Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation
Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize orga...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 10; pp. 5868 - 5875 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
20.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. |
---|---|
AbstractList | Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 ...M) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. (ProQuest: ... denotes formulae/symbols omitted.) Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 mu M) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. |
Author | Le Roux, Julien Chen, Yin Yang, Yang Croué, Jean-Philippe Zhang, Tao Wang, Yuru |
AuthorAffiliation | Advanced Nanofabrication Imaging and Characterization Lab Solar and Photovoltaics Engineering Center Water Desalination and Reuse Center King Abdullah University of Science and Technology |
AuthorAffiliation_xml | – name: King Abdullah University of Science and Technology – name: Advanced Nanofabrication Imaging and Characterization Lab – name: Water Desalination and Reuse Center – name: Solar and Photovoltaics Engineering Center |
Author_xml | – sequence: 1 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Yin surname: Chen fullname: Chen, Yin organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Yuru surname: Wang fullname: Wang, Yuru organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Julien surname: Le Roux fullname: Le Roux, Julien organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Yang surname: Yang fullname: Yang, Yang organization: King Abdullah University of Science and Technology – sequence: 6 givenname: Jean-Philippe surname: Croué fullname: Croué, Jean-Philippe email: jp.croue@kaust.edu.sa organization: King Abdullah University of Science and Technology |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512966$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24779765$$D View this record in MEDLINE/PubMed https://enpc.hal.science/hal-01211451$$DView record in HAL |
BookMark | eNqN0ltrFDEUB_AgFbutPvgFZEAEfRib-2Qel9qLsOhSFX0bYuakpsxO2iSzuN--me50KyroUyD55fY_5wDt9b4HhJ4T_JZgSo4gCkwoUfYRmhFBcSmUIHtohjFhZc3kt310EOMVxpgyrJ6gfcqrqq6kmKH1ibXOOOhTsYTgf25aF4fO6gTF3CS31sn5vlgGbyDG4oNPxQV0G9dfFnn60yQvdOuM7ooz6CFsd1gfiq95LRRL33VD0vmCd3AZdHu3_hQ9trqL8GwaD9GX05PPx-fl4uPZ--P5otQCq1Ra2VZAaq4MVkzIylSgJdWY1lzWDERLsLC6xlTVjGqOOVe4FZYQ4AIka9kherM994fumuvgVjpsGq9dcz5fNOPcmBvhgqxJtq-39jr4mwFialYuGug63YMfYkPH_IjgnP-TEiFz9Jxx9R-UyopRqVimL3-jV34Ifc4nK0apxFSOd7-Y1PB9Be3uV_c1zeDVBHTMVbFB98bFB5d7g9ZSZne0dSb4GAPYxrh0V50UtOsagpuxu5pddz2kudtxf-jf7PQKbeIv__jD3QJqp9dw |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2019_121209 crossref_primary_10_1016_j_watres_2017_03_035 crossref_primary_10_1016_j_cej_2019_122768 crossref_primary_10_1016_j_cej_2024_150214 crossref_primary_10_1016_j_scitotenv_2023_168679 crossref_primary_10_1007_s11356_016_7015_4 crossref_primary_10_1007_s11356_023_25504_9 crossref_primary_10_1016_j_arabjc_2021_103463 crossref_primary_10_1016_j_jece_2021_106178 crossref_primary_10_2139_ssrn_4154290 crossref_primary_10_1016_j_colsurfa_2024_136088 crossref_primary_10_1016_j_heliyon_2021_e07451 crossref_primary_10_1016_j_apcatb_2024_123997 crossref_primary_10_1016_j_scitotenv_2020_144743 crossref_primary_10_1016_j_jcis_2023_08_091 crossref_primary_10_1016_j_jcis_2022_05_045 crossref_primary_10_1016_j_cej_2021_129902 crossref_primary_10_1016_j_jclepro_2020_124645 crossref_primary_10_1021_acsestwater_3c00319 crossref_primary_10_2166_wrd_2021_102 crossref_primary_10_1016_j_cej_2016_10_138 crossref_primary_10_1016_j_jhazmat_2018_06_048 crossref_primary_10_1039_D3EW00009E crossref_primary_10_1039_D3NJ04129H crossref_primary_10_1021_acs_est_7b05543 crossref_primary_10_1016_j_ijhydene_2024_11_310 crossref_primary_10_1016_j_jcis_2021_04_095 crossref_primary_10_1016_j_jece_2022_107654 crossref_primary_10_2166_wst_2021_177 crossref_primary_10_3390_ma12060968 crossref_primary_10_1007_s40974_022_00250_9 crossref_primary_10_1016_j_apcatb_2018_11_058 crossref_primary_10_1016_j_cej_2022_134546 crossref_primary_10_1016_j_cclet_2023_108903 crossref_primary_10_1016_j_scitotenv_2020_142794 crossref_primary_10_1016_j_scitotenv_2019_134379 crossref_primary_10_1016_j_cej_2019_123987 crossref_primary_10_1016_j_chemosphere_2018_02_110 crossref_primary_10_1016_j_jhazmat_2023_132417 crossref_primary_10_1016_j_chemosphere_2018_02_113 crossref_primary_10_1016_j_scitotenv_2023_166121 crossref_primary_10_1016_j_seppur_2016_04_051 crossref_primary_10_1016_j_cej_2016_01_007 crossref_primary_10_1016_j_cej_2021_128703 crossref_primary_10_1016_j_scitotenv_2018_03_342 crossref_primary_10_1021_acs_est_1c06721 crossref_primary_10_1016_j_cej_2020_126127 crossref_primary_10_1016_j_jhazmat_2019_121105 crossref_primary_10_1016_j_cclet_2020_06_040 crossref_primary_10_1007_s11270_023_06770_2 crossref_primary_10_1016_j_apcatb_2020_119146 crossref_primary_10_1007_s11356_024_33404_9 crossref_primary_10_1016_j_envres_2020_110496 crossref_primary_10_1016_j_apcatb_2024_124749 crossref_primary_10_1016_j_seppur_2021_119260 crossref_primary_10_1007_s11356_022_21347_y crossref_primary_10_1016_j_cej_2019_123726 crossref_primary_10_1016_j_seppur_2022_120671 crossref_primary_10_1016_j_cej_2019_123724 crossref_primary_10_1080_10934529_2024_2313931 crossref_primary_10_1039_D1TA02237G crossref_primary_10_1016_j_coche_2022_100870 crossref_primary_10_1016_j_jelechem_2015_12_045 crossref_primary_10_3390_molecules26195748 crossref_primary_10_1016_j_watres_2017_10_018 crossref_primary_10_1016_j_jhazmat_2022_129172 crossref_primary_10_1016_j_cej_2021_134385 crossref_primary_10_1016_j_chemosphere_2019_04_149 crossref_primary_10_1016_j_seppur_2020_116935 crossref_primary_10_1016_j_cej_2021_134026 crossref_primary_10_1016_j_jhazmat_2023_132751 crossref_primary_10_1007_s11783_024_1894_2 crossref_primary_10_1016_j_chemosphere_2023_137970 crossref_primary_10_1021_acssuschemeng_6b03035 crossref_primary_10_1016_j_cej_2020_126232 crossref_primary_10_1016_j_apcatb_2024_124850 crossref_primary_10_1016_j_chemosphere_2017_08_169 crossref_primary_10_1016_j_seppur_2022_121432 crossref_primary_10_1016_j_cossms_2021_100921 crossref_primary_10_1016_j_jhazmat_2019_121767 crossref_primary_10_1021_acsestengg_4c00666 crossref_primary_10_1021_acsestengg_3c00294 crossref_primary_10_1016_j_apcatb_2019_117806 crossref_primary_10_1016_j_jwpe_2023_104354 crossref_primary_10_3390_app112110447 crossref_primary_10_1016_j_watres_2016_07_004 crossref_primary_10_1016_j_seppur_2023_125195 crossref_primary_10_1016_j_jcis_2020_10_021 crossref_primary_10_1016_j_cattod_2020_01_047 crossref_primary_10_1016_j_cej_2022_136755 crossref_primary_10_1016_j_chemosphere_2022_137120 crossref_primary_10_1021_acs_est_1c03758 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1007_s11356_021_12545_1 crossref_primary_10_1016_j_seppur_2024_127931 crossref_primary_10_1016_j_seppur_2024_126841 crossref_primary_10_1016_j_cej_2024_149782 crossref_primary_10_1021_acs_est_9b04696 crossref_primary_10_1016_j_cej_2017_11_164 crossref_primary_10_1016_j_jhazmat_2019_121518 crossref_primary_10_2139_ssrn_3994601 crossref_primary_10_1016_j_cej_2020_128312 crossref_primary_10_1039_D0EN00050G crossref_primary_10_1021_cs5017613 crossref_primary_10_1039_D4SC02462A crossref_primary_10_1016_j_mssp_2023_107414 crossref_primary_10_1002_smtd_202300588 crossref_primary_10_1016_j_jece_2024_113852 crossref_primary_10_1016_j_apsusc_2024_162007 crossref_primary_10_1039_C6RA12706A crossref_primary_10_1016_j_watres_2020_116777 crossref_primary_10_1016_j_jwpe_2020_101403 crossref_primary_10_1016_j_seppur_2023_126058 crossref_primary_10_1016_j_apcatb_2019_04_094 crossref_primary_10_1016_j_cclet_2024_110000 crossref_primary_10_1016_j_jhazmat_2019_121995 crossref_primary_10_1039_C7RA09949E crossref_primary_10_1039_C7TA08472B crossref_primary_10_1016_j_cej_2017_11_174 crossref_primary_10_1016_j_cej_2019_122828 crossref_primary_10_1002_smll_202203269 crossref_primary_10_1016_j_seppur_2021_120288 crossref_primary_10_1016_j_jhazmat_2019_121789 crossref_primary_10_3390_c9040107 crossref_primary_10_1016_j_cej_2018_12_139 crossref_primary_10_1016_j_chemosphere_2020_129394 crossref_primary_10_1016_j_synthmet_2020_116479 crossref_primary_10_1016_j_jhazmat_2020_122808 crossref_primary_10_1016_j_apcatb_2021_120460 crossref_primary_10_1016_j_apcatb_2022_122285 crossref_primary_10_1016_j_jcis_2020_10_120 crossref_primary_10_1016_j_carbon_2019_06_107 crossref_primary_10_1016_j_cej_2017_04_018 crossref_primary_10_1039_C9EN01250H crossref_primary_10_1016_j_apcatb_2018_03_088 crossref_primary_10_1016_j_chemosphere_2018_04_173 crossref_primary_10_1016_j_apcatb_2024_124941 crossref_primary_10_1016_j_cej_2020_126158 crossref_primary_10_1016_j_jwpe_2023_104440 crossref_primary_10_1016_j_cej_2019_122837 crossref_primary_10_1016_j_mcat_2021_111430 crossref_primary_10_1016_j_colsurfa_2022_128731 crossref_primary_10_1016_j_jece_2024_113517 crossref_primary_10_1016_j_apcatb_2018_02_059 crossref_primary_10_1016_j_colsurfa_2020_124904 crossref_primary_10_1016_j_jclepro_2020_123572 crossref_primary_10_1016_j_jece_2024_113634 crossref_primary_10_1039_D1DT02367E crossref_primary_10_1039_D0GC00717J crossref_primary_10_1016_j_cej_2016_04_096 crossref_primary_10_1021_acsami_1c15061 crossref_primary_10_1016_j_apcatb_2021_120593 crossref_primary_10_1016_j_cej_2022_138605 crossref_primary_10_1016_j_watres_2021_116856 crossref_primary_10_1016_j_cej_2018_12_036 crossref_primary_10_1016_j_cej_2022_139810 crossref_primary_10_1016_j_scitotenv_2019_07_043 crossref_primary_10_1039_D0EN00848F crossref_primary_10_1016_j_carbon_2016_06_016 crossref_primary_10_1016_j_jece_2022_107712 crossref_primary_10_1007_s11356_023_26347_0 crossref_primary_10_1016_j_cej_2020_127242 crossref_primary_10_1016_j_ceja_2021_100201 crossref_primary_10_1016_j_envres_2021_112529 crossref_primary_10_1016_j_scitotenv_2019_05_098 crossref_primary_10_1039_D3EN00729D crossref_primary_10_54097_ajst_v7i2_11773 crossref_primary_10_1016_j_colsurfa_2022_128627 crossref_primary_10_1016_j_cej_2021_131256 crossref_primary_10_1007_s11783_024_1912_4 crossref_primary_10_1016_j_cej_2020_125538 crossref_primary_10_1021_acs_est_5b02705 crossref_primary_10_1016_j_seppur_2021_119318 crossref_primary_10_1016_j_apcatb_2019_118549 crossref_primary_10_2166_wpt_2024_184 crossref_primary_10_1016_j_jhazmat_2022_130580 crossref_primary_10_1016_j_apcatb_2018_03_106 crossref_primary_10_1073_pnas_2003362117 crossref_primary_10_1016_j_apcatb_2017_11_071 crossref_primary_10_1016_j_jhazmat_2017_05_007 crossref_primary_10_1016_j_seppur_2021_120305 crossref_primary_10_1016_j_seppur_2016_02_051 crossref_primary_10_1016_j_apcatb_2016_01_059 crossref_primary_10_1021_acssuschemeng_1c01781 crossref_primary_10_1007_s10661_022_09964_z crossref_primary_10_1016_j_jhazmat_2021_125810 crossref_primary_10_1016_j_ijbiomac_2022_12_220 crossref_primary_10_1021_acsami_8b07637 crossref_primary_10_1039_C7TA07942G crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_jece_2019_103450 crossref_primary_10_1007_s11783_025_1928_4 crossref_primary_10_1016_j_jclepro_2022_133995 crossref_primary_10_1021_acssuschemeng_8b05257 crossref_primary_10_1016_j_apcatb_2023_122558 crossref_primary_10_1016_j_seppur_2024_128770 crossref_primary_10_1007_s11783_021_1457_8 crossref_primary_10_1016_j_jclepro_2022_130480 crossref_primary_10_1016_j_jhazmat_2022_129357 crossref_primary_10_1016_j_jhazmat_2023_131842 crossref_primary_10_1002_adfm_202111565 crossref_primary_10_1016_j_apcatb_2022_122136 crossref_primary_10_1016_j_cej_2021_129188 crossref_primary_10_1016_j_cej_2020_127972 crossref_primary_10_1016_j_cej_2020_127619 crossref_primary_10_1016_j_cej_2020_127738 crossref_primary_10_1016_j_cej_2022_139048 crossref_primary_10_1039_C8TA07915C crossref_primary_10_1016_j_jes_2023_05_021 crossref_primary_10_1016_j_memsci_2018_10_078 crossref_primary_10_1021_acs_est_0c08531 crossref_primary_10_1016_j_efmat_2022_12_001 crossref_primary_10_1039_D4NJ04685D crossref_primary_10_3390_molecules27207064 crossref_primary_10_1088_2053_1591_ab664f crossref_primary_10_1016_j_cej_2021_133588 crossref_primary_10_1016_j_jece_2021_105145 crossref_primary_10_1016_j_jece_2022_108210 crossref_primary_10_1016_j_seppur_2017_04_045 crossref_primary_10_1021_acs_est_5b00623 crossref_primary_10_1016_j_scitotenv_2022_158532 crossref_primary_10_1016_j_apcatb_2025_125038 crossref_primary_10_1016_j_jenvman_2023_118418 crossref_primary_10_2166_aqua_2018_096 crossref_primary_10_1016_j_cej_2014_12_065 crossref_primary_10_3390_coatings15030346 crossref_primary_10_1021_acs_est_2c04312 crossref_primary_10_1021_acs_est_9b03067 crossref_primary_10_1016_j_cej_2018_05_177 crossref_primary_10_1016_j_apcatb_2016_01_036 crossref_primary_10_1016_j_cej_2020_127842 crossref_primary_10_1016_j_jece_2024_112184 crossref_primary_10_1016_j_cej_2020_125425 crossref_primary_10_1016_j_cej_2020_124456 crossref_primary_10_1016_j_cej_2023_143339 crossref_primary_10_1016_j_watres_2018_06_038 crossref_primary_10_1016_j_cej_2020_126758 crossref_primary_10_1016_j_envadv_2023_100341 crossref_primary_10_1016_j_chemosphere_2019_125066 crossref_primary_10_1016_j_cej_2024_152212 crossref_primary_10_1016_j_jece_2022_107595 crossref_primary_10_1007_s11356_019_06390_6 crossref_primary_10_1016_j_apsusc_2019_143577 crossref_primary_10_1016_j_carbon_2017_01_058 crossref_primary_10_1016_j_scitotenv_2021_150768 crossref_primary_10_1021_acs_chemrev_1c00527 crossref_primary_10_1039_D1NJ02307A crossref_primary_10_1007_s11814_018_0074_0 crossref_primary_10_1016_j_jhazmat_2018_08_028 crossref_primary_10_1021_acs_est_8b00959 crossref_primary_10_1016_j_cej_2020_125458 crossref_primary_10_1021_acscatal_1c03099 crossref_primary_10_1016_j_jes_2021_10_030 crossref_primary_10_1016_j_scitotenv_2021_149833 crossref_primary_10_1038_s41565_018_0216_x crossref_primary_10_1007_s11356_019_06899_w crossref_primary_10_1016_j_jhazmat_2021_127082 crossref_primary_10_1016_j_jclepro_2022_134519 crossref_primary_10_1016_j_cej_2021_133004 crossref_primary_10_1080_09593330_2020_1782994 crossref_primary_10_1016_j_cej_2025_161675 crossref_primary_10_1016_j_seppur_2022_121716 crossref_primary_10_1016_j_seppur_2022_121717 crossref_primary_10_1080_17480272_2022_2095670 crossref_primary_10_1016_j_cej_2017_03_047 crossref_primary_10_1021_acs_est_6b02841 crossref_primary_10_1016_j_cej_2023_145973 crossref_primary_10_1016_j_jece_2017_11_014 crossref_primary_10_1016_j_jwpe_2024_106423 crossref_primary_10_1016_j_molcata_2015_10_036 crossref_primary_10_1016_j_chemosphere_2021_129629 crossref_primary_10_1016_j_cej_2023_144765 crossref_primary_10_1016_j_matchemphys_2022_126257 crossref_primary_10_1016_j_jwpe_2024_106307 crossref_primary_10_1007_s40831_023_00758_2 crossref_primary_10_2166_wst_2021_369 crossref_primary_10_1016_j_jcis_2020_11_106 crossref_primary_10_1016_j_jece_2021_106267 crossref_primary_10_1016_j_cej_2021_132387 crossref_primary_10_1016_j_jhazmat_2016_10_013 crossref_primary_10_1016_j_apcatb_2023_123606 crossref_primary_10_1016_j_watres_2017_02_016 crossref_primary_10_1016_j_jhazmat_2021_128044 crossref_primary_10_1007_s11814_024_00108_2 crossref_primary_10_1016_j_jhazmat_2022_130536 crossref_primary_10_1016_j_seppur_2022_122912 crossref_primary_10_1016_j_xcrp_2021_100550 crossref_primary_10_1016_j_cej_2020_125356 crossref_primary_10_1016_j_seppur_2021_119697 crossref_primary_10_1016_j_jhazmat_2017_11_023 crossref_primary_10_1039_C9EN00500E crossref_primary_10_1016_j_jhazmat_2020_123742 crossref_primary_10_1007_s40843_024_2979_6 crossref_primary_10_1016_j_seppur_2025_132396 crossref_primary_10_1039_C9GC01843C crossref_primary_10_1002_ange_202207268 crossref_primary_10_1021_acs_est_6b00632 crossref_primary_10_1016_j_chemosphere_2021_130949 crossref_primary_10_1016_j_jhazmat_2016_10_020 crossref_primary_10_1039_C5CC05101K crossref_primary_10_2139_ssrn_4114269 crossref_primary_10_1016_j_watres_2016_02_045 crossref_primary_10_1016_j_cej_2017_10_097 crossref_primary_10_1007_s11356_023_30163_x crossref_primary_10_1016_j_apcatb_2019_117783 crossref_primary_10_1016_j_cej_2021_134238 crossref_primary_10_1016_j_apcatb_2019_117782 crossref_primary_10_1016_j_jece_2021_106276 crossref_primary_10_1016_j_cattod_2019_02_025 crossref_primary_10_1021_acs_est_4c06608 crossref_primary_10_1016_j_cej_2024_149003 crossref_primary_10_1016_j_jcis_2016_01_067 crossref_primary_10_1016_j_cej_2020_125351 crossref_primary_10_1016_j_surfin_2021_101482 crossref_primary_10_1039_D1RA08954D crossref_primary_10_3390_w16060875 crossref_primary_10_1016_j_seppur_2022_121961 crossref_primary_10_1021_acs_est_8b01817 crossref_primary_10_1016_j_seppur_2019_115967 crossref_primary_10_1016_j_cej_2017_01_118 crossref_primary_10_1016_j_cej_2020_125107 crossref_primary_10_1016_j_jaap_2023_106310 crossref_primary_10_1016_j_jhazmat_2022_129655 crossref_primary_10_1021_acs_accounts_7b00535 crossref_primary_10_1016_j_optmat_2022_113088 crossref_primary_10_1016_j_watres_2017_04_070 crossref_primary_10_1021_acs_est_6b05090 crossref_primary_10_1016_j_cej_2021_133134 crossref_primary_10_1016_j_chemosphere_2023_137810 crossref_primary_10_1039_D0EN00840K crossref_primary_10_1016_j_watres_2020_115862 crossref_primary_10_1016_j_jtice_2019_05_022 crossref_primary_10_1016_j_jhazmat_2021_127054 crossref_primary_10_1016_j_apcatb_2020_118819 crossref_primary_10_1016_j_jece_2022_107559 crossref_primary_10_1016_j_cej_2018_03_010 crossref_primary_10_1016_j_jcis_2018_05_077 crossref_primary_10_1016_j_cej_2018_08_216 crossref_primary_10_1016_j_cej_2023_146234 crossref_primary_10_1016_j_envpol_2016_04_088 crossref_primary_10_1016_j_watres_2024_122224 crossref_primary_10_1016_j_psep_2024_08_083 crossref_primary_10_1021_acs_est_6b02079 crossref_primary_10_1016_j_cej_2020_124725 crossref_primary_10_5004_dwt_2023_29657 crossref_primary_10_1016_j_jhazmat_2020_122316 crossref_primary_10_1016_j_wasman_2023_10_028 crossref_primary_10_1016_j_jssc_2021_122565 crossref_primary_10_1016_j_cclet_2023_109334 crossref_primary_10_1016_j_seppur_2024_128024 crossref_primary_10_3390_min10010002 crossref_primary_10_1016_j_cej_2022_139545 crossref_primary_10_1021_acscatal_5b00774 crossref_primary_10_1039_D1TA02953C crossref_primary_10_1073_pnas_2119492119 crossref_primary_10_1016_j_watres_2022_118529 crossref_primary_10_1016_j_cej_2019_123057 crossref_primary_10_1016_j_memsci_2018_11_057 crossref_primary_10_1016_j_scitotenv_2019_133836 crossref_primary_10_1016_j_cej_2019_03_249 crossref_primary_10_1039_D1EW00683E crossref_primary_10_1016_j_chemosphere_2020_126655 crossref_primary_10_1016_j_chemosphere_2018_06_019 crossref_primary_10_1016_j_envres_2022_113970 crossref_primary_10_1021_acs_est_2c00369 crossref_primary_10_1016_j_jphotochem_2021_113291 crossref_primary_10_1016_j_cej_2020_124714 crossref_primary_10_1016_j_cej_2022_137493 crossref_primary_10_1016_j_chemosphere_2023_140203 crossref_primary_10_1016_j_scitotenv_2019_02_173 crossref_primary_10_1016_j_apsusc_2017_05_224 crossref_primary_10_1039_D3RA01291C crossref_primary_10_1016_j_chemosphere_2018_07_043 crossref_primary_10_1016_j_watres_2021_117288 crossref_primary_10_1016_j_apcatb_2020_118601 crossref_primary_10_1016_j_cej_2024_154133 crossref_primary_10_2139_ssrn_4183196 crossref_primary_10_1021_acs_analchem_4c00019 crossref_primary_10_1016_j_envres_2020_109922 crossref_primary_10_1002_adma_202311416 crossref_primary_10_1016_j_cej_2021_131776 crossref_primary_10_1016_j_cej_2021_133834 crossref_primary_10_1016_j_cej_2023_145012 crossref_primary_10_1016_j_seppur_2023_124769 crossref_primary_10_1080_09593330_2017_1293164 crossref_primary_10_1016_j_cej_2020_124864 crossref_primary_10_1016_j_seppur_2017_11_072 crossref_primary_10_1016_j_seppur_2020_117232 crossref_primary_10_1016_j_jhazmat_2022_129722 crossref_primary_10_1007_s11356_022_20847_1 crossref_primary_10_1016_j_apsusc_2024_160630 crossref_primary_10_1080_21622515_2021_1986575 crossref_primary_10_1016_j_cej_2019_04_135 crossref_primary_10_1016_j_cej_2021_129590 crossref_primary_10_1016_j_cej_2018_02_125 crossref_primary_10_1016_j_jhazmat_2024_136621 crossref_primary_10_1016_j_cej_2019_124009 crossref_primary_10_1021_acssuschemeng_0c00882 crossref_primary_10_1016_j_envres_2022_113601 crossref_primary_10_1016_j_inoche_2020_108282 crossref_primary_10_1016_j_cej_2023_146565 crossref_primary_10_1016_j_jwpe_2025_106989 crossref_primary_10_1016_j_scitotenv_2020_140828 crossref_primary_10_1016_j_jhazmat_2022_129611 crossref_primary_10_1021_acssuschemeng_8b01634 crossref_primary_10_1021_acsanm_3c03743 crossref_primary_10_1021_acsestengg_1c00464 crossref_primary_10_1002_adsu_201900149 crossref_primary_10_1016_j_envres_2021_112160 crossref_primary_10_1016_j_jtice_2019_02_033 crossref_primary_10_1039_D2TC01835G crossref_primary_10_3390_catal14110789 crossref_primary_10_1016_j_apsusc_2020_146482 crossref_primary_10_1016_j_jallcom_2020_154036 crossref_primary_10_3390_catal12030342 crossref_primary_10_1007_s11164_019_03807_2 crossref_primary_10_1021_acs_est_3c04134 crossref_primary_10_1002_adma_202401454 crossref_primary_10_1016_j_cej_2019_122070 crossref_primary_10_3390_catal12080882 crossref_primary_10_1016_j_cclet_2020_08_014 crossref_primary_10_1016_j_cej_2017_07_132 crossref_primary_10_1016_j_cej_2018_03_050 crossref_primary_10_1016_j_jhazmat_2016_05_031 crossref_primary_10_1016_j_cej_2021_129122 crossref_primary_10_1021_acsestwater_2c00237 crossref_primary_10_1016_j_jes_2019_02_015 crossref_primary_10_1016_j_jhazmat_2020_124411 crossref_primary_10_1016_j_jhazmat_2022_128975 crossref_primary_10_1016_j_watres_2022_118322 crossref_primary_10_1016_j_cclet_2021_10_005 crossref_primary_10_1016_j_jhazmat_2022_129944 crossref_primary_10_1021_acs_est_1c05374 crossref_primary_10_1002_advs_202307151 crossref_primary_10_1016_j_seppur_2020_118025 crossref_primary_10_1016_j_apcata_2020_117828 crossref_primary_10_1016_j_seppur_2022_123052 crossref_primary_10_1016_j_jcis_2020_03_116 crossref_primary_10_1007_s11270_022_05848_7 crossref_primary_10_1016_j_jre_2021_07_013 crossref_primary_10_1021_acs_est_3c05153 crossref_primary_10_1016_j_chemosphere_2017_12_152 crossref_primary_10_1016_j_jece_2017_01_013 crossref_primary_10_1007_s11696_020_01354_4 crossref_primary_10_1007_s11356_022_19230_x crossref_primary_10_1016_j_cej_2018_01_034 crossref_primary_10_1007_s11356_018_3323_1 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1016_j_scitotenv_2020_138826 crossref_primary_10_1016_j_catcom_2017_08_016 crossref_primary_10_1016_j_jhazmat_2021_126152 crossref_primary_10_1016_j_envres_2021_112060 crossref_primary_10_1016_j_jhazmat_2020_123691 crossref_primary_10_1021_acs_est_7b02519 crossref_primary_10_1016_j_jhazmat_2021_126029 crossref_primary_10_1016_j_watres_2024_122255 crossref_primary_10_1016_j_apcatb_2019_118232 crossref_primary_10_1016_j_cherd_2024_09_030 crossref_primary_10_1016_j_watres_2019_115043 crossref_primary_10_1007_s11814_019_0398_4 crossref_primary_10_1016_j_chemosphere_2018_01_079 crossref_primary_10_1021_acs_est_6b00701 crossref_primary_10_1016_j_cej_2018_09_203 crossref_primary_10_1016_j_apcatb_2024_124118 crossref_primary_10_1016_j_colsurfa_2020_125895 crossref_primary_10_1016_j_chemosphere_2022_135635 crossref_primary_10_1021_acs_est_0c04867 crossref_primary_10_1016_j_apcatb_2018_07_058 crossref_primary_10_1016_j_cej_2021_129027 crossref_primary_10_1039_C6CY02317G crossref_primary_10_1016_j_jece_2021_106545 crossref_primary_10_1016_j_jhazmat_2024_135946 crossref_primary_10_1016_j_apcatb_2017_10_007 crossref_primary_10_1016_j_chemosphere_2016_11_134 crossref_primary_10_1016_j_cej_2020_124549 crossref_primary_10_1016_j_cej_2020_125638 crossref_primary_10_1016_j_jhazmat_2020_124436 crossref_primary_10_5004_dwt_2021_27472 crossref_primary_10_1016_j_cej_2022_137188 crossref_primary_10_1016_j_cej_2020_127818 crossref_primary_10_1016_j_cej_2024_152020 crossref_primary_10_1016_j_cej_2016_07_027 crossref_primary_10_1016_j_jclepro_2021_128781 crossref_primary_10_1016_j_memsci_2024_123444 crossref_primary_10_1016_j_apcatb_2017_11_051 crossref_primary_10_1016_j_scitotenv_2022_160097 crossref_primary_10_1016_j_jece_2023_110729 crossref_primary_10_1016_j_jes_2020_04_026 crossref_primary_10_1016_j_jmst_2022_05_023 crossref_primary_10_1016_j_apcatb_2022_121753 crossref_primary_10_1016_j_watres_2017_01_052 crossref_primary_10_1016_j_jiec_2024_03_016 crossref_primary_10_1016_j_cej_2019_03_261 crossref_primary_10_2139_ssrn_3989903 crossref_primary_10_1016_j_jhazmat_2022_128726 crossref_primary_10_54097_hset_v67i_11575 crossref_primary_10_1021_acs_est_1c05048 crossref_primary_10_1007_s00706_022_02897_w crossref_primary_10_1021_acsestengg_3c00521 crossref_primary_10_1016_j_cej_2020_127921 crossref_primary_10_1016_j_seppur_2021_118772 crossref_primary_10_1016_j_jhazmat_2015_04_014 crossref_primary_10_3390_environments10080147 crossref_primary_10_1016_j_watres_2021_117266 crossref_primary_10_1016_j_jece_2023_111712 crossref_primary_10_1016_j_cej_2019_04_076 crossref_primary_10_1016_j_scitotenv_2019_134715 crossref_primary_10_1016_j_cej_2019_123361 crossref_primary_10_1016_j_jcis_2022_07_002 crossref_primary_10_1039_D1TA01063H crossref_primary_10_1016_j_jece_2022_107276 crossref_primary_10_1016_j_jhazmat_2024_134871 crossref_primary_10_1016_j_watres_2018_10_087 crossref_primary_10_1016_j_jhazmat_2023_133009 crossref_primary_10_1039_D4QI01635A crossref_primary_10_1016_j_watres_2023_119926 crossref_primary_10_1016_j_jclepro_2023_139334 crossref_primary_10_1016_j_cej_2021_128406 crossref_primary_10_1016_j_cej_2016_05_085 crossref_primary_10_1021_acs_est_9b07082 crossref_primary_10_1016_j_jhazmat_2020_124454 crossref_primary_10_2174_2213335610666230213113809 crossref_primary_10_1039_C5RA21117D crossref_primary_10_1016_j_watres_2024_121417 crossref_primary_10_1016_j_colsurfa_2023_131192 crossref_primary_10_1016_j_jwpe_2023_103981 crossref_primary_10_1016_j_jclepro_2021_128441 crossref_primary_10_1016_j_jes_2019_11_014 crossref_primary_10_1039_D2EE03357G crossref_primary_10_1016_j_cej_2020_125094 crossref_primary_10_1016_j_cej_2021_129971 crossref_primary_10_1016_j_cej_2018_08_049 crossref_primary_10_1002_slct_202304966 crossref_primary_10_1016_j_cej_2018_09_093 crossref_primary_10_1016_j_cej_2024_148789 crossref_primary_10_1016_j_chemosphere_2018_11_200 crossref_primary_10_1016_j_jcis_2021_06_099 crossref_primary_10_1002_wer_10927 crossref_primary_10_1021_es5061512 crossref_primary_10_3390_catal10121373 crossref_primary_10_1016_j_jhazmat_2023_133344 crossref_primary_10_1039_C7TA10877J crossref_primary_10_1515_revce_2022_0037 crossref_primary_10_5004_dwt_2022_28647 crossref_primary_10_1016_j_cej_2021_131930 crossref_primary_10_1021_acsami_9b11322 crossref_primary_10_1021_acsestengg_1c00091 crossref_primary_10_1021_acs_iecr_9b04581 crossref_primary_10_1007_s10853_022_07683_x crossref_primary_10_1002_smll_201805478 crossref_primary_10_1016_j_apcatb_2022_121709 crossref_primary_10_1016_j_jhazmat_2020_124351 crossref_primary_10_1016_j_cej_2021_130743 crossref_primary_10_1016_j_scitotenv_2024_178216 crossref_primary_10_1016_j_seppur_2021_120086 crossref_primary_10_1007_s11157_023_09645_4 crossref_primary_10_1016_j_cej_2017_06_068 crossref_primary_10_1016_j_seppur_2020_117630 crossref_primary_10_1016_j_envpol_2023_121685 crossref_primary_10_1039_D2EN00305H crossref_primary_10_1016_j_cej_2017_06_067 crossref_primary_10_1016_j_jhazmat_2024_133753 crossref_primary_10_1016_j_cej_2023_141719 crossref_primary_10_1007_s11356_022_21747_0 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1016_j_jhazmat_2016_07_038 crossref_primary_10_1016_j_seppur_2017_07_006 crossref_primary_10_1016_j_jwpe_2022_103239 crossref_primary_10_1021_acs_est_9b01449 crossref_primary_10_2139_ssrn_4132895 crossref_primary_10_1016_j_apcatb_2016_12_046 crossref_primary_10_1016_j_cej_2021_131721 crossref_primary_10_1016_j_cej_2020_127172 crossref_primary_10_1007_s42114_023_00757_7 crossref_primary_10_1016_j_cej_2019_123555 crossref_primary_10_1016_j_scitotenv_2020_141095 crossref_primary_10_1016_j_jclepro_2023_138336 crossref_primary_10_1016_j_scitotenv_2017_07_151 crossref_primary_10_1016_j_jes_2021_08_003 crossref_primary_10_1016_j_jhazmat_2018_05_065 crossref_primary_10_1016_j_seppur_2022_122107 crossref_primary_10_1016_j_ecoenv_2019_109891 crossref_primary_10_1016_j_cej_2021_130998 crossref_primary_10_1016_j_seppur_2023_124936 crossref_primary_10_1021_acsomega_3c04333 crossref_primary_10_1016_j_cej_2016_11_002 crossref_primary_10_1007_s41742_020_00296_9 crossref_primary_10_1016_j_apcatb_2016_04_043 crossref_primary_10_1016_j_jhazmat_2021_126686 crossref_primary_10_1021_acscatal_1c02031 crossref_primary_10_1016_j_cej_2018_08_066 crossref_primary_10_1021_acs_est_7b00399 crossref_primary_10_1016_j_cej_2022_136100 crossref_primary_10_1021_acs_est_6b04528 crossref_primary_10_1016_j_jclepro_2021_129652 crossref_primary_10_1016_j_chemosphere_2023_138788 crossref_primary_10_1007_s11356_018_2974_2 crossref_primary_10_1016_j_seppur_2024_129287 crossref_primary_10_1021_acsami_1c03601 crossref_primary_10_1002_slct_202203483 crossref_primary_10_1021_acs_est_8b00015 crossref_primary_10_3390_ijerph192214805 crossref_primary_10_1007_s11356_021_17088_z crossref_primary_10_1016_j_chemosphere_2016_02_055 crossref_primary_10_3390_su15129601 crossref_primary_10_1016_j_jcis_2020_05_096 crossref_primary_10_1021_acs_est_9b03873 crossref_primary_10_1016_j_cej_2023_147369 crossref_primary_10_1016_j_envres_2024_120634 crossref_primary_10_1016_j_apcatb_2018_09_056 crossref_primary_10_1016_j_watres_2024_122783 crossref_primary_10_1039_C7TA11052A crossref_primary_10_3390_w14233816 crossref_primary_10_1007_s11356_024_32232_1 crossref_primary_10_1016_j_cej_2019_02_196 crossref_primary_10_1016_j_jwpe_2023_103781 crossref_primary_10_1007_s11356_017_8811_1 crossref_primary_10_1016_j_apcata_2017_03_020 crossref_primary_10_1021_acs_est_1c01618 crossref_primary_10_1021_acs_iecr_9b05346 crossref_primary_10_3390_nano13182565 crossref_primary_10_1016_j_cej_2022_137686 crossref_primary_10_1016_j_mtcomm_2022_105022 crossref_primary_10_1021_acs_est_9b03648 crossref_primary_10_1016_j_cej_2021_131741 crossref_primary_10_1016_j_cej_2024_156009 crossref_primary_10_1002_advs_202101824 crossref_primary_10_1021_acsestengg_2c00129 crossref_primary_10_1016_j_cej_2019_122563 crossref_primary_10_1016_j_apcatb_2024_124520 crossref_primary_10_1016_j_cej_2021_129667 crossref_primary_10_1016_j_mssp_2022_106502 crossref_primary_10_1016_j_molliq_2024_125468 crossref_primary_10_1002_anie_202207268 crossref_primary_10_1016_j_watres_2020_116371 crossref_primary_10_1016_j_envpol_2021_117991 crossref_primary_10_1016_j_seppur_2021_118717 crossref_primary_10_1021_acsami_0c19013 crossref_primary_10_1016_j_cej_2020_126090 crossref_primary_10_1016_j_cej_2020_127185 crossref_primary_10_1080_03067319_2022_2060091 crossref_primary_10_1021_acs_est_9b01354 crossref_primary_10_1016_j_cej_2018_08_038 crossref_primary_10_1016_j_jece_2025_116114 crossref_primary_10_1016_j_chemosphere_2021_131237 crossref_primary_10_1016_j_ces_2024_120791 crossref_primary_10_1016_j_cej_2022_136250 crossref_primary_10_1016_S1872_2067_23_64611_X crossref_primary_10_1016_j_apcatb_2020_119585 crossref_primary_10_1016_j_jece_2023_109460 crossref_primary_10_1016_j_chemosphere_2019_124687 crossref_primary_10_1016_j_carbon_2019_09_033 crossref_primary_10_1016_j_jece_2023_111424 crossref_primary_10_1016_j_jwpe_2021_102078 crossref_primary_10_1016_j_cej_2022_140629 crossref_primary_10_1016_j_watres_2018_01_050 crossref_primary_10_1016_j_watres_2018_09_037 crossref_primary_10_1016_j_cej_2022_136135 crossref_primary_10_12677_OJNS_2023_113058 crossref_primary_10_1016_j_jece_2023_109586 crossref_primary_10_1016_j_cej_2023_144191 crossref_primary_10_1021_acs_est_8b04669 crossref_primary_10_1016_j_cej_2018_07_103 crossref_primary_10_1016_j_dib_2020_105626 crossref_primary_10_1016_j_seppur_2023_125811 crossref_primary_10_1039_C5NR01428J crossref_primary_10_1016_j_seppur_2023_123997 crossref_primary_10_1002_cctc_202301108 crossref_primary_10_1016_j_jes_2021_08_028 crossref_primary_10_1016_j_jhazmat_2021_127612 crossref_primary_10_1016_j_envint_2024_108466 crossref_primary_10_1016_j_cej_2021_130679 crossref_primary_10_1007_s11356_022_23024_6 crossref_primary_10_1016_j_ijbiomac_2024_137390 crossref_primary_10_1016_j_cclet_2024_109882 crossref_primary_10_1016_j_apcatb_2016_04_003 crossref_primary_10_1021_acs_est_2c01759 crossref_primary_10_1016_j_surfin_2023_103338 crossref_primary_10_1016_j_jiec_2018_11_026 crossref_primary_10_1039_D3SC05275C crossref_primary_10_1038_s44221_025_00400_3 crossref_primary_10_1002_wer_1090 crossref_primary_10_1016_j_chemosphere_2017_12_088 crossref_primary_10_1016_j_chemosphere_2023_138469 crossref_primary_10_5004_dwt_2021_27741 crossref_primary_10_1016_j_cej_2018_09_184 crossref_primary_10_1016_j_seppur_2023_125820 crossref_primary_10_1016_j_chemosphere_2023_138589 crossref_primary_10_1016_j_cej_2018_09_066 crossref_primary_10_1016_j_cej_2019_01_040 crossref_primary_10_1016_j_seppur_2023_125823 crossref_primary_10_1021_acs_est_1c03823 |
Cites_doi | 10.1021/es061395a 10.1016/j.cej.2010.12.017 10.1021/es035121o 10.1021/es010216g 10.1021/es202209j 10.1021/es1013714 10.1016/j.chemosphere.2005.05.029 10.1016/S0021-9673(96)01090-4 10.1021/es404118q 10.1021/es300658u 10.1016/0016-7037(94)00282-Q 10.1021/es050634b 10.1016/j.scitotenv.2011.12.004 10.1016/j.watres.2011.09.015 10.1021/es400728c 10.1021/jp980709g 10.1021/es903411a 10.1016/j.jhazmat.2011.09.011 10.1021/es0601033 10.1021/es0263792 10.1021/es2017363 10.1021/es0484799 10.1126/science.238.4828.783 10.1021/es3011546 10.1021/es8019462 10.1021/es304721g 10.1021/es400262n 10.1080/10643380802039303 10.1021/jp983819w 10.1021/es0484754 10.1021/j100629a017 10.1016/j.jhazmat.2008.07.110 10.1021/es4019145 10.1021/es062237m 10.1016/j.jconhyd.2010.04.002 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Chemical Society May 20, 2014 Copyright |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society May 20, 2014 – notice: Copyright |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 1XC VOOES |
DOI | 10.1021/es501218f |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Pollution Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 5875 |
ExternalDocumentID | oai_HAL_hal_01211451v1 3324646691 24779765 28512966 10_1021_es501218f b790979905 |
Genre | Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7UA F1W H97 L.G 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-a508t-f6d7e1948c083567c7ea62a0294693e5d105fa9028932a404480d5f11e45e63d3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Jul 10 07:16:32 EDT 2025 Fri Jul 11 05:49:04 EDT 2025 Fri Jul 11 08:34:29 EDT 2025 Thu Jul 10 22:36:16 EDT 2025 Mon Jun 30 04:09:30 EDT 2025 Wed Feb 19 01:56:39 EST 2025 Wed Apr 02 07:18:30 EDT 2025 Tue Jul 01 04:28:46 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Thu Aug 27 13:42:24 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Water treatment Chemical activation Decontamination Industrial waste water Physicochemical purification Oxidation Water pollution Oxidant Waste water purification Copper oxide Ground water Inorganic radical anion |
Language | English |
License | CC BY 4.0 Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a508t-f6d7e1948c083567c7ea62a0294693e5d105fa9028932a404480d5f11e45e63d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0245-8536 0000-0003-4888-1604 0000-0003-1048-4443 |
OpenAccessLink | https://enpc.hal.science/hal-01211451 |
PMID | 24779765 |
PQID | 1532260264 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_01211451v1 proquest_miscellaneous_2000215444 proquest_miscellaneous_1560134348 proquest_miscellaneous_1526732683 proquest_journals_1532260264 pubmed_primary_24779765 pascalfrancis_primary_28512966 crossref_citationtrail_10_1021_es501218f crossref_primary_10_1021_es501218f acs_journals_10_1021_es501218f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-20 |
PublicationDateYYYYMMDD | 2014-05-20 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Li C. (ref34/cit34) 1999; 103 Ahmad M. (ref18/cit18) 2010; 115 Saien J. (ref8/cit8) 2011; 167 Zhang T. (ref21/cit21) 2013; 47 Zafiriou O. C. (ref31/cit31) 1998; 102 Zou J. (ref15/cit15) 2013; 47 Barták P. (ref26/cit26) 1997; 767 Furman O. S. (ref3/cit3) 2010; 44 Hayes K. F. (ref32/cit32) 1987; 238 Liang C. J. (ref14/cit14) 2010; 44 Waldemer R. H. (ref13/cit13) 2007; 41 Anipsitakis G. P. (ref1/cit1) 2004; 38 Zhang T. (ref29/cit29) 2011; 45 Yang Y. (ref28/cit28) 2014; 48 Fang G. D. (ref17/cit17) 2013; 47 Kimura M. (ref25/cit25) 1973; 77 Shih K. (ref37/cit37) 2006; 40 Johnson R. L. (ref2/cit2) 2008; 42 Lau T. K. (ref7/cit7) 2007; 41 Anipsitakis G. P. (ref22/cit22) 2006; 40 Li S.-X. (ref11/cit11) 2009; 164 Querol X. (ref36/cit36) 2006; 62 Teel A. L. (ref19/cit19) 2011; 196 Fang J. Y. (ref23/cit23) 2012; 46 Drzewicz P. (ref5/cit5) 2012; 46 Deng Y. (ref10/cit10) 2011; 45 Hori H. (ref20/cit20) 2005; 39 Farquhar M. L. (ref33/cit33) 2002; 36 Tsitonaki A. (ref9/cit9) 2010; 40 Westerhoff P. (ref35/cit35) 2005; 39 Anipsitakis G. P. (ref6/cit6) 2003; 37 Liu C. (ref24/cit24) 2012; 416 Guan Y. H. (ref4/cit4) 2011; 45 Gu B. (ref27/cit27) 1995; 59 Stumm W. (ref30/cit30) 1992 Lau T. K. (ref12/cit12) 2007; 41 Ahmad M. (ref16/cit16) 2013; 47 |
References_xml | – volume: 41 start-page: 613 issue: 2 year: 2007 ident: ref12/cit12 publication-title: Environ. Sci. Technol. doi: 10.1021/es061395a – volume: 167 start-page: 172 issue: 1 year: 2011 ident: ref8/cit8 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.12.017 – volume: 38 start-page: 3705 issue: 13 year: 2004 ident: ref1/cit1 publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 36 start-page: 1757 issue: 8 year: 2002 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es010216g – volume: 45 start-page: 9339 issue: 21 year: 2011 ident: ref29/cit29 publication-title: Environ. Sci. Technol. doi: 10.1021/es202209j – volume: 44 start-page: 6423 issue: 16 year: 2010 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 62 start-page: 171 issue: 2 year: 2006 ident: ref36/cit36 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.05.029 – volume: 767 start-page: 171 issue: 1 year: 1997 ident: ref26/cit26 publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(96)01090-4 – volume: 48 start-page: 2344 issue: 4 year: 2014 ident: ref28/cit28 publication-title: Environ. Sci. Technol. doi: 10.1021/es404118q – volume: 46 start-page: 8976 issue: 16 year: 2012 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es300658u – volume: 59 start-page: 219 issue: 2 year: 1995 ident: ref27/cit27 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)00282-Q – volume: 40 start-page: 1000 issue: 3 year: 2006 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es050634b – volume: 416 start-page: 507 year: 2012 ident: ref24/cit24 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.12.004 – volume: 45 start-page: 6189 issue: 18 year: 2011 ident: ref10/cit10 publication-title: Water Res. doi: 10.1016/j.watres.2011.09.015 – volume: 47 start-page: 5864 issue: 11 year: 2013 ident: ref16/cit16 publication-title: Environ. Sci. Technol. doi: 10.1021/es400728c – volume: 102 start-page: 5693 issue: 28 year: 1998 ident: ref31/cit31 publication-title: J. Phys. Chem. A doi: 10.1021/jp980709g – volume: 44 start-page: 8203 issue: 21 year: 2010 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es903411a – volume: 196 start-page: 153 issue: 0 year: 2011 ident: ref19/cit19 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.09.011 – volume: 40 start-page: 5520 issue: 17 year: 2006 ident: ref37/cit37 publication-title: Environ. Sci. Technol. doi: 10.1021/es0601033 – volume: 41 start-page: 613 issue: 2 year: 2007 ident: ref7/cit7 publication-title: Environ. Sci. Technol. doi: 10.1021/es061395a – volume: 37 start-page: 4790 issue: 20 year: 2003 ident: ref6/cit6 publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 45 start-page: 9308 issue: 21 year: 2011 ident: ref4/cit4 publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 39 start-page: 6649 issue: 17 year: 2005 ident: ref35/cit35 publication-title: Environ. Sci. Technol. doi: 10.1021/es0484799 – volume: 238 start-page: 783 issue: 4828 year: 1987 ident: ref32/cit32 publication-title: Science doi: 10.1126/science.238.4828.783 – volume: 46 start-page: 8984 issue: 16 year: 2012 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es3011546 – volume: 42 start-page: 9350 issue: 24 year: 2008 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es8019462 – volume: 47 start-page: 2784 issue: 6 year: 2013 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es304721g – volume: 47 start-page: 4605 issue: 9 year: 2013 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es400262n – volume: 40 start-page: 55 issue: 1 year: 2010 ident: ref9/cit9 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380802039303 – volume-title: Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems year: 1992 ident: ref30/cit30 – volume: 103 start-page: 6653 issue: 32 year: 1999 ident: ref34/cit34 publication-title: J. Phys. Chem. B doi: 10.1021/jp983819w – volume: 39 start-page: 2383 issue: 7 year: 2005 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es0484754 – volume: 77 start-page: 1265 issue: 10 year: 1973 ident: ref25/cit25 publication-title: J. Phys. Chem. doi: 10.1021/j100629a017 – volume: 164 start-page: 26 issue: 1 year: 2009 ident: ref11/cit11 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.07.110 – volume: 47 start-page: 11685 issue: 20 year: 2013 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es4019145 – volume: 41 start-page: 1010 issue: 3 year: 2007 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es062237m – volume: 115 start-page: 34 issue: 1 year: 2010 ident: ref18/cit18 publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.04.002 |
SSID | ssj0002308 |
Score | 2.629997 |
Snippet | Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application... |
SourceID | hal proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5868 |
SubjectTerms | 2,4-dichlorophenol Aluminum Hydroxide - chemistry anions Applied sciences Chemical compounds Chemical contaminants Chemical reactions Chemical Sciences chlorides Chlorides - chemistry chlorine Chlorophenols - chemistry Copper - chemistry cupric oxide Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental Sciences Ethanol - chemistry Exact sciences and technology free radicals groundwater groundwater contamination Groundwaters Hydrogen-Ion Concentration Industrial wastewaters Ions Kinetics Natural water pollution Nutrient removal Osmolar Concentration oxidants Oxidation Oxidation-Reduction pollutants Pollution Pollution, environment geology Rheology Solutions sulfates Sulfates - chemistry Temperature toxicity wastewater Wastewaters Water Pollutants - chemistry Water pollution Water treatment and pollution |
Title | Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation |
URI | http://dx.doi.org/10.1021/es501218f https://www.ncbi.nlm.nih.gov/pubmed/24779765 https://www.proquest.com/docview/1532260264 https://www.proquest.com/docview/1526732683 https://www.proquest.com/docview/1560134348 https://www.proquest.com/docview/2000215444 https://enpc.hal.science/hal-01211451 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB615QJCPAqFhVKZx4FL2nX8So6rdqsVgqpqqdhb5NiOQKx2qybbA7-emby6Fd1ytSeK48zYnzWe7wP4lCgrpM9NhAthHkmnQpQmkuNimBqvRK4tpwLnbyd6ciG_TNV0Az6uyeDH_CCUinjHkmITHsQag5fwz-F5v9wihk46mYJU6GlHH7T6KG09rry19Wz-pIuPjy9tiXNRNCIW61FmvdscP4WjrmanuWTye39Z5fvuz78Ujvd9yDN40qJNNmrc4zlshPk2PFrhINyGnfFNqRuatrFevoDrcc0ugc3sNNA4_K9yOSsQm7KR60TRWFtowE4WFTsLMyqaYth83lqe2ToPxBp26_oJRMnsB_ZdsVOSWSYVY3ZElBWNutNLuDgefz-cRK1KQ2QR3FVRob0JPJWJIzSnjTPB6tgO4xRP3iIojwiusEQSg1DRyiGeB4deFZwHqYIWXuzA1nwxD6-Bpc6TRmAuCvQXhI45JSULUeR4JvQuNQPYw9-YtVFWZnUCPeZZP7MD-Nz94cy1HOcktTG7y_RDb3rZEHvcaYRu0vcTFfdk9DWjtpobTyp-zXFUt7yoN48TQlNaD2C3c6uVsStcSkn_Sw7gfd-NsU0JGzsPiyXZxNogvk7EfTZ4pBZSyGS9DZVjxUS7hO961bj1zSClMQhJ1Zv_ze1beIhgUdLNiXi4C1vV1TK8Q0BW5Xt1QP4FACctDA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoOQBCPEoLgVIM4sBlS7x-7R6jkipAGlV9iNxWXtsrEFFSdTc98OuZ8T6Soha42rO7E2dsf9Z4vo-Q94k0XLhcR7AQ5pGw0kdpIhgshql2kufKMCxwPpqo0bn4MpXThiYHa2HAiRLeVIYk_opdgH30pUT6saTYIHcBhMQYzYOD027VBSidtGoFKVfTlkVo_VHcgWx5bQfa-I73Hx9emBKGpKi1LG4Hm2HTOXxcqxcFd8Ndk5_7yyrft7_-YHL8v9_zhDxqsCcd1MHylNzx8y3yYI2RcIvsDFeFb2DazPzyGbkaBq4JaKbHHt1xP8rlrACkSge2lUijTdkBnSwqeuJnWEJFofm0sTwxIStEa67r8ARgZvoN-i7pMYouo6Yx_YQEFrXW0zY5PxyeHYyiRrMhMgD1qqhQTnuWisQitlPaam9UbPpxCudw7qUDPFcYpIwB4GhEH06HfScLxryQXnHHd8jmfDH3LwhNrUPFwJwXED0AJHNMURa8yOGE6Gyqe2QPBjZr5lyZhXR6zLJuZHvkQ_tHZ7ZhPEfhjdlNpu8604ua5uNGI4iWrh-JuUeDcYZtgSlPSHbFwKtrwdSZxwliK6V6ZLeNrjXfJSysqAYmeuRt1w0zHdM3Zu4XS7SJlQa0nfC_2cABmwsuktttsDgrRhIm-NbzOrpXTgqtAaDKl_8a2zfk3ujsaJyNP0--viL3AUYKvFMR93fJZnW59K8BqlX5XpijvwEjnjVt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ISFQxaP0EShlQRy4uMTeh-1j1CYKUELUUpGbtfbuCtQoiWqnB349M341RS1w3R3bk83s7DeanW8A3kVSc2HS0ENHmHoik9aLI-GjM4xDI3mqtE8Fzl9GanghPk3kpA4UqRYGlcjxTXmZxKddvTCuZhjwP9hcEgVZ5NZhk9J1ZNG94_PW8yKcjpqOBTFXk4ZJaPVROoWy_NYptP6D7kBuLXSOy-Kqfhb3A87y4Bk8ga-tyuV9k8ujZZEeZb_-YHP8_9_0FB7XGJT1KqN5Bmt2tg2PVpgJt2G3f1MAh6K1B8ifw3W_5JzAYTa2pJL5mS-nDhEr62VNqzRWlx-w0bxgZ3ZKpVQMh89ryTNdZodYxXldPoHYmX3HuSs2pubL1NuYnRCRRdXzaQcuBv1vx0Ov7t3gaYR8heeUCa0fiygjjKfCLLRaBbobxBiPcysN4jqniToGAaQWXYwSu0Y637dCWsUN34WN2Xxm94HFmaHOgSl3aEUIKFNKVTruUowUTRaHHTjExU3qvZcnZVo98JN2ZTvwvvmzk6xmPqcGHNO7RN-2oouK7uNOIbSYdp4Iuoe904TGSsY8If1rH7W6ZVCteBARxlKqAweNha3oLtHBUlcw0YE37TTueErj6JmdL0kmUCGi7oj_TQYDbS64iO6XoSKtgMiY8Ft7lYXfKCnCEIGqfPGvtX0ND8Yng-T04-jzS3iIaFLQ1YqgewAbxdXSvkLEVqSH5Tb9DR5RN_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Peroxydisulfate+Activation+Process+Not+Relying+on+Sulfate+Radical+Generation+for+Water+Pollutant+Degradation&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Tao&rft.au=Chen%2C+Yin&rft.au=Wang%2C+Yuru&rft.au=Le+Roux%2C+Julien&rft.date=2014-05-20&rft.issn=0013-936X&rft.volume=48&rft.issue=10&rft.spage=5868&rft.epage=5868&rft_id=info:doi/10.1021%2Fes501218f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |