Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes

Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in whi...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 87; no. 17; pp. 9061 - 9069
Main Authors Hirabayashi, Kazuhisa, Hanaoka, Kenjiro, Takayanagi, Toshio, Toki, Yuko, Egawa, Takahiro, Kamiya, Mako, Komatsu, Toru, Ueno, Tasuku, Terai, Takuya, Yoshida, Kengo, Uchiyama, Masanobu, Nagano, Tetsuo, Urano, Yasuteru
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK a inversion, i.e., pK a1 > pK a2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
AbstractList Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK... inversion, i.e., ... These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for beta -galactosidase. (ProQuest: ... denotes formulae/symbols omitted.)
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK... inversion, i.e., ... These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. (ProQuest: ... denotes formulae/symbols omitted.)
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK a inversion, i.e., pK a1 > pK a2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKₐ inversion, i.e., pKₐ₁ > pKₐ₂. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.
Author Nagano, Tetsuo
Hanaoka, Kenjiro
Takayanagi, Toshio
Yoshida, Kengo
Uchiyama, Masanobu
Ueno, Tasuku
Hirabayashi, Kazuhisa
Urano, Yasuteru
Komatsu, Toru
Terai, Takuya
Egawa, Takahiro
Kamiya, Mako
Toki, Yuko
AuthorAffiliation CREST
Department of Life System
The University of Tokyo
Graduate School of Medicine
Drug Discovery Initiative, The University of Tokyo
Riken Center for Sustainable Resource Science
RIKEN
PREST
Graduate School of Pharmaceutical Sciences
Japan Science and Technology Agency
Institute of Technology and Science, The University of Tokushima
AuthorAffiliation_xml – name: Department of Life System
– name: Riken Center for Sustainable Resource Science
– name: RIKEN
– name: The University of Tokyo
– name: Institute of Technology and Science, The University of Tokushima
– name: CREST
– name: Graduate School of Pharmaceutical Sciences
– name: PREST
– name: Graduate School of Medicine
– name: Drug Discovery Initiative, The University of Tokyo
– name: Japan Science and Technology Agency
Author_xml – sequence: 1
  givenname: Kazuhisa
  surname: Hirabayashi
  fullname: Hirabayashi, Kazuhisa
– sequence: 2
  givenname: Kenjiro
  surname: Hanaoka
  fullname: Hanaoka, Kenjiro
  email: khanaoka@mol.f.u-tokyo.ac.jp
– sequence: 3
  givenname: Toshio
  surname: Takayanagi
  fullname: Takayanagi, Toshio
– sequence: 4
  givenname: Yuko
  surname: Toki
  fullname: Toki, Yuko
– sequence: 5
  givenname: Takahiro
  surname: Egawa
  fullname: Egawa, Takahiro
– sequence: 6
  givenname: Mako
  surname: Kamiya
  fullname: Kamiya, Mako
– sequence: 7
  givenname: Toru
  surname: Komatsu
  fullname: Komatsu, Toru
– sequence: 8
  givenname: Tasuku
  surname: Ueno
  fullname: Ueno, Tasuku
– sequence: 9
  givenname: Takuya
  surname: Terai
  fullname: Terai, Takuya
– sequence: 10
  givenname: Kengo
  surname: Yoshida
  fullname: Yoshida, Kengo
– sequence: 11
  givenname: Masanobu
  surname: Uchiyama
  fullname: Uchiyama, Masanobu
– sequence: 12
  givenname: Tetsuo
  surname: Nagano
  fullname: Nagano, Tetsuo
– sequence: 13
  givenname: Yasuteru
  surname: Urano
  fullname: Urano, Yasuteru
  email: uranokun@m.u-tokyo.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26237524$$D View this record in MEDLINE/PubMed
BookMark eNqNklFrFDEUhYNU7Lb6D0QCvvgy600yyWR8W9ZWCwXF1eeQmUkwJTPZJhmh_8Cf3Wx3F6UP1qeQ5DuHyz3nDJ1MYTIIvSawJEDJe92npZ6073-acck7oIyRZ2hBOIVKSElP0AIAWEUbgFN0ltINACFAxAt0SgVlDaf1Av1eFYu75BIOFq-Lleu1xxe3s_Oui24ed--bcunDVG3mLmWX52wGfOnnEE3qjZuwngZ8lRNebbcF1NmFCeeAP5pfxoct1njTa2uDH7ANEX_7Wz1l_DWGzqSX6LnVPplXh_Mc_bi8-L7-XF1_-XS1Xl1XmoPMVWsbLmtSs0YYbTvBbDPUloGkQgCXTOiWWWYYZ4ZoIYUEwW3fSm473TadYefo3d53G8PtbFJWoytzeK8nE-akaFkabWvSNk-ipOGslqLQ_4GCbIFIQgv69hF6E-ZYUthRpCRGGRGFenOg5m40g9pGN-p4p47JFeDDHuhjSCkaq3qXH1afo3ZeEVC7mqhSE3WsiTrUpIjrR-Kj_xMy2Mt2v3-m_pfkHsjS1F0
CODEN ANCHAM
CitedBy_id crossref_primary_10_1016_j_ceca_2016_06_002
crossref_primary_10_33609_0041_6045_85_5_2019_3_45
crossref_primary_10_1002_elps_202000066
crossref_primary_10_1039_D2NR02284B
crossref_primary_10_1016_j_snb_2018_01_013
crossref_primary_10_1021_acs_jpca_9b05810
crossref_primary_10_1039_D0CC05529H
crossref_primary_10_3390_s18010161
crossref_primary_10_1021_acs_jpca_9b05812
crossref_primary_10_1002_cbic_202200443
crossref_primary_10_1007_s10895_023_03525_4
crossref_primary_10_1002_slct_201903843
crossref_primary_10_1016_j_ccr_2022_214841
crossref_primary_10_1016_j_molliq_2024_125386
crossref_primary_10_3390_liquids1010001
crossref_primary_10_1021_acssensors_6b00148
crossref_primary_10_1016_j_molliq_2016_10_121
crossref_primary_10_1016_j_tet_2018_05_019
crossref_primary_10_1016_j_dyepig_2019_04_024
crossref_primary_10_1021_acscentsci_7b00247
crossref_primary_10_3390_mi10090568
crossref_primary_10_1021_acs_jpca_5b07898
crossref_primary_10_1021_acs_joc_8b02978
crossref_primary_10_1002_chem_201905810
crossref_primary_10_5059_yukigoseikyokaishi_74_512
crossref_primary_10_1038_s41598_024_72773_6
crossref_primary_10_1039_C9TB00175A
crossref_primary_10_1002_cmtd_202200076
crossref_primary_10_1021_acs_bioconjchem_6b00290
crossref_primary_10_1021_jacs_1c01139
crossref_primary_10_1021_acsami_7b15764
crossref_primary_10_1002_chem_201701216
crossref_primary_10_1016_j_mcat_2017_06_029
crossref_primary_10_1002_cplu_202000059
crossref_primary_10_1039_D1TC02033A
crossref_primary_10_1021_acsmedchemlett_1c00018
crossref_primary_10_1016_j_aca_2017_02_039
crossref_primary_10_1039_C6OB01695B
crossref_primary_10_1021_acs_analchem_5b04169
crossref_primary_10_1021_jacs_7b07748
crossref_primary_10_1039_D3SC02590J
crossref_primary_10_1002_chem_202005134
crossref_primary_10_1039_D0OB01131B
crossref_primary_10_1016_j_trac_2019_115704
crossref_primary_10_1039_C8TC03242D
crossref_primary_10_1002_asia_201700385
crossref_primary_10_1021_acsanm_4c01943
crossref_primary_10_1007_s00216_020_03111_8
crossref_primary_10_3762_bjoc_15_226
Cites_doi 10.1039/ft9928803025
10.1016/S0012-1606(03)00175-1
10.1021/ja048241k
10.1016/S0021-9258(18)83165-9
10.1039/b801883a
10.1177/108705719900400608
10.1007/BF00747920
10.2116/bunsekikagaku.43.339
10.1039/b718544h
10.1093/oxfordjournals.jbchem.a129077
10.1021/ac070907g
10.1016/S0021-9258(18)83166-0
10.1021/jp909854s
10.1007/BF00732054
10.1021/cb4000822
10.1016/S0021-9673(01)88914-7
10.1039/b900889f
10.1248/cpb.27.475
10.1021/jp077249o
10.1039/b501306b
10.1246/cl.2001.14
10.1023/A:1019524722318
10.1073/pnas.55.1.134
10.1039/c3sc50754h
10.1002/cyto.990200303
10.2116/analsci.12.927
10.1021/tx010146r
10.1021/ja300176w
10.1021/ja043919h
10.1016/0584-8539(95)01421-P
10.1021/ac9801723
10.1016/S0006-2952(99)00096-9
10.1016/S0301-0082(00)00038-1
10.1021/ol052655g
10.1021/ja401426s
10.1073/pnas.50.1.1
10.1016/0003-2697(90)90601-5
10.1039/an9608500587
10.1021/ja002467f
10.1002/anie.201210279
10.1039/a804491k
10.1002/ange.201104305
10.1002/poc.1087
10.1002/cber.18710040209
10.1074/jbc.M209264200
10.1039/c1cc00078k
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright American Chemical Society Sep 1, 2015
Copyright_xml – notice: Copyright © American Chemical Society
– notice: Copyright American Chemical Society Sep 1, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.5b02331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE
Materials Research Database

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 9069
ExternalDocumentID 3800195981
26237524
10_1021_acs_analchem_5b02331
e51935656
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
08R
186
1AW
1WB
23M
2KS
3EH
3O-
4.4
53G
53T
55A
5GY
5RE
5VS
6XO
7~N
85S
AABXI
AAUTI
ABDEX
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACKIV
ACNCT
ACPRK
ACPVT
ACS
AEESW
AENEX
AETEA
AFDAS
AFEFF
AFFDN
AFFNX
AFMIJ
AFRAH
AGXLV
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
G8K
GJ
GNL
HR
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHM
OHT
OMK
P2P
PQEST
PQQKQ
RNS
ROL
RXW
TAE
TAF
TN5
UBX
UHB
UI2
UKR
UNC
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
X6Y
XFK
YQI
YQJ
YXE
YZZ
ZCG
ZE2
ZGI
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a508t-9f758414376eafb63f7d4f30826605836a93f3e353e1a6868065fc985fba97be3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 12:19:33 EDT 2025
Thu Jul 10 16:28:18 EDT 2025
Fri Jul 11 02:21:49 EDT 2025
Mon Jun 30 10:31:56 EDT 2025
Thu Apr 03 06:59:07 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Tue Jul 01 02:49:17 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a508t-9f758414376eafb63f7d4f30826605836a93f3e353e1a6868065fc985fba97be3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26237524
PQID 1710032316
PQPubID 45400
PageCount 9
ParticipantIDs proquest_miscellaneous_2000294197
proquest_miscellaneous_1753486294
proquest_miscellaneous_1708901812
proquest_journals_1710032316
pubmed_primary_26237524
crossref_citationtrail_10_1021_acs_analchem_5b02331
crossref_primary_10_1021_acs_analchem_5b02331
acs_journals_10_1021_acs_analchem_5b02331
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
AGXLV
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
1WB
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Kao J. P. Y. (ref17/cit17) 1989; 264
Minta A. (ref16/cit16) 1989; 264
ref23/cit23
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref10/cit10
ref35/cit35
ref19/cit19
ref42/cit42
ref46/cit46
Dean J. A. (ref36/cit36) 1985
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref18/cit18
Maurice D. M. (ref7/cit7) 1967; 6
ref11/cit11
ref25/cit25
ref29/cit29
Maeda H. (ref4/cit4) 1969; 65
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
Johnson I. (ref21/cit21) 2010
ref22/cit22
ref33/cit33
Nanjiani M. (ref8/cit8) 1991
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
References_xml – ident: ref38/cit38
  doi: 10.1039/ft9928803025
– ident: ref50/cit50
  doi: 10.1016/S0012-1606(03)00175-1
– ident: ref10/cit10
  doi: 10.1021/ja048241k
– volume: 264
  start-page: 8171
  year: 1989
  ident: ref16/cit16
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83165-9
– ident: ref30/cit30
  doi: 10.1039/b801883a
– ident: ref13/cit13
  doi: 10.1177/108705719900400608
– ident: ref24/cit24
  doi: 10.1007/BF00747920
– ident: ref23/cit23
  doi: 10.2116/bunsekikagaku.43.339
– ident: ref42/cit42
  doi: 10.1039/b718544h
– volume: 65
  start-page: 777
  year: 1969
  ident: ref4/cit4
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a129077
– ident: ref29/cit29
  doi: 10.1021/ac070907g
– volume: 264
  start-page: 8179
  year: 1989
  ident: ref17/cit17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83166-0
– ident: ref25/cit25
  doi: 10.1021/jp909854s
– ident: ref2/cit2
  doi: 10.1007/BF00732054
– ident: ref35/cit35
  doi: 10.1021/cb4000822
– volume-title: Lange’s Handbook of Chemistry
  year: 1985
  ident: ref36/cit36
– ident: ref40/cit40
  doi: 10.1016/S0021-9673(01)88914-7
– ident: ref44/cit44
  doi: 10.1039/b900889f
– volume-title: The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies
  year: 2010
  ident: ref21/cit21
– ident: ref22/cit22
  doi: 10.1248/cpb.27.475
– ident: ref28/cit28
  doi: 10.1021/jp077249o
– ident: ref27/cit27
  doi: 10.1039/b501306b
– ident: ref37/cit37
  doi: 10.1246/cl.2001.14
– ident: ref26/cit26
  doi: 10.1023/A:1019524722318
– ident: ref11/cit11
  doi: 10.1073/pnas.55.1.134
– ident: ref15/cit15
  doi: 10.1039/c3sc50754h
– ident: ref5/cit5
  doi: 10.1002/cyto.990200303
– ident: ref34/cit34
  doi: 10.2116/analsci.12.927
– ident: ref41/cit41
  doi: 10.1021/tx010146r
– ident: ref45/cit45
  doi: 10.1021/ja300176w
– ident: ref9/cit9
  doi: 10.1021/ja043919h
– ident: ref6/cit6
  doi: 10.1016/0584-8539(95)01421-P
– volume-title: Fluorescein Angiography Technique, Interpretation and Application
  year: 1991
  ident: ref8/cit8
– volume: 6
  start-page: 464
  year: 1967
  ident: ref7/cit7
  publication-title: Invest. Ophthalmol.
– ident: ref18/cit18
  doi: 10.1021/ac9801723
– ident: ref47/cit47
  doi: 10.1016/S0006-2952(99)00096-9
– ident: ref48/cit48
  doi: 10.1016/S0301-0082(00)00038-1
– ident: ref46/cit46
  doi: 10.1021/ol052655g
– ident: ref33/cit33
  doi: 10.1021/ja401426s
– ident: ref12/cit12
  doi: 10.1073/pnas.50.1.1
– ident: ref49/cit49
  doi: 10.1016/0003-2697(90)90601-5
– ident: ref3/cit3
  doi: 10.1039/an9608500587
– ident: ref19/cit19
  doi: 10.1021/ja002467f
– ident: ref32/cit32
  doi: 10.1002/anie.201210279
– ident: ref43/cit43
  doi: 10.1039/a804491k
– ident: ref14/cit14
  doi: 10.1002/ange.201104305
– ident: ref39/cit39
  doi: 10.1002/poc.1087
– ident: ref1/cit1
  doi: 10.1002/cber.18710040209
– ident: ref20/cit20
  doi: 10.1074/jbc.M209264200
– ident: ref31/cit31
  doi: 10.1039/c1cc00078k
SSID ssj0011016
Score 2.392457
Snippet Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9061
SubjectTerms Absorption
Analogue
Analytical chemistry
beta-galactosidase
chemical analysis
chemical equilibrium
Chemical synthesis
Derivatives
Fluorescein
Fluorescein - chemical synthesis
Fluorescein - chemistry
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Hydrogen-Ion Concentration
Lactones
Molecular Structure
Organic chemicals
Photochemical Processes
Probes
Scaffolds
Silicon
Silicon - chemistry
Spectra
Title Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes
URI http://dx.doi.org/10.1021/acs.analchem.5b02331
https://www.ncbi.nlm.nih.gov/pubmed/26237524
https://www.proquest.com/docview/1710032316
https://www.proquest.com/docview/1708901812
https://www.proquest.com/docview/1753486294
https://www.proquest.com/docview/2000294197
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq9gAcKJTXQqlciQuHLI2f8XG16qpUKqAulXqLnMSWKrZJ2yQXfgE_m5kk3i6tlsIxzjiyx3b8jWbmG0I-6EwJZHKLtHAiEoU3cOYKFlnjcua8OXAx5juffFFHZ-L4XJ7fGop3Pfgs_mTzemxBqTCHy7HM4I7BtOktphKNxtZkOl96DdASDRXy0KEaUuXWfAUvpLz-80JagzK722a2Tb6GnJ0-yOTHuG2ycf7zPoXjP07kGXk6AE866XfKc7Lhyh3yaBrqve2QJyvUhC_Ir8BWQitPA6sAPbxuL7okgfYS2-fwAPZ0hH-fPuSgoLNFW90gR9RFSW1Z0M9NTSe3XnLaVHQIVKKWznPrfbUoKEBnerrau2zoN8xUql-Ss9nh9-lRNFRtiCyAvSYyHkwQATBMK2d9prjXhfDIiqPQBcuVNdxzxyV3sVWJQs-uz00ifWaNzhx_RTbLqnRvCAVzhwtdoBXjhE24VQ4EmbRGOuWYHJGPoNR0OHV12jnUWZxiY9B0Omh6RHhY5jQf6M-xCsfigV7RstdVT__xgPxu2EErw0IGJQ5AWo3I_vI1rC76ZmzpqhZlDhLTkaf9TQbUARaoEetlMPMKBGKjR-R1v4OXA2cAdbVk4u1_qO0deQwQUfZRdbtks7lp3XuAYU22152939OBLjc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6Vcigc-Cl_CwWMBAcOWRrbcdYHDqulq136I8S2Um_BSWypYptAkwjBE_AivArPxUw2SRekpeJQiWOcceTMZOJvNDOfAZ6HsZLE5OaF0kpPpk6jz6XcM9om3Dq9bX3qd94_UJMj-fY4OF6DH20vDC6iwCcVdRL_nF3Af0VjBnWLr3LaD2LcaoTf1FLu2q9fMFIrXk_foFlfcD7eORxNvOYwAc8gBik97RAZS0QHobLGxUq4MJWOyFoUZQaFMlo4YUUgrG_UQFHC0SV6ELjY6DC2Ap97Ba4i_uEU4w1Hsy5ZQQFwezAf5XHbDr0Vq6Z9MCl-3wdXgNt6kxvfhJ-deuralo_9qoz7ybc_mCP_e_3dghsNzGbDhV_chjWbbcLGqD3dbhOuLxEx3oHvLTcLyx1rORTYzufqpG6JqE5pfIYXSZ559K9dFFikbDyv8jNixDrJmMlSNi0LNjyvCWBlzpqyLGbYLDHO5fOUYaDA3i_Pzkr2jvqyirtwdClquQfrWZ7ZB8AwuBMyTClms9IMhFEWBXlgdGCV5UEPXqIRo-YfU0R1-QD3IxpsLRs1lu2BaL-uKGnI3unMkfkFs7xu1qcF2ckF8lvth7u0LOKLEhg2qB48626jdSkTZTKbVySzPdA1VdzfZFAdGG9ruVqG-sxQwNdhD-4vHKdbOEdgHwZcPvwHtT2Fjcnh_l60Nz3YfQTXEBwHi3rCLVgvzyr7GAFoGT-p3Z_Bh8v2l1_rhI63
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgE98FOgLBQwEhw4ZGlix1kfOKy2XXUpVBVLpd5SJ7GlqtukNImq9gl4FV6Fp2ImfyxIS8WhB45xxpEz47FnNDPfALwOIikIyc0JhBGOSKxCnUs8RysTe8aqDeNSvfOnXbm9Lz4c-AdL8L2thcFF5PilvArik1afJrZBGHDf0bhG_uLvnPT9CK8b7jb5lDvm4hy9tfz9ZBNF-8bzxltfRttO01DA0WiHFI6yaB0LtBACabSNJLdBIiwBtkiKDnKpFbfccJ8bV8uBpKCjjdXAt5FWQWQ4fvcG3KRIIfl5w9G0C1iQE9w256NYblult2DVdBfG-e934QIDt7roxvfgR8eiKr_luF8WUT--_AM98r_g4X2425jbbFjrxwNYMukq3B61Xe5WYWUOkPEhfGsxWlhmWYulwLa-lkdVaUR5QuNTfIiz1KEzt060SNh4VmZnhIx1lDKdJmxS5Gz4KzeAFRlr0rOYZtNYW5vNEoYOA_s8Pzst2B7VZ-WPYP9a2PIYltMsNU-AoZPHRZCQ72aEHnAtDRJ6vla-kcbze_AWhRg2Z00eVmkEnhvSYCvZsJFsD3i7w8K4AX2n3iOzK2Y53azTGvTkCvr1dvPOLYtwozi6D7IHr7rXKF2KSOnUZCXRbAxUBRn3NxpkB_rdSiymoXozJHBV0IO1Wnm6hXto4Ae-J57-A9tewq29zXH4cbK78wzuoI3s12mF67BcnJXmOdqhRfSiOgEYHF63uvwE7CeROg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Chemical+Equilibrium+of+Silicon-Substituted+Fluorescein+and+Its+Application+to+Develop+a+Scaffold+for+Red+Fluorescent+Probes&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Hirabayashi%2C+Kazuhisa&rft.au=Hanaoka%2C+Kenjiro&rft.au=Takayanagi%2C+Toshio&rft.au=Toki%2C+Yuko&rft.date=2015-09-01&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=17&rft.spage=9061&rft.epage=9069&rft_id=info:doi/10.1021%2Facs.analchem.5b02331&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_5b02331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon