018_09_184
crossref_primary_10_1016_j_seppur_2023_125820
crossref_primary_10_1016_j_chemosphere_2023_138589
crossref_primary_10_1016_j_cej_2018_09_066
crossref_primary_10_1016_j_cej_2019_01_040
crossref_primary_10_1016_j_seppur_2023_125823
crossref_primary_10_1021_acs_est_1c03823
Cites_doi 10.1021/es061395a
10.1016/j.cej.2010.12.017
10.1021/es035121o
10.1021/es010216g
10.1021/es202209j
10.1021/es1013714
10.1016/j.chemosphere.2005.05.029
10.1016/S0021-9673(96)01090-4
10.1021/es404118q
10.1021/es300658u
10.1016/0016-7037(94)00282-Q
10.1021/es050634b
10.1016/j.scitotenv.2011.12.004
10.1016/j.watres.2011.09.015
10.1021/es400728c
10.1021/jp980709g
10.1021/es903411a
10.1016/j.jhazmat.2011.09.011
10.1021/es0601033
10.1021/es0263792
10.1021/es2017363
10.1021/es0484799
10.1126/science.238.4828.783
10.1021/es3011546
10.1021/es8019462
10.1021/es304721g
10.1021/es400262n
10.1080/10643380802039303
10.1021/jp983819w
10.1021/es0484754
10.1021/j100629a017
10.1016/j.jhazmat.2008.07.110
10.1021/es4019145
10.1021/es062237m
10.1016/j.jconhyd.2010.04.002
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Chemical Society May 20, 2014
Copyright
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society May 20, 2014
– notice: Copyright
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
1XC
VOOES
DOI 10.1021/es501218f
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Pollution Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Biotechnology Research Abstracts
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 5875
ExternalDocumentID oai_HAL_hal_01211451v1
3324646691
24779765
28512966
10_1021_es501218f
b790979905
Genre Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7UA
F1W
H97
L.G
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-a508t-f6d7e1948c083567c7ea62a0294693e5d105fa9028932a404480d5f11e45e63d3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Jul 10 07:16:32 EDT 2025
Fri Jul 11 05:49:04 EDT 2025
Fri Jul 11 08:34:29 EDT 2025
Thu Jul 10 22:36:16 EDT 2025
Mon Jun 30 04:09:30 EDT 2025
Wed Feb 19 01:56:39 EST 2025
Wed Apr 02 07:18:30 EDT 2025
Tue Jul 01 04:28:46 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Thu Aug 27 13:42:24 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Water treatment
Chemical activation
Decontamination
Industrial waste water
Physicochemical purification
Oxidation
Water pollution
Oxidant
Waste water purification
Copper oxide
Ground water
Inorganic radical anion
Language English
License CC BY 4.0
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a508t-f6d7e1948c083567c7ea62a0294693e5d105fa9028932a404480d5f11e45e63d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0245-8536
0000-0003-4888-1604
0000-0003-1048-4443
OpenAccessLink https://enpc.hal.science/hal-01211451
PMID 24779765
PQID 1532260264
PQPubID 45412
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01211451v1
proquest_miscellaneous_2000215444
proquest_miscellaneous_1560134348
proquest_miscellaneous_1526732683
proquest_journals_1532260264
pubmed_primary_24779765
pascalfrancis_primary_28512966
crossref_citationtrail_10_1021_es501218f
crossref_primary_10_1021_es501218f
acs_journals_10_1021_es501218f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-20
PublicationDateYYYYMMDD 2014-05-20
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-20
  day: 20
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Li C. (ref34/cit34) 1999; 103
Ahmad M. (ref18/cit18) 2010; 115
Saien J. (ref8/cit8) 2011; 167
Zhang T. (ref21/cit21) 2013; 47
Zafiriou O. C. (ref31/cit31) 1998; 102
Zou J. (ref15/cit15) 2013; 47
Barták P. (ref26/cit26) 1997; 767
Furman O. S. (ref3/cit3) 2010; 44
Hayes K. F. (ref32/cit32) 1987; 238
Liang C. J. (ref14/cit14) 2010; 44
Waldemer R. H. (ref13/cit13) 2007; 41
Anipsitakis G. P. (ref1/cit1) 2004; 38
Zhang T. (ref29/cit29) 2011; 45
Yang Y. (ref28/cit28) 2014; 48
Fang G. D. (ref17/cit17) 2013; 47
Kimura M. (ref25/cit25) 1973; 77
Shih K. (ref37/cit37) 2006; 40
Johnson R. L. (ref2/cit2) 2008; 42
Lau T. K. (ref7/cit7) 2007; 41
Anipsitakis G. P. (ref22/cit22) 2006; 40
Li S.-X. (ref11/cit11) 2009; 164
Querol X. (ref36/cit36) 2006; 62
Teel A. L. (ref19/cit19) 2011; 196
Fang J. Y. (ref23/cit23) 2012; 46
Drzewicz P. (ref5/cit5) 2012; 46
Deng Y. (ref10/cit10) 2011; 45
Hori H. (ref20/cit20) 2005; 39
Farquhar M. L. (ref33/cit33) 2002; 36
Tsitonaki A. (ref9/cit9) 2010; 40
Westerhoff P. (ref35/cit35) 2005; 39
Anipsitakis G. P. (ref6/cit6) 2003; 37
Liu C. (ref24/cit24) 2012; 416
Guan Y. H. (ref4/cit4) 2011; 45
Gu B. (ref27/cit27) 1995; 59
Stumm W. (ref30/cit30) 1992
Lau T. K. (ref12/cit12) 2007; 41
Ahmad M. (ref16/cit16) 2013; 47
References_xml – volume: 41
  start-page: 613
  issue: 2
  year: 2007
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061395a
– volume: 167
  start-page: 172
  issue: 1
  year: 2011
  ident: ref8/cit8
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.12.017
– volume: 38
  start-page: 3705
  issue: 13
  year: 2004
  ident: ref1/cit1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035121o
– volume: 36
  start-page: 1757
  issue: 8
  year: 2002
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010216g
– volume: 45
  start-page: 9339
  issue: 21
  year: 2011
  ident: ref29/cit29
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202209j
– volume: 44
  start-page: 6423
  issue: 16
  year: 2010
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1013714
– volume: 62
  start-page: 171
  issue: 2
  year: 2006
  ident: ref36/cit36
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.05.029
– volume: 767
  start-page: 171
  issue: 1
  year: 1997
  ident: ref26/cit26
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(96)01090-4
– volume: 48
  start-page: 2344
  issue: 4
  year: 2014
  ident: ref28/cit28
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404118q
– volume: 46
  start-page: 8976
  issue: 16
  year: 2012
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300658u
– volume: 59
  start-page: 219
  issue: 2
  year: 1995
  ident: ref27/cit27
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)00282-Q
– volume: 40
  start-page: 1000
  issue: 3
  year: 2006
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050634b
– volume: 416
  start-page: 507
  year: 2012
  ident: ref24/cit24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.12.004
– volume: 45
  start-page: 6189
  issue: 18
  year: 2011
  ident: ref10/cit10
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.09.015
– volume: 47
  start-page: 5864
  issue: 11
  year: 2013
  ident: ref16/cit16
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400728c
– volume: 102
  start-page: 5693
  issue: 28
  year: 1998
  ident: ref31/cit31
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980709g
– volume: 44
  start-page: 8203
  issue: 21
  year: 2010
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903411a
– volume: 196
  start-page: 153
  issue: 0
  year: 2011
  ident: ref19/cit19
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.09.011
– volume: 40
  start-page: 5520
  issue: 17
  year: 2006
  ident: ref37/cit37
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0601033
– volume: 41
  start-page: 613
  issue: 2
  year: 2007
  ident: ref7/cit7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061395a
– volume: 37
  start-page: 4790
  issue: 20
  year: 2003
  ident: ref6/cit6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 45
  start-page: 9308
  issue: 21
  year: 2011
  ident: ref4/cit4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2017363
– volume: 39
  start-page: 6649
  issue: 17
  year: 2005
  ident: ref35/cit35
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0484799
– volume: 238
  start-page: 783
  issue: 4828
  year: 1987
  ident: ref32/cit32
  publication-title: Science
  doi: 10.1126/science.238.4828.783
– volume: 46
  start-page: 8984
  issue: 16
  year: 2012
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3011546
– volume: 42
  start-page: 9350
  issue: 24
  year: 2008
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019462
– volume: 47
  start-page: 2784
  issue: 6
  year: 2013
  ident: ref21/cit21
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304721g
– volume: 47
  start-page: 4605
  issue: 9
  year: 2013
  ident: ref17/cit17
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400262n
– volume: 40
  start-page: 55
  issue: 1
  year: 2010
  ident: ref9/cit9
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380802039303
– volume-title: Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems
  year: 1992
  ident: ref30/cit30
– volume: 103
  start-page: 6653
  issue: 32
  year: 1999
  ident: ref34/cit34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983819w
– volume: 39
  start-page: 2383
  issue: 7
  year: 2005
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0484754
– volume: 77
  start-page: 1265
  issue: 10
  year: 1973
  ident: ref25/cit25
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100629a017
– volume: 164
  start-page: 26
  issue: 1
  year: 2009
  ident: ref11/cit11
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.07.110
– volume: 47
  start-page: 11685
  issue: 20
  year: 2013
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4019145
– volume: 41
  start-page: 1010
  issue: 3
  year: 2007
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062237m
– volume: 115
  start-page: 34
  issue: 1
  year: 2010
  ident: ref18/cit18
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.04.002
SSID ssj0002308
Score 2.629997
Snippet Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5868
SubjectTerms 2,4-dichlorophenol
Aluminum Hydroxide - chemistry
anions
Applied sciences
Chemical compounds
Chemical contaminants
Chemical reactions
Chemical Sciences
chlorides
Chlorides - chemistry
chlorine
Chlorophenols - chemistry
Copper - chemistry
cupric oxide
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental Sciences
Ethanol - chemistry
Exact sciences and technology
free radicals
groundwater
groundwater contamination
Groundwaters
Hydrogen-Ion Concentration
Industrial wastewaters
Ions
Kinetics
Natural water pollution
Nutrient removal
Osmolar Concentration
oxidants
Oxidation
Oxidation-Reduction
pollutants
Pollution
Pollution, environment geology
Rheology
Solutions
sulfates
Sulfates - chemistry
Temperature
toxicity
wastewater
Wastewaters
Water Pollutants - chemistry
Water pollution
Water treatment and pollution
Title Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation
URI http://dx.doi.org/10.1021/es501218f
https://www.ncbi.nlm.nih.gov/pubmed/24779765
https://www.proquest.com/docview/1532260264
https://www.proquest.com/docview/1526732683
https://www.proquest.com/docview/1560134348
https://www.proquest.com/docview/2000215444
https://enpc.hal.science/hal-01211451
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB615QJCPAqFhVKZx4FL2nX8So6rdqsVgqpqqdhb5NiOQKx2qybbA7-emby6Fd1ytSeK48zYnzWe7wP4lCgrpM9NhAthHkmnQpQmkuNimBqvRK4tpwLnbyd6ciG_TNV0Az6uyeDH_CCUinjHkmITHsQag5fwz-F5v9wihk46mYJU6GlHH7T6KG09rry19Wz-pIuPjy9tiXNRNCIW61FmvdscP4WjrmanuWTye39Z5fvuz78Ujvd9yDN40qJNNmrc4zlshPk2PFrhINyGnfFNqRuatrFevoDrcc0ugc3sNNA4_K9yOSsQm7KR60TRWFtowE4WFTsLMyqaYth83lqe2ToPxBp26_oJRMnsB_ZdsVOSWSYVY3ZElBWNutNLuDgefz-cRK1KQ2QR3FVRob0JPJWJIzSnjTPB6tgO4xRP3iIojwiusEQSg1DRyiGeB4deFZwHqYIWXuzA1nwxD6-Bpc6TRmAuCvQXhI45JSULUeR4JvQuNQPYw9-YtVFWZnUCPeZZP7MD-Nz94cy1HOcktTG7y_RDb3rZEHvcaYRu0vcTFfdk9DWjtpobTyp-zXFUt7yoN48TQlNaD2C3c6uVsStcSkn_Sw7gfd-NsU0JGzsPiyXZxNogvk7EfTZ4pBZSyGS9DZVjxUS7hO961bj1zSClMQhJ1Zv_ze1beIhgUdLNiXi4C1vV1TK8Q0BW5Xt1QP4FACctDA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoOQBCPEoLgVIM4sBlS7x-7R6jkipAGlV9iNxWXtsrEFFSdTc98OuZ8T6Soha42rO7E2dsf9Z4vo-Q94k0XLhcR7AQ5pGw0kdpIhgshql2kufKMCxwPpqo0bn4MpXThiYHa2HAiRLeVIYk_opdgH30pUT6saTYIHcBhMQYzYOD027VBSidtGoFKVfTlkVo_VHcgWx5bQfa-I73Hx9emBKGpKi1LG4Hm2HTOXxcqxcFd8Ndk5_7yyrft7_-YHL8v9_zhDxqsCcd1MHylNzx8y3yYI2RcIvsDFeFb2DazPzyGbkaBq4JaKbHHt1xP8rlrACkSge2lUijTdkBnSwqeuJnWEJFofm0sTwxIStEa67r8ARgZvoN-i7pMYouo6Yx_YQEFrXW0zY5PxyeHYyiRrMhMgD1qqhQTnuWisQitlPaam9UbPpxCudw7qUDPFcYpIwB4GhEH06HfScLxryQXnHHd8jmfDH3LwhNrUPFwJwXED0AJHNMURa8yOGE6Gyqe2QPBjZr5lyZhXR6zLJuZHvkQ_tHZ7ZhPEfhjdlNpu8604ua5uNGI4iWrh-JuUeDcYZtgSlPSHbFwKtrwdSZxwliK6V6ZLeNrjXfJSysqAYmeuRt1w0zHdM3Zu4XS7SJlQa0nfC_2cABmwsuktttsDgrRhIm-NbzOrpXTgqtAaDKl_8a2zfk3ujsaJyNP0--viL3AUYKvFMR93fJZnW59K8BqlX5XpijvwEjnjVt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ISFQxaP0EShlQRy4uMTeh-1j1CYKUELUUpGbtfbuCtQoiWqnB349M341RS1w3R3bk83s7DeanW8A3kVSc2HS0ENHmHoik9aLI-GjM4xDI3mqtE8Fzl9GanghPk3kpA4UqRYGlcjxTXmZxKddvTCuZhjwP9hcEgVZ5NZhk9J1ZNG94_PW8yKcjpqOBTFXk4ZJaPVROoWy_NYptP6D7kBuLXSOy-Kqfhb3A87y4Bk8ga-tyuV9k8ujZZEeZb_-YHP8_9_0FB7XGJT1KqN5Bmt2tg2PVpgJt2G3f1MAh6K1B8ifw3W_5JzAYTa2pJL5mS-nDhEr62VNqzRWlx-w0bxgZ3ZKpVQMh89ryTNdZodYxXldPoHYmX3HuSs2pubL1NuYnRCRRdXzaQcuBv1vx0Ov7t3gaYR8heeUCa0fiygjjKfCLLRaBbobxBiPcysN4jqniToGAaQWXYwSu0Y637dCWsUN34WN2Xxm94HFmaHOgSl3aEUIKFNKVTruUowUTRaHHTjExU3qvZcnZVo98JN2ZTvwvvmzk6xmPqcGHNO7RN-2oouK7uNOIbSYdp4Iuoe904TGSsY8If1rH7W6ZVCteBARxlKqAweNha3oLtHBUlcw0YE37TTueErj6JmdL0kmUCGi7oj_TQYDbS64iO6XoSKtgMiY8Ft7lYXfKCnCEIGqfPGvtX0ND8Yng-T04-jzS3iIaFLQ1YqgewAbxdXSvkLEVqSH5Tb9DR5RN_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Peroxydisulfate+Activation+Process+Not+Relying+on+Sulfate+Radical+Generation+for+Water+Pollutant+Degradation&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Tao&rft.au=Chen%2C+Yin&rft.au=Wang%2C+Yuru&rft.au=Le+Roux%2C+Julien&rft.date=2014-05-20&rft.issn=0013-936X&rft.volume=48&rft.issue=10&rft.spage=5868&rft.epage=5868&rft_id=info:doi/10.1021%2Fes501218f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon