Electrochemical Biosensing Platform Using Hydrogel Prepared from Ferrocene Modified Amino Acid as Highly Efficient Immobilization Matrix
To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 86; no. 2; pp. 973 - 976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50–100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. |
---|---|
AbstractList | To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50–100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. To increase the loading of qwqwqwqwqwqwqw (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications.To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. To increase the loading of qwqwqwqwqwqwqw (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid phenylalanine (Phe, F) was utilized for the incorporation of GOx. The synthesized hydrogel displays good biocompatibility and contains a significant number of Fc moieties, which can be considered as an ideal matrix to immobilize enzymes for the preparation of mediator-based biosensors. The hydrogel was studied by scanning electron microscopy, which indicated that it was composed of nanofibers with a diameter of around 50-100 nm and length extended to 1 mm. With the addition of GOx into the hydrogel and by directly dropping the resulting biocomposite onto the electrode surface, a glucose biosensor, that displays good performance due to improved enzyme loading and efficient electron transfer, can be simply constructed. The favorable network structure and good biocompatibility of the hydrogel could effectively avoid enzyme leakage and maintain the bioactivity of the enzymes, which resulted in good stability of the biosensor. The biosensor was utilized for the detection of glucose in blood samples with results comparable to those obtained from the hospital. The hydrogel as a functional component of an amperometric biosensor has implications for future development of biosensors and for clinical applications. [PUBLICATION ABSTRACT] |
Author | Yang, Minghui Qu, Fengli Zhang, Yi Rasooly, Avraham |
AuthorAffiliation | Central South University Qufu Normal University Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering FDA Division of Biology, Office of Science and Engineering College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering – name: College of Chemistry and Chemical Engineering – name: Division of Biology, Office of Science and Engineering – name: Qufu Normal University – name: Central South University – name: FDA |
Author_xml | – sequence: 1 givenname: Fengli surname: Qu fullname: Qu, Fengli organization: Qufu Normal University – sequence: 2 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Central South University – sequence: 3 givenname: Avraham surname: Rasooly fullname: Rasooly, Avraham organization: FDA – sequence: 4 givenname: Minghui surname: Yang fullname: Yang, Minghui email: yangminghui@csu.edu.cn organization: Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24383679$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0lFrFDEQAOAgFXutPvgHJCCCPpydJLvZ5PEsV6_QYh_s85LNTq4pu8mZ7EGvv8Cf7d5dLVKF-hQyfJMMM3NEDkIMSMhbBp8ZcHZibAGiqNT9CzJhJYepVIofkAkAiCmvAA7JUc63AIwBk6_IIS-EErLSE_Jz3qEdUrQ32HtrOvrFx4wh-7CkV50ZXEw9vd5dF5s2xSV29CrhyiRsqUuxp2eYxnQMSC9j650f47Peh0hn1rfUZLrwy5tuQ-fOeesxDPS872PjO39vBh8DvTRD8nevyUtnuoxvHs5jcn02_366mF58-3p-OruYmhLUMLVYViikVlo3DRjdiDEsnDKylVqAagCcM4wJY9EqroWCSmkHBS-NAi3EMfm4f3eV4o815qHufbbYdSZgXOeab5tWAIPnKZOaF1CwSv8HLQs5FqjL52mhuVRjCTDS90_obVynMLZnp3jFJdv-_e5BrZse23qVfG_Spv495BF82gObYs4J3SNhUG8XqH5coNGePLHWD7s5Dcn47p8ZH_YZxuY_6vvL_QK3L9GS |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_3390_biomimetics3030015 crossref_primary_10_3390_chemosensors9100282 crossref_primary_10_1021_acssuschemeng_8b00838 crossref_primary_10_1016_j_talanta_2015_06_086 crossref_primary_10_2174_1568026622666220915114646 crossref_primary_10_1021_acs_jpcc_7b01278 crossref_primary_10_1016_j_trac_2015_03_016 crossref_primary_10_1039_C9AY02018G crossref_primary_10_1016_j_snb_2015_08_077 crossref_primary_10_1039_C6AY01265E crossref_primary_10_1155_2019_6508094 crossref_primary_10_1002_adhm_201601475 crossref_primary_10_1016_j_microc_2017_10_002 crossref_primary_10_1016_j_cej_2025_161513 crossref_primary_10_1021_acsabm_8b00712 crossref_primary_10_1021_acsomega_8b03292 crossref_primary_10_1016_j_chphi_2024_100642 crossref_primary_10_1039_D0CS00304B crossref_primary_10_1149_2_0641501jes crossref_primary_10_1016_j_jcis_2021_01_034 crossref_primary_10_1016_j_talanta_2024_126412 crossref_primary_10_1039_C5RA26828A crossref_primary_10_1002_slct_201900939 crossref_primary_10_1039_C5TB00090D crossref_primary_10_1039_C6NR08353F crossref_primary_10_1021_acsami_7b13606 crossref_primary_10_1021_acsnano_4c02997 crossref_primary_10_1039_C6RA16064F crossref_primary_10_3390_bios13080773 crossref_primary_10_1016_j_bios_2015_07_019 crossref_primary_10_1016_j_trac_2024_117622 crossref_primary_10_1021_ac5039863 crossref_primary_10_1016_j_ijoes_2023_100395 crossref_primary_10_3390_nano5031544 crossref_primary_10_1021_acs_molpharmaceut_7b01049 crossref_primary_10_1039_C4AY02640C crossref_primary_10_1080_22243682_2015_1088795 crossref_primary_10_1016_j_snb_2016_10_070 crossref_primary_10_20964_2021_01_77 crossref_primary_10_1007_s00604_017_2312_2 crossref_primary_10_1080_00032719_2018_1499027 crossref_primary_10_3390_s19235311 crossref_primary_10_1002_adfm_202106023 crossref_primary_10_1039_C5RA06649B crossref_primary_10_1002_macp_201700468 crossref_primary_10_1016_j_bioelechem_2024_108882 crossref_primary_10_1016_j_jhazmat_2015_10_058 crossref_primary_10_1039_C5AY03125G crossref_primary_10_1021_acs_langmuir_1c01070 crossref_primary_10_1039_C5AN00200A crossref_primary_10_1002_cnma_202000128 crossref_primary_10_1021_acsami_6b13097 crossref_primary_10_1039_C7BM00882A crossref_primary_10_1007_s00604_016_2069_z crossref_primary_10_1039_D1RA00647A crossref_primary_10_1016_j_bios_2017_04_002 crossref_primary_10_1016_j_aca_2015_08_009 crossref_primary_10_1016_j_jece_2019_102979 crossref_primary_10_1039_C6AY01295G crossref_primary_10_1021_acsomega_7b01682 crossref_primary_10_1016_j_bios_2014_11_029 crossref_primary_10_1016_j_bios_2015_05_012 crossref_primary_10_1002_psc_3626 crossref_primary_10_1016_j_microc_2023_109241 crossref_primary_10_1039_C8AY00433A crossref_primary_10_1016_j_jelechem_2015_03_030 crossref_primary_10_1039_C9RA04008K crossref_primary_10_1039_C7TB01024A crossref_primary_10_3390_polym11030551 crossref_primary_10_1016_j_electacta_2015_07_086 crossref_primary_10_1016_j_bios_2018_12_057 crossref_primary_10_1016_j_ccr_2020_213406 crossref_primary_10_1021_ac500967x crossref_primary_10_1007_s10008_017_3509_3 crossref_primary_10_1016_j_colcom_2019_100179 crossref_primary_10_1007_s00604_021_05105_4 crossref_primary_10_1016_j_talanta_2021_122183 crossref_primary_10_1039_C5AY02030A crossref_primary_10_1002_elan_202000014 crossref_primary_10_1021_acsami_6b16034 crossref_primary_10_1039_C5NR03549J |
Cites_doi | 10.1021/ac203056m 10.1039/b925505b 10.1016/j.bios.2013.11.065 10.1021/ac00087a008 10.1039/c2cc35449g 10.1021/ac0155409 10.1021/ac980940q 10.1021/ac200471v 10.1002/elan.200900644 10.1016/j.snb.2012.10.072 10.1021/ac00202a007 10.1021/ac50058a010 10.1021/ac970536b 10.1021/cr068069y 10.1021/ac0501691 10.1016/j.snb.2013.03.065 10.1016/j.bios.2012.12.036 10.1021/ac201700c 10.1021/ac3037188 10.1021/ac8019619 10.1021/am4037383 10.1016/j.bios.2012.11.040 10.1016/S0021-9258(18)91224-X 10.1002/anie.201201040 10.1021/ac980160h 10.1021/cr0101510 10.1021/ac060551t 10.1016/j.biomaterials.2013.01.096 10.1016/j.bios.2013.09.020 10.1016/j.bios.2013.11.043 10.1016/S0021-9258(18)97448-X 10.1016/j.bios.2006.03.009 10.1016/j.snb.2012.01.053 10.1021/ac802193c 10.1002/elan.201200535 10.1016/S0956-5663(03)00075-7 10.1021/ac048153i 10.1021/ac400719h |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jan 21, 2014 |
Copyright_xml | – notice: Copyright American Chemical Society Jan 21, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac403478z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Materials Research Database MEDLINE - Academic Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 976 |
ExternalDocumentID | 3193736541 24383679 10_1021_ac403478z c909768086 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a508t-ce57e369899bb0a9b35083f8a6d69308b00ffa113acec829380789f0425a80933 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 00:54:14 EDT 2025 Fri Jul 11 02:09:41 EDT 2025 Fri Jul 11 12:41:09 EDT 2025 Fri Jul 11 03:27:21 EDT 2025 Mon Jun 30 10:26:19 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Tue Jul 01 02:48:58 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Thu Aug 27 13:42:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a508t-ce57e369899bb0a9b35083f8a6d69308b00ffa113acec829380789f0425a80933 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24383679 |
PQID | 1492272619 |
PQPubID | 45400 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000340103 proquest_miscellaneous_1692404179 proquest_miscellaneous_1654669395 proquest_miscellaneous_1492683400 proquest_journals_1492272619 pubmed_primary_24383679 crossref_primary_10_1021_ac403478z crossref_citationtrail_10_1021_ac403478z acs_journals_10_1021_ac403478z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-21 |
PublicationDateYYYYMMDD | 2014-01-21 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Heller A. (ref7/cit7) 2008; 108 Jia X. (ref38/cit38) 2013; 5 Muguruma H. (ref24/cit24) 2005; 77 Huang J. (ref5/cit5) 2013; 182 Anzai J. (ref34/cit34) 1998; 70 Marchesan S. (ref18/cit18) 2013; 34 Kopecek J. (ref20/cit20) 2012; 51 Vamvakaki V. (ref3/cit3) 2006; 78 Senel M. (ref12/cit12) 2013; 25 Gibson Q. H. (ref32/cit32) 1964; 239 Yan Q. (ref4/cit4) 2011; 83 Lad U. (ref10/cit10) 2013; 85 Karyakin A. A. (ref22/cit22) 2002; 74 Liu Y. (ref39/cit39) 2014; 52 Tan H. (ref19/cit19) 2012; 48 Hsu C.-T. (ref1/cit1) 2009; 81 Chen X. (ref13/cit13) 2012; 163 Zhou M. (ref36/cit36) 2013; 55 Kamin R. A. (ref30/cit30) 1980; 52 Freeman M. H. (ref8/cit8) 2013; 85 Sekretaryova A. N. (ref2/cit2) 2012; 84 Shan C. (ref21/cit21) 2009; 81 Ohara T. J. (ref25/cit25) 1994; 66 Senel M. (ref17/cit17) 2010; 22 Shin J. H. (ref27/cit27) 2005; 77 Wang B. (ref33/cit33) 1998; 70 Senel M. (ref23/cit23) 2013; 176 Swoboda B. E. (ref31/cit31) 1965; 240 Zhao W. (ref11/cit11) 2013; 44 Fu Y. (ref9/cit9) 2011; 83 van Staveren D. R. (ref16/cit16) 2004; 104 Liang B. (ref6/cit6) 2013; 43 Ohara T. J. (ref29/cit29) 1994; 66 Zheng L. (ref15/cit15) 2010; 135 Wu B.-Y. (ref35/cit35) 2007; 22 Pandey P. C. (ref14/cit14) 2003; 18 Gregg B. A. (ref28/cit28) 1990; 62 Yang Z. (ref37/cit37) 2013; 54 Wang B. Q. (ref26/cit26) 1999; 71 |
References_xml | – volume: 84 start-page: 1220 year: 2012 ident: ref2/cit2 publication-title: Anal. Chem. doi: 10.1021/ac203056m – volume: 135 start-page: 1339 year: 2010 ident: ref15/cit15 publication-title: Analyst doi: 10.1039/b925505b – volume: 55 start-page: 39 year: 2013 ident: ref36/cit36 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.065 – volume: 66 start-page: 2451 year: 1994 ident: ref29/cit29 publication-title: Anal. Chem. doi: 10.1021/ac00087a008 – volume: 48 start-page: 10289 year: 2012 ident: ref19/cit19 publication-title: Chem. Commun. doi: 10.1039/c2cc35449g – volume: 74 start-page: 1597 year: 2002 ident: ref22/cit22 publication-title: Anal. Chem. doi: 10.1021/ac0155409 – volume: 66 start-page: 2451 year: 1994 ident: ref25/cit25 publication-title: Anal. Chem. doi: 10.1021/ac00087a008 – volume: 71 start-page: 1935 year: 1999 ident: ref26/cit26 publication-title: Anal. Chem. doi: 10.1021/ac980940q – volume: 83 start-page: 6511 year: 2011 ident: ref9/cit9 publication-title: Anal. Chem. doi: 10.1021/ac200471v – volume: 22 start-page: 1765 year: 2010 ident: ref17/cit17 publication-title: Electroanalysis doi: 10.1002/elan.200900644 – volume: 176 start-page: 299 year: 2013 ident: ref23/cit23 publication-title: Sens. Actuators, B: Chem. doi: 10.1016/j.snb.2012.10.072 – volume: 62 start-page: 258 year: 1990 ident: ref28/cit28 publication-title: Anal. Chem. doi: 10.1021/ac00202a007 – volume: 52 start-page: 1198 year: 1980 ident: ref30/cit30 publication-title: Anal. Chem. doi: 10.1021/ac50058a010 – volume: 70 start-page: 811 year: 1998 ident: ref34/cit34 publication-title: Anal. Chem. doi: 10.1021/ac970536b – volume: 108 start-page: 2482 year: 2008 ident: ref7/cit7 publication-title: Chem. Rev. doi: 10.1021/cr068069y – volume: 77 start-page: 6557 year: 2005 ident: ref24/cit24 publication-title: Anal. Chem. doi: 10.1021/ac0501691 – volume: 182 start-page: 618 year: 2013 ident: ref5/cit5 publication-title: Sens. Actuators, B: Chem. doi: 10.1016/j.snb.2013.03.065 – volume: 44 start-page: 1 year: 2013 ident: ref11/cit11 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.12.036 – volume: 83 start-page: 8341 year: 2011 ident: ref4/cit4 publication-title: Anal. Chem. doi: 10.1021/ac201700c – volume: 85 start-page: 4057 year: 2013 ident: ref8/cit8 publication-title: Anal. Chem. doi: 10.1021/ac3037188 – volume: 81 start-page: 515 year: 2009 ident: ref1/cit1 publication-title: Anal. Chem. doi: 10.1021/ac8019619 – volume: 5 start-page: 12017 year: 2013 ident: ref38/cit38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4037383 – volume: 43 start-page: 131 year: 2013 ident: ref6/cit6 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.11.040 – volume: 239 start-page: 3927 year: 1964 ident: ref32/cit32 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)91224-X – volume: 51 start-page: 7396 year: 2012 ident: ref20/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201040 – volume: 70 start-page: 3170 year: 1998 ident: ref33/cit33 publication-title: Anal. Chem. doi: 10.1021/ac980160h – volume: 104 start-page: 5931 year: 2004 ident: ref16/cit16 publication-title: Chem. Rev. doi: 10.1021/cr0101510 – volume: 78 start-page: 5538 year: 2006 ident: ref3/cit3 publication-title: Anal. Chem. doi: 10.1021/ac060551t – volume: 34 start-page: 3678 year: 2013 ident: ref18/cit18 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.096 – volume: 52 start-page: 391 year: 2014 ident: ref39/cit39 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.09.020 – volume: 54 start-page: 528 year: 2013 ident: ref37/cit37 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.043 – volume: 240 start-page: 2209 year: 1965 ident: ref31/cit31 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)97448-X – volume: 22 start-page: 838 year: 2007 ident: ref35/cit35 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.03.009 – volume: 163 start-page: 272 year: 2012 ident: ref13/cit13 publication-title: Sens. Actuators, B: Chem. doi: 10.1016/j.snb.2012.01.053 – volume: 81 start-page: 2378 year: 2009 ident: ref21/cit21 publication-title: Anal. Chem. doi: 10.1021/ac802193c – volume: 25 start-page: 1194 year: 2013 ident: ref12/cit12 publication-title: Electroanalysis doi: 10.1002/elan.201200535 – volume: 18 start-page: 1257 year: 2003 ident: ref14/cit14 publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(03)00075-7 – volume: 77 start-page: 3494 year: 2005 ident: ref27/cit27 publication-title: Anal. Chem. doi: 10.1021/ac048153i – volume: 85 start-page: 6349 year: 2013 ident: ref10/cit10 publication-title: Anal. Chem. doi: 10.1021/ac400719h |
SSID | ssj0011016 |
Score | 2.4299686 |
Snippet | To increase the loading of glucose oxidase (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid... To increase the loading of qwqwqwqwqwqwqw (GOx) and simplify glucose biosensor fabrication, hydrogel prepared from ferrocene (Fc) modified amino acid... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 973 |
SubjectTerms | Amino acids bioactive properties Biochemistry Biocompatibility biocomposites Biosensing Techniques - methods Biosensors blood glucose Blood Glucose - analysis blood sampling Displays Electrochemical Techniques Electrochemistry Electrodes electron transfer Electron Transport Enzymes Enzymes, Immobilized Equipment Design Fabrication Ferrocenes Ferrous Compounds - chemistry Glucose glucose oxidase Glucose Oxidase - chemistry hospitals Humans hydrocolloids Hydrogels Metallocenes Microscopy, Electron, Scanning nanofibers Nanofibers - chemistry Nanofibers - ultrastructure phenylalanine Phenylalanine - chemistry Scanning electron microscopy |
Title | Electrochemical Biosensing Platform Using Hydrogel Prepared from Ferrocene Modified Amino Acid as Highly Efficient Immobilization Matrix |
URI | http://dx.doi.org/10.1021/ac403478z https://www.ncbi.nlm.nih.gov/pubmed/24383679 https://www.proquest.com/docview/1492272619 https://www.proquest.com/docview/1492683400 https://www.proquest.com/docview/1654669395 https://www.proquest.com/docview/1692404179 https://www.proquest.com/docview/2000340103 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VcgAOPAqUQKmGx4GL23id2OtjCIkCUlAlqNRbtLverSJSGyWORPsL-NnMrB8Koglnj1_7mm93Zr4P4L0hyGGkdYEWik-rhAm0YdpKxdQpmXTShwumX-PJee_LRf9iD95tieCL8FSZXjfqJfLmDtwVsUx4hzUYfmtDBbz9bGTxOIra0Adt3squx6z-dj1b8KT3K-NH8KmpzqnSSX6crEt9Ym7-JWvc9cmP4WGNK3FQDYQnsGfzA7g3bOTcDuDBBvPgU_g9quRvTM0XgB_nxYpz2fNLPFuokqEs-nQCnFxny-LSLvBsaX26OnJJCo7tkn1fbnFaZHNHSBYHV_O8wIGZZ6hWyBkki2sceY4Kcm34mYY8p-JWhZ84ZXGAX8_gfDz6PpwEtShDoAjLlYGx_cRGLDuZat1VqY6YUN5JFWesqihpGjunwjBSxhpJYMIT2jteG5Tk45PnsJ8XuX0BmAibxqFxfcXhWcJptBhEmXVO05O1TDpwTL02qyfVaubj5SKctc3bgQ9Nh85MTWnOyhqL20zftqY_Kx6P24yOmlGx8dZeKkTCG80OvGkvU-dxZEXltlhXNrGMaD3cYcNlY9REaX-XDW2HuywKt91GeE4hlufowGE1cts_Ekw8Gyfpy_-13Cu4T8iP848CER7Bfrlc29eErkp97GfXH5iXHgc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6Vcigc-Cl_gVIWBBIXl3id2OsDhxASJbSpKtFKvbnr9W4VEWwUO4L0CXgGXoWXY2b9Q0BtOVXinNHa3p3d-SYz-30ALxVCDiW0cWIu6d8qrpxYEW2lJOqURBhhywWTfX901Plw3D1egx_1XRh8iRxHym0R_ze7gPtGqk7b6wTirGqg3NXLr5ie5W_H73EtX3E-HBz2R06lIOBIBB6Fo3Q30B5pJIZx3JZh7BH7uRHST0gCUKDPGSNd15NKK4GRz7KvG3JkKSjXx3GvwXUEPZwSu17_Y1OhoKy3VuOj4m3NWrT6qhTxVP5nxLsAxtpwNrwNP5uJsF0sn3YWRbyjzv7iiPw_Z-oO3KpQNOuVbn8X1nS6CRv9WrxuE26u8Czeg--DUuxHVewI7N00y6lzPz1lBzNZEHBntnmCjZbJPDvVM3Yw17Y5n9EFHDbUc4r0qWaTLJkaxO2s93maZqynpgmTOaN-mdmSDSwjBwZyNsYNTo3H5TVXNiEphG_34ehKpuUBrKdZqh8BC7gOfVeZrqRiNKJSPPq8RBsT48ixCFqwjasZVUdIHtnuAO5GzXK24HXtR5GqCNxJR2R2numLxvRLyVpyntFW7YwrT-2EnAeUVrfgefMzLh7VkWSqs0Vp4wsPT_9LbOiSHE5R2L3MBpP_NkngXWzDLYMSiZG04GG5YZov4kSz6wfh43_N3DPYGB1O9qK98f7uE7iBmJc6rxzubsF6MV_op4gri3jbbnAGJ1e9T34B16B-PA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIkE58FMoBEpZEEhcXOp1Yq8PHEKaKKGkigSVejPr9W4VEewqdgTpE_AUvAqvxsz6RwG15VSJc0YbZ3fG801m9vsAXiqEHEpo48Rc0r9VXDmxItpKSdQpiTDCtgvGh_7wqP3-uHO8Bj_ruzD4EDmulNsmPkX1aWIqhgH3jVTtPa8diLNqiPJAL79hiZa_He3jeb7ifND_1Bs6lYqAIxF8FI7SnUB7pJMYxvGeDGOPGNCNkH5CMoAC_c4Y6bqeVFoJzH6Wgd2QM0tB9T6uew2uU3uQirtu72PTpaDKt1bkowZuzVy0-qiU9VT-Z9a7AMralDa4A7-azbCTLF92F0W8q87-4on8f3frLtyu0DTrlu5_D9Z0ugk3e7WI3SbcWuFbvA8_-qXoj6pYEti7aZbTBH96wiYzWRCAZ3aIgg2XyTw70TM2mWs7pM_oIg4b6Dll_FSzcZZMDeJ31v06TTPWVdOEyZzR3MxsyfqWmQMTOhthoNMAcnndlY1JEuH7Azi6km3ZgvU0S_UjYAHXoe8q05HUlEZ0iq9AL9HGxLhyLIIW7OCJRtWrJI_slAB3o-Y4W_C69qVIVUTupCcyO8_0RWN6WrKXnGe0XTvkyre2Q84DKq9b8Lz5GA-P-kky1dmitPGFh1ngEhu6LIdbFHYuswkRV5IU3sU23DIpkShJCx6WQdP8Ik50u34QPv7Xzj2DG5P9QfRhdHjwBDYQ-tIAlsPdbVgv5gv9FOFlEe_YGGfw-arD5DdysIC_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+biosensing+platform+using+hydrogel+prepared+from+ferrocene+modified+amino+acid+as+highly+efficient+immobilization+matrix&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Qu%2C+Fengli&rft.au=Zhang%2C+Yi&rft.au=Rasooly%2C+Avraham&rft.au=Yang%2C+Minghui&rft.date=2014-01-21&rft.eissn=1520-6882&rft.volume=86&rft.issue=2&rft.spage=973&rft_id=info:doi/10.1021%2Fac403478z&rft_id=info%3Apmid%2F24383679&rft.externalDocID=24383679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |