Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes
Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in whi...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 87; no. 17; pp. 9061 - 9069 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK a inversion, i.e., pK a1 > pK a2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. |
---|---|
AbstractList | Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK... inversion, i.e., ... These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for beta -galactosidase. (ProQuest: ... denotes formulae/symbols omitted.) Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK... inversion, i.e., ... These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. (ProQuest: ... denotes formulae/symbols omitted.) Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pK a inversion, i.e., pK a1 > pK a2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10′ position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKₐ inversion, i.e., pKₐ₁ > pKₐ₂. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4′ and 5′ positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase. |
Author | Nagano, Tetsuo Hanaoka, Kenjiro Takayanagi, Toshio Yoshida, Kengo Uchiyama, Masanobu Ueno, Tasuku Hirabayashi, Kazuhisa Urano, Yasuteru Komatsu, Toru Terai, Takuya Egawa, Takahiro Kamiya, Mako Toki, Yuko |
AuthorAffiliation | CREST Department of Life System The University of Tokyo Graduate School of Medicine Drug Discovery Initiative, The University of Tokyo Riken Center for Sustainable Resource Science RIKEN PREST Graduate School of Pharmaceutical Sciences Japan Science and Technology Agency Institute of Technology and Science, The University of Tokushima |
AuthorAffiliation_xml | – name: Department of Life System – name: Riken Center for Sustainable Resource Science – name: RIKEN – name: The University of Tokyo – name: Institute of Technology and Science, The University of Tokushima – name: CREST – name: Graduate School of Pharmaceutical Sciences – name: PREST – name: Graduate School of Medicine – name: Drug Discovery Initiative, The University of Tokyo – name: Japan Science and Technology Agency |
Author_xml | – sequence: 1 givenname: Kazuhisa surname: Hirabayashi fullname: Hirabayashi, Kazuhisa – sequence: 2 givenname: Kenjiro surname: Hanaoka fullname: Hanaoka, Kenjiro email: khanaoka@mol.f.u-tokyo.ac.jp – sequence: 3 givenname: Toshio surname: Takayanagi fullname: Takayanagi, Toshio – sequence: 4 givenname: Yuko surname: Toki fullname: Toki, Yuko – sequence: 5 givenname: Takahiro surname: Egawa fullname: Egawa, Takahiro – sequence: 6 givenname: Mako surname: Kamiya fullname: Kamiya, Mako – sequence: 7 givenname: Toru surname: Komatsu fullname: Komatsu, Toru – sequence: 8 givenname: Tasuku surname: Ueno fullname: Ueno, Tasuku – sequence: 9 givenname: Takuya surname: Terai fullname: Terai, Takuya – sequence: 10 givenname: Kengo surname: Yoshida fullname: Yoshida, Kengo – sequence: 11 givenname: Masanobu surname: Uchiyama fullname: Uchiyama, Masanobu – sequence: 12 givenname: Tetsuo surname: Nagano fullname: Nagano, Tetsuo – sequence: 13 givenname: Yasuteru surname: Urano fullname: Urano, Yasuteru email: uranokun@m.u-tokyo.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26237524$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFrFDEUhYNU7Lb6D0QCvvgy600yyWR8W9ZWCwXF1eeQmUkwJTPZJhmh_8Cf3Wx3F6UP1qeQ5DuHyz3nDJ1MYTIIvSawJEDJe92npZ6073-acck7oIyRZ2hBOIVKSElP0AIAWEUbgFN0ltINACFAxAt0SgVlDaf1Av1eFYu75BIOFq-Lleu1xxe3s_Oui24ed--bcunDVG3mLmWX52wGfOnnEE3qjZuwngZ8lRNebbcF1NmFCeeAP5pfxoct1njTa2uDH7ANEX_7Wz1l_DWGzqSX6LnVPplXh_Mc_bi8-L7-XF1_-XS1Xl1XmoPMVWsbLmtSs0YYbTvBbDPUloGkQgCXTOiWWWYYZ4ZoIYUEwW3fSm473TadYefo3d53G8PtbFJWoytzeK8nE-akaFkabWvSNk-ipOGslqLQ_4GCbIFIQgv69hF6E-ZYUthRpCRGGRGFenOg5m40g9pGN-p4p47JFeDDHuhjSCkaq3qXH1afo3ZeEVC7mqhSE3WsiTrUpIjrR-Kj_xMy2Mt2v3-m_pfkHsjS1F0 |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1016_j_ceca_2016_06_002 crossref_primary_10_33609_0041_6045_85_5_2019_3_45 crossref_primary_10_1002_elps_202000066 crossref_primary_10_1039_D2NR02284B crossref_primary_10_1016_j_snb_2018_01_013 crossref_primary_10_1021_acs_jpca_9b05810 crossref_primary_10_1039_D0CC05529H crossref_primary_10_3390_s18010161 crossref_primary_10_1021_acs_jpca_9b05812 crossref_primary_10_1002_cbic_202200443 crossref_primary_10_1007_s10895_023_03525_4 crossref_primary_10_1002_slct_201903843 crossref_primary_10_1016_j_ccr_2022_214841 crossref_primary_10_1016_j_molliq_2024_125386 crossref_primary_10_3390_liquids1010001 crossref_primary_10_1021_acssensors_6b00148 crossref_primary_10_1016_j_molliq_2016_10_121 crossref_primary_10_1016_j_tet_2018_05_019 crossref_primary_10_1016_j_dyepig_2019_04_024 crossref_primary_10_1021_acscentsci_7b00247 crossref_primary_10_3390_mi10090568 crossref_primary_10_1021_acs_jpca_5b07898 crossref_primary_10_1021_acs_joc_8b02978 crossref_primary_10_1002_chem_201905810 crossref_primary_10_5059_yukigoseikyokaishi_74_512 crossref_primary_10_1038_s41598_024_72773_6 crossref_primary_10_1039_C9TB00175A crossref_primary_10_1002_cmtd_202200076 crossref_primary_10_1021_acs_bioconjchem_6b00290 crossref_primary_10_1021_jacs_1c01139 crossref_primary_10_1021_acsami_7b15764 crossref_primary_10_1002_chem_201701216 crossref_primary_10_1016_j_mcat_2017_06_029 crossref_primary_10_1002_cplu_202000059 crossref_primary_10_1039_D1TC02033A crossref_primary_10_1021_acsmedchemlett_1c00018 crossref_primary_10_1016_j_aca_2017_02_039 crossref_primary_10_1039_C6OB01695B crossref_primary_10_1021_acs_analchem_5b04169 crossref_primary_10_1021_jacs_7b07748 crossref_primary_10_1039_D3SC02590J crossref_primary_10_1002_chem_202005134 crossref_primary_10_1039_D0OB01131B crossref_primary_10_1016_j_trac_2019_115704 crossref_primary_10_1039_C8TC03242D crossref_primary_10_1002_asia_201700385 crossref_primary_10_1021_acsanm_4c01943 crossref_primary_10_1007_s00216_020_03111_8 crossref_primary_10_3762_bjoc_15_226 |
Cites_doi | 10.1039/ft9928803025 10.1016/S0012-1606(03)00175-1 10.1021/ja048241k 10.1016/S0021-9258(18)83165-9 10.1039/b801883a 10.1177/108705719900400608 10.1007/BF00747920 10.2116/bunsekikagaku.43.339 10.1039/b718544h 10.1093/oxfordjournals.jbchem.a129077 10.1021/ac070907g 10.1016/S0021-9258(18)83166-0 10.1021/jp909854s 10.1007/BF00732054 10.1021/cb4000822 10.1016/S0021-9673(01)88914-7 10.1039/b900889f 10.1248/cpb.27.475 10.1021/jp077249o 10.1039/b501306b 10.1246/cl.2001.14 10.1023/A:1019524722318 10.1073/pnas.55.1.134 10.1039/c3sc50754h 10.1002/cyto.990200303 10.2116/analsci.12.927 10.1021/tx010146r 10.1021/ja300176w 10.1021/ja043919h 10.1016/0584-8539(95)01421-P 10.1021/ac9801723 10.1016/S0006-2952(99)00096-9 10.1016/S0301-0082(00)00038-1 10.1021/ol052655g 10.1021/ja401426s 10.1073/pnas.50.1.1 10.1016/0003-2697(90)90601-5 10.1039/an9608500587 10.1021/ja002467f 10.1002/anie.201210279 10.1039/a804491k 10.1002/ange.201104305 10.1002/poc.1087 10.1002/cber.18710040209 10.1074/jbc.M209264200 10.1039/c1cc00078k |
ContentType | Journal Article |
Copyright | Copyright © American
Chemical Society Copyright American Chemical Society Sep 1, 2015 |
Copyright_xml | – notice: Copyright © American Chemical Society – notice: Copyright American Chemical Society Sep 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.5b02331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 9069 |
ExternalDocumentID | 3800195981 26237524 10_1021_acs_analchem_5b02331 e51935656 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 08R 186 1AW 1WB 23M 2KS 3EH 3O- 4.4 53G 53T 55A 5GY 5RE 5VS 6XO 7~N 85S AABXI AAUTI ABDEX ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACKIV ACNCT ACPRK ACPVT ACS AEESW AENEX AETEA AFDAS AFEFF AFFDN AFFNX AFMIJ AFRAH AGXLV AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P G8K GJ GNL HR IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHM OHT OMK P2P PQEST PQQKQ RNS ROL RXW TAE TAF TN5 UBX UHB UI2 UKR UNC UQL VF5 VG9 VOH VQA W1F WH7 X X6Y XFK YQI YQJ YXE YZZ ZCG ZE2 ZGI --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a508t-9f758414376eafb63f7d4f30826605836a93f3e353e1a6868065fc985fba97be3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 12:19:33 EDT 2025 Thu Jul 10 16:28:18 EDT 2025 Fri Jul 11 02:21:49 EDT 2025 Mon Jun 30 10:31:56 EDT 2025 Thu Apr 03 06:59:07 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Tue Jul 01 02:49:17 EDT 2025 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a508t-9f758414376eafb63f7d4f30826605836a93f3e353e1a6868065fc985fba97be3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26237524 |
PQID | 1710032316 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000294197 proquest_miscellaneous_1753486294 proquest_miscellaneous_1708901812 proquest_journals_1710032316 pubmed_primary_26237524 crossref_citationtrail_10_1021_acs_analchem_5b02331 crossref_primary_10_1021_acs_analchem_5b02331 acs_journals_10_1021_acs_analchem_5b02331 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ AGXLV VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 1WB BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Kao J. P. Y. (ref17/cit17) 1989; 264 Minta A. (ref16/cit16) 1989; 264 ref23/cit23 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref10/cit10 ref35/cit35 ref19/cit19 ref42/cit42 ref46/cit46 Dean J. A. (ref36/cit36) 1985 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref18/cit18 Maurice D. M. (ref7/cit7) 1967; 6 ref11/cit11 ref25/cit25 ref29/cit29 Maeda H. (ref4/cit4) 1969; 65 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 Johnson I. (ref21/cit21) 2010 ref22/cit22 ref33/cit33 Nanjiani M. (ref8/cit8) 1991 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 |
References_xml | – ident: ref38/cit38 doi: 10.1039/ft9928803025 – ident: ref50/cit50 doi: 10.1016/S0012-1606(03)00175-1 – ident: ref10/cit10 doi: 10.1021/ja048241k – volume: 264 start-page: 8171 year: 1989 ident: ref16/cit16 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83165-9 – ident: ref30/cit30 doi: 10.1039/b801883a – ident: ref13/cit13 doi: 10.1177/108705719900400608 – ident: ref24/cit24 doi: 10.1007/BF00747920 – ident: ref23/cit23 doi: 10.2116/bunsekikagaku.43.339 – ident: ref42/cit42 doi: 10.1039/b718544h – volume: 65 start-page: 777 year: 1969 ident: ref4/cit4 publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a129077 – ident: ref29/cit29 doi: 10.1021/ac070907g – volume: 264 start-page: 8179 year: 1989 ident: ref17/cit17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83166-0 – ident: ref25/cit25 doi: 10.1021/jp909854s – ident: ref2/cit2 doi: 10.1007/BF00732054 – ident: ref35/cit35 doi: 10.1021/cb4000822 – volume-title: Lange’s Handbook of Chemistry year: 1985 ident: ref36/cit36 – ident: ref40/cit40 doi: 10.1016/S0021-9673(01)88914-7 – ident: ref44/cit44 doi: 10.1039/b900889f – volume-title: The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies year: 2010 ident: ref21/cit21 – ident: ref22/cit22 doi: 10.1248/cpb.27.475 – ident: ref28/cit28 doi: 10.1021/jp077249o – ident: ref27/cit27 doi: 10.1039/b501306b – ident: ref37/cit37 doi: 10.1246/cl.2001.14 – ident: ref26/cit26 doi: 10.1023/A:1019524722318 – ident: ref11/cit11 doi: 10.1073/pnas.55.1.134 – ident: ref15/cit15 doi: 10.1039/c3sc50754h – ident: ref5/cit5 doi: 10.1002/cyto.990200303 – ident: ref34/cit34 doi: 10.2116/analsci.12.927 – ident: ref41/cit41 doi: 10.1021/tx010146r – ident: ref45/cit45 doi: 10.1021/ja300176w – ident: ref9/cit9 doi: 10.1021/ja043919h – ident: ref6/cit6 doi: 10.1016/0584-8539(95)01421-P – volume-title: Fluorescein Angiography Technique, Interpretation and Application year: 1991 ident: ref8/cit8 – volume: 6 start-page: 464 year: 1967 ident: ref7/cit7 publication-title: Invest. Ophthalmol. – ident: ref18/cit18 doi: 10.1021/ac9801723 – ident: ref47/cit47 doi: 10.1016/S0006-2952(99)00096-9 – ident: ref48/cit48 doi: 10.1016/S0301-0082(00)00038-1 – ident: ref46/cit46 doi: 10.1021/ol052655g – ident: ref33/cit33 doi: 10.1021/ja401426s – ident: ref12/cit12 doi: 10.1073/pnas.50.1.1 – ident: ref49/cit49 doi: 10.1016/0003-2697(90)90601-5 – ident: ref3/cit3 doi: 10.1039/an9608500587 – ident: ref19/cit19 doi: 10.1021/ja002467f – ident: ref32/cit32 doi: 10.1002/anie.201210279 – ident: ref43/cit43 doi: 10.1039/a804491k – ident: ref14/cit14 doi: 10.1002/ange.201104305 – ident: ref39/cit39 doi: 10.1002/poc.1087 – ident: ref1/cit1 doi: 10.1002/cber.18710040209 – ident: ref20/cit20 doi: 10.1074/jbc.M209264200 – ident: ref31/cit31 doi: 10.1039/c1cc00078k |
SSID | ssj0011016 |
Score | 2.392457 |
Snippet | Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9061 |
SubjectTerms | Absorption Analogue Analytical chemistry beta-galactosidase chemical analysis chemical equilibrium Chemical synthesis Derivatives Fluorescein Fluorescein - chemical synthesis Fluorescein - chemistry Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Hydrogen-Ion Concentration Lactones Molecular Structure Organic chemicals Photochemical Processes Probes Scaffolds Silicon Silicon - chemistry Spectra |
Title | Analysis of Chemical Equilibrium of Silicon-Substituted Fluorescein and Its Application to Develop a Scaffold for Red Fluorescent Probes |
URI | http://dx.doi.org/10.1021/acs.analchem.5b02331 https://www.ncbi.nlm.nih.gov/pubmed/26237524 https://www.proquest.com/docview/1710032316 https://www.proquest.com/docview/1708901812 https://www.proquest.com/docview/1753486294 https://www.proquest.com/docview/2000294197 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq9gAcKJTXQqlciQuHLI2f8XG16qpUKqAulXqLnMSWKrZJ2yQXfgE_m5kk3i6tlsIxzjiyx3b8jWbmG0I-6EwJZHKLtHAiEoU3cOYKFlnjcua8OXAx5juffFFHZ-L4XJ7fGop3Pfgs_mTzemxBqTCHy7HM4I7BtOktphKNxtZkOl96DdASDRXy0KEaUuXWfAUvpLz-80JagzK722a2Tb6GnJ0-yOTHuG2ycf7zPoXjP07kGXk6AE866XfKc7Lhyh3yaBrqve2QJyvUhC_Ir8BWQitPA6sAPbxuL7okgfYS2-fwAPZ0hH-fPuSgoLNFW90gR9RFSW1Z0M9NTSe3XnLaVHQIVKKWznPrfbUoKEBnerrau2zoN8xUql-Ss9nh9-lRNFRtiCyAvSYyHkwQATBMK2d9prjXhfDIiqPQBcuVNdxzxyV3sVWJQs-uz00ifWaNzhx_RTbLqnRvCAVzhwtdoBXjhE24VQ4EmbRGOuWYHJGPoNR0OHV12jnUWZxiY9B0Omh6RHhY5jQf6M-xCsfigV7RstdVT__xgPxu2EErw0IGJQ5AWo3I_vI1rC76ZmzpqhZlDhLTkaf9TQbUARaoEetlMPMKBGKjR-R1v4OXA2cAdbVk4u1_qO0deQwQUfZRdbtks7lp3XuAYU22152939OBLjc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6Vcigc-Cl_CwWMBAcOWRrbcdYHDqulq136I8S2Um_BSWypYptAkwjBE_AivArPxUw2SRekpeJQiWOcceTMZOJvNDOfAZ6HsZLE5OaF0kpPpk6jz6XcM9om3Dq9bX3qd94_UJMj-fY4OF6DH20vDC6iwCcVdRL_nF3Af0VjBnWLr3LaD2LcaoTf1FLu2q9fMFIrXk_foFlfcD7eORxNvOYwAc8gBik97RAZS0QHobLGxUq4MJWOyFoUZQaFMlo4YUUgrG_UQFHC0SV6ELjY6DC2Ap97Ba4i_uEU4w1Hsy5ZQQFwezAf5XHbDr0Vq6Z9MCl-3wdXgNt6kxvfhJ-deuralo_9qoz7ybc_mCP_e_3dghsNzGbDhV_chjWbbcLGqD3dbhOuLxEx3oHvLTcLyx1rORTYzufqpG6JqE5pfIYXSZ559K9dFFikbDyv8jNixDrJmMlSNi0LNjyvCWBlzpqyLGbYLDHO5fOUYaDA3i_Pzkr2jvqyirtwdClquQfrWZ7ZB8AwuBMyTClms9IMhFEWBXlgdGCV5UEPXqIRo-YfU0R1-QD3IxpsLRs1lu2BaL-uKGnI3unMkfkFs7xu1qcF2ckF8lvth7u0LOKLEhg2qB48626jdSkTZTKbVySzPdA1VdzfZFAdGG9ruVqG-sxQwNdhD-4vHKdbOEdgHwZcPvwHtT2Fjcnh_l60Nz3YfQTXEBwHi3rCLVgvzyr7GAFoGT-p3Z_Bh8v2l1_rhI63 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgE98FOgLBQwEhw4ZGlix1kfOKy2XXUpVBVLpd5SJ7GlqtukNImq9gl4FV6Fp2ImfyxIS8WhB45xxpEz47FnNDPfALwOIikIyc0JhBGOSKxCnUs8RysTe8aqDeNSvfOnXbm9Lz4c-AdL8L2thcFF5PilvArik1afJrZBGHDf0bhG_uLvnPT9CK8b7jb5lDvm4hy9tfz9ZBNF-8bzxltfRttO01DA0WiHFI6yaB0LtBACabSNJLdBIiwBtkiKDnKpFbfccJ8bV8uBpKCjjdXAt5FWQWQ4fvcG3KRIIfl5w9G0C1iQE9w256NYblult2DVdBfG-e934QIDt7roxvfgR8eiKr_luF8WUT--_AM98r_g4X2425jbbFjrxwNYMukq3B61Xe5WYWUOkPEhfGsxWlhmWYulwLa-lkdVaUR5QuNTfIiz1KEzt060SNh4VmZnhIx1lDKdJmxS5Gz4KzeAFRlr0rOYZtNYW5vNEoYOA_s8Pzst2B7VZ-WPYP9a2PIYltMsNU-AoZPHRZCQ72aEHnAtDRJ6vla-kcbze_AWhRg2Z00eVmkEnhvSYCvZsJFsD3i7w8K4AX2n3iOzK2Y53azTGvTkCvr1dvPOLYtwozi6D7IHr7rXKF2KSOnUZCXRbAxUBRn3NxpkB_rdSiymoXozJHBV0IO1Wnm6hXto4Ae-J57-A9tewq29zXH4cbK78wzuoI3s12mF67BcnJXmOdqhRfSiOgEYHF63uvwE7CeROg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Chemical+Equilibrium+of+Silicon-Substituted+Fluorescein+and+Its+Application+to+Develop+a+Scaffold+for+Red+Fluorescent+Probes&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Hirabayashi%2C+Kazuhisa&rft.au=Hanaoka%2C+Kenjiro&rft.au=Takayanagi%2C+Toshio&rft.au=Toki%2C+Yuko&rft.date=2015-09-01&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=17&rft.spage=9061&rft.epage=9069&rft_id=info:doi/10.1021%2Facs.analchem.5b02331&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_5b02331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |