A Label-Free Silicon Quantum Dots-Based Photoluminescence Sensor for Ultrasensitive Detection of Pesticides
Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing stra...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 85; no. 23; pp. 11464 - 11470 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10–9, 3.25 × 10–8, 6.76 × 10–8, and 1.9 × 10–7 g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms. |
---|---|
AbstractList | Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 x 10..., 3.25 x 10..., 6.76 x 10..., and 1.9 x 10... g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms. (ProQuest: ... denotes formulae/symbols omitted.) Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10(-9), 3.25 × 10(-8), 6.76 × 10(-8), and 1.9 × 10(-7) g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms.Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10(-9), 3.25 × 10(-8), 6.76 × 10(-8), and 1.9 × 10(-7) g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms. Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H2O2 which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H2O2, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10–9, 3.25 × 10–8, 6.76 × 10–8, and 1.9 × 10–7 g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms. Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent demand. A novel label-free silicon quantum dots (SiQDs)-based sensor was designed for ultrasensitive detection of pesticides. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce betaine and H₂O₂ which can quench the photoluminescence (PL) of SiQDs. Upon the addition of pesticides, the activity of AChE is inhibited, leading to the decrease of the generated H₂O₂, and hence the PL of SiQDs increases. By measuring the increase in SiQDs PL, the inhibition efficiency of pesticide to AChE activity was evaluated. It was found that the inhibition efficiency was linearly dependent on the logarithm of the pesticides concentration. Consequently, pesticides, such as carbaryl, parathion, diazinon, and phorate, were determined with the SiQDs PL sensing method. The lowest detectable concentrations for carbaryl, parathion, diazinon, and phorate reached 7.25 × 10–⁹, 3.25 × 10–⁸, 6.76 × 10–⁸, and 1.9 × 10–⁷ g/L, respectively, which were much lower than those previously reported. The detecting results of pesticide residues in food samples via this method agree well with those from high-performance liquid chromatography. The simple strategy reported here should be suitable for on-site pesticides detection, especially in combination with other portable platforms. |
Author | Zhang, Youyu Zhu, Gangbing Zhao, Jiangna Huang, Yan Li, Haitao Yi, Yinhui Liu, Chang Yao, Shouzhuo |
AuthorAffiliation | Hunan Normal University Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University |
AuthorAffiliation_xml | – name: Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering – name: Hunan Normal University – name: Hunan University – name: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yinhui surname: Yi fullname: Yi, Yinhui – sequence: 2 givenname: Gangbing surname: Zhu fullname: Zhu, Gangbing – sequence: 3 givenname: Chang surname: Liu fullname: Liu, Chang – sequence: 4 givenname: Yan surname: Huang fullname: Huang, Yan – sequence: 5 givenname: Youyu surname: Zhang fullname: Zhang, Youyu email: zhangyy@hunnu.edu.cn – sequence: 6 givenname: Haitao surname: Li fullname: Li, Haitao – sequence: 7 givenname: Jiangna surname: Zhao fullname: Zhao, Jiangna – sequence: 8 givenname: Shouzhuo surname: Yao fullname: Yao, Shouzhuo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24160846$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0l9r1TAUAPAgE3c3ffALSEEEfag7J03S9nFubgoX3Nj2XNL0FDPb5K5JBb-9KXcbYwr3IeTld05y_hywPecdMfYW4TMCxyNtBBRclpsXbIWSQ66qiu-xFQAUOS8B9tlBCLcAiIDqFdvnAhVUQq3Yr-NsrVsa8rOJKLuygzXeZZezdnEes1MfQ_5FB-qyi58--mEeraNgyJmEyQU_ZX06N0OcknLBRvubslOKZKJNiXyfXVCI1tiOwmv2stdDoDf39yG7Oft6ffItX_84_35yvM61hCrmopZ1rZXBrq2LSrZAHShFKFVRl13XFShQFpQKwN7UqUZqUUila9lxVcq-OGQft3k3k7-b0_PNaNOfh0E78nNo-NIX4GXJd1JUNS-K1EKxm0ouBJSqxN1UKFFVFXKV6Ptn9NbPk0vtWVQpJMpqefvdvZrbkbpmM9lRT3-ahzkmcLQFZvIhTNQ3xka9jCANxg4NQrNsSvO4KSni07OIh6T_sx-2Vpvw5H__uL-N9MYh |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1039_D0AN00382D crossref_primary_10_1016_j_bios_2016_11_058 crossref_primary_10_1007_s13738_017_1165_2 crossref_primary_10_1039_C6RA16509E crossref_primary_10_1016_j_snb_2017_09_088 crossref_primary_10_1016_j_snb_2017_07_111 crossref_primary_10_1039_C5AY03325J crossref_primary_10_1039_D1AY00345C crossref_primary_10_1021_acs_analchem_6b00320 crossref_primary_10_1007_s00216_022_04400_0 crossref_primary_10_1021_acsomega_1c01953 crossref_primary_10_1016_j_talanta_2019_01_069 crossref_primary_10_2174_1573413717666210412152255 crossref_primary_10_1016_j_talanta_2018_01_068 crossref_primary_10_1039_C5RA19721J crossref_primary_10_1039_D3AY00124E crossref_primary_10_1021_acsabm_2c00084 crossref_primary_10_1021_acs_langmuir_5b02307 crossref_primary_10_1016_j_cclet_2024_109860 crossref_primary_10_1002_admi_201801332 crossref_primary_10_1016_j_snb_2020_128515 crossref_primary_10_1016_j_saa_2024_125071 crossref_primary_10_1007_s41061_016_0056_9 crossref_primary_10_2174_1573411014666180320153226 crossref_primary_10_1007_s00604_017_2519_2 crossref_primary_10_1039_c4cp00372a crossref_primary_10_1007_s00216_015_9055_x crossref_primary_10_1016_j_bios_2015_06_020 crossref_primary_10_3390_nano11112970 crossref_primary_10_1016_j_mtcomm_2022_105193 crossref_primary_10_1088_2050_6120_ab1e7a crossref_primary_10_1080_03067319_2015_1036864 crossref_primary_10_3390_nano14121046 crossref_primary_10_1016_j_talanta_2018_07_025 crossref_primary_10_1007_s00604_020_04304_9 crossref_primary_10_3390_s21030906 crossref_primary_10_1007_s00604_020_04384_7 crossref_primary_10_1007_s12633_024_03170_x crossref_primary_10_1021_acsami_8b21571 crossref_primary_10_1021_acsami_9b10237 crossref_primary_10_1021_acsami_9b10996 crossref_primary_10_1039_D0NA00307G crossref_primary_10_1016_j_snb_2015_11_076 crossref_primary_10_1039_C6RA13325H crossref_primary_10_2139_ssrn_4055773 crossref_primary_10_1021_acs_analchem_9b05199 crossref_primary_10_1007_s00216_015_8530_8 crossref_primary_10_1021_acs_analchem_9b05110 crossref_primary_10_1063_5_0186551 crossref_primary_10_1016_j_snb_2019_04_045 crossref_primary_10_1088_2053_1591_aab7b0 crossref_primary_10_1039_C6AN00581K crossref_primary_10_1016_j_talanta_2017_07_070 crossref_primary_10_1021_ac504520g crossref_primary_10_1039_C6AN01251E crossref_primary_10_2116_analsci_21P140 crossref_primary_10_1039_C6AN00514D crossref_primary_10_1021_acs_analchem_5b00738 crossref_primary_10_1093_jaoacint_qsac004 crossref_primary_10_3390_s17020268 crossref_primary_10_1021_acsanm_9b01517 crossref_primary_10_1039_C4AY02729A crossref_primary_10_1039_C6AY02803A crossref_primary_10_1016_j_talanta_2015_07_038 crossref_primary_10_1021_acs_chemmater_5b01769 crossref_primary_10_1039_C6TC01159D crossref_primary_10_2116_analsci_32_951 crossref_primary_10_1016_j_bios_2014_12_046 crossref_primary_10_1016_j_talanta_2018_02_059 crossref_primary_10_1021_acsami_9b06151 crossref_primary_10_1039_C5RA01769F crossref_primary_10_1007_s00604_018_2678_9 crossref_primary_10_1007_s00604_019_3228_9 crossref_primary_10_1016_j_snb_2017_12_170 crossref_primary_10_1007_s40242_021_1180_9 crossref_primary_10_1016_j_jhazmat_2020_123830 crossref_primary_10_1016_j_fct_2017_12_019 crossref_primary_10_1016_j_talanta_2022_123525 crossref_primary_10_3390_s150100499 crossref_primary_10_1021_acs_chemrev_8b00260 crossref_primary_10_3390_s21113856 crossref_primary_10_1016_j_microc_2023_109169 crossref_primary_10_3390_molecules22091421 crossref_primary_10_1111_brv_12758 crossref_primary_10_1021_acsomega_6b00477 crossref_primary_10_1016_j_jpha_2020_04_007 crossref_primary_10_1016_j_electacta_2014_11_144 crossref_primary_10_1002_ppsc_201900034 crossref_primary_10_2217_nnm_15_91 crossref_primary_10_3390_app10103654 crossref_primary_10_1016_j_talanta_2018_01_029 crossref_primary_10_1016_j_microc_2019_03_018 crossref_primary_10_1007_s11356_018_1472_x crossref_primary_10_1039_C4CE00650J crossref_primary_10_1016_j_microc_2020_105263 crossref_primary_10_1088_0957_4484_26_21_215703 crossref_primary_10_1016_j_jhazmat_2017_06_014 crossref_primary_10_1016_j_aca_2016_10_002 crossref_primary_10_1021_acs_chemmater_6b02880 crossref_primary_10_1080_23311843_2019_1591328 crossref_primary_10_1016_j_snb_2019_126636 crossref_primary_10_1016_j_snb_2018_03_023 crossref_primary_10_3390_nano12224105 crossref_primary_10_1007_s11051_014_2778_3 crossref_primary_10_1016_j_snb_2020_129350 crossref_primary_10_1080_00032719_2020_1720222 crossref_primary_10_1016_j_molstruc_2023_135040 crossref_primary_10_1039_C6TC04938A crossref_primary_10_1016_j_aca_2021_338393 crossref_primary_10_1016_j_envres_2023_116147 crossref_primary_10_1016_j_snb_2018_10_066 crossref_primary_10_1016_j_talanta_2014_01_011 crossref_primary_10_1039_C5RA25805G crossref_primary_10_1016_j_snb_2019_126641 crossref_primary_10_1007_s00216_016_9760_0 crossref_primary_10_1016_j_snb_2017_12_191 crossref_primary_10_1007_s00604_016_1939_8 crossref_primary_10_1002_admi_201500360 crossref_primary_10_1039_C9AY00445A crossref_primary_10_1039_C7CP05208A crossref_primary_10_1016_j_aca_2016_02_021 crossref_primary_10_1016_j_saa_2020_118500 crossref_primary_10_1002_aoc_7445 crossref_primary_10_1016_j_bios_2014_08_073 crossref_primary_10_12677_NAT_2021_113025 crossref_primary_10_1039_D0FD00018C crossref_primary_10_1021_acs_jafc_8b07201 crossref_primary_10_1016_j_snb_2015_02_070 crossref_primary_10_1021_acs_analchem_5b02037 crossref_primary_10_1016_j_aca_2015_08_012 crossref_primary_10_1016_j_snb_2017_09_024 crossref_primary_10_1016_j_colsurfa_2017_11_030 crossref_primary_10_1039_C5AN02374B crossref_primary_10_1039_C4CC01703J crossref_primary_10_1021_ac504390e crossref_primary_10_1039_C4AN00981A crossref_primary_10_1007_s12633_020_00814_6 crossref_primary_10_1016_j_jece_2020_104375 crossref_primary_10_3389_fchem_2018_00038 crossref_primary_10_1016_j_bios_2015_10_034 crossref_primary_10_1016_j_talanta_2019_01_003 crossref_primary_10_1039_D0AY01293A crossref_primary_10_1039_C8NJ02859A crossref_primary_10_1016_j_snb_2018_02_163 crossref_primary_10_1007_s00216_019_01597_5 crossref_primary_10_1155_2021_1015391 crossref_primary_10_1016_j_chempr_2017_02_007 crossref_primary_10_1007_s00604_016_1874_8 crossref_primary_10_1039_D0TB01881C crossref_primary_10_1016_j_talanta_2021_123145 crossref_primary_10_1002_adma_201601173 crossref_primary_10_1007_s00216_020_03104_7 crossref_primary_10_1007_s00216_018_1513_9 crossref_primary_10_1016_j_saa_2018_03_038 crossref_primary_10_1016_j_matchemphys_2018_01_032 crossref_primary_10_1039_C7RA11835J crossref_primary_10_1039_C5FD00098J crossref_primary_10_1016_j_talanta_2020_121467 crossref_primary_10_1016_j_trac_2018_03_004 crossref_primary_10_1016_j_trac_2015_07_013 crossref_primary_10_1039_C6AY01125J crossref_primary_10_1002_elan_201600308 crossref_primary_10_1016_j_snb_2023_134548 crossref_primary_10_1021_acs_analchem_8b03687 crossref_primary_10_1007_s00604_018_3125_7 crossref_primary_10_1016_j_envpol_2017_02_024 crossref_primary_10_1007_s00604_019_3715_z |
Cites_doi | 10.1021/nn402810x 10.1021/bp00034a018 10.1021/ac1031447 10.1016/j.bios.2010.12.021 10.1039/C2CC36282A 10.1021/bc030047k 10.1016/j.bios.2012.03.042 10.1021/es202689u 10.1016/j.talanta.2006.04.041 10.1016/j.bios.2009.10.032 10.1021/ac100260m 10.1021/nl0347334 10.1021/cr00081a005 10.1021/ja068894w 10.1021/ac60134a026 10.1016/j.talanta.2012.10.016 10.1002/anie.200701724 10.1021/ac971374m 10.1080/135475098231318 10.1016/j.chroma.2004.11.076 10.1021/jf901286e 10.1021/ac3030224 10.1016/j.chroma.2009.03.005 10.1021/ac302781r 10.1021/ac202391w 10.1002/(SICI)1097-0142(19971115)80:10<1887::AID-CNCR2>3.0.CO;2-L 10.1016/j.bios.2009.01.044 10.1021/ja8040477 10.1021/ac102531z 10.1021/ac202735v 10.1002/adma.200801642 10.1021/ac300545p 10.1021/jf400055s 10.1021/ac200807d 10.1021/ac300718p 10.1016/j.bios.2008.05.005 10.1021/ac801211s 10.1002/chem.201102356 10.1039/an9830801067 10.1016/j.foodchem.2010.10.010 10.1016/j.bios.2007.12.013 10.1021/ac300867s 10.1021/nn700319z |
ContentType | Journal Article |
Copyright | Copyright © 2013 American
Chemical Society Copyright American Chemical Society Dec 3, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: Copyright American Chemical Society Dec 3, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TN F1W H96 L.G 7S9 L.6 |
DOI | 10.1021/ac403257p |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic Materials Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 11470 |
ExternalDocumentID | 3154012891 24160846 10_1021_ac403257p c242308031 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TN F1W H96 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a508t-49599a6c1db9385b0ed066e156397ddd314153e6081fc9000eb1456a95d2675f3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 06:45:50 EDT 2025 Fri Jul 11 09:03:04 EDT 2025 Thu Jul 10 20:09:10 EDT 2025 Fri Jul 11 02:34:15 EDT 2025 Mon Jun 30 10:32:20 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 02:48:56 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a508t-49599a6c1db9385b0ed066e156397ddd314153e6081fc9000eb1456a95d2675f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 24160846 |
PQID | 1467451584 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000302772 proquest_miscellaneous_1692332704 proquest_miscellaneous_1524407671 proquest_miscellaneous_1464888126 proquest_journals_1467451584 pubmed_primary_24160846 crossref_citationtrail_10_1021_ac403257p crossref_primary_10_1021_ac403257p acs_journals_10_1021_ac403257p |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-03 |
PublicationDateYYYYMMDD | 2013-12-03 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kang Z. (ref34/cit34) 2009; 21 ref45/cit45 Yang Q. (ref16/cit16) 2009; 57 Wang F. (ref31/cit31) 2013; 7 Zheng Z. (ref7/cit7) 2011; 26 Wang C.-I. (ref26/cit26) 2012; 84 Guilhermino L. (ref32/cit32) 1998; 3 Erogbogbo F. (ref37/cit37) 2008; 2 Zhang K. (ref6/cit6) 2010; 82 Wen F. (ref22/cit22) 2011; 83 Feng F. (ref41/cit41) 2007; 46 Zou Z. (ref9/cit9) 2010; 82 Lee J. (ref12/cit12) 2011; 83 Du D. (ref24/cit24) 2010; 25 Gabaldón J. A. (ref19/cit19) 2007; 71 Fu G. (ref10/cit10) 2013; 103 Mancini M. C. (ref39/cit39) 2008; 130 Yang F. (ref1/cit1) 1995; 11 Liu D. (ref4/cit4) 2012; 84 Quinn D. M. (ref5/cit5) 1987; 87 Burmeister J. J. (ref25/cit25) 2008; 23 Lambropoulou D. A. (ref14/cit14) 2005; 1072 Kong H. (ref23/cit23) 2012; 84 Williams A. T. R. (ref36/cit36) 1983; 108 Buonasera K. (ref13/cit13) 2009; 1216 Ge J. (ref33/cit33) 2011; 17 Kang Z. (ref35/cit35) 2007; 129 Kramer D. N. (ref40/cit40) 1958; 30 Zhao Y. (ref8/cit8) 2011; 84 Heath C. W. (ref2/cit2) 1997; 80 Wang L. (ref38/cit38) 2004; 15 Abad J. M. (ref43/cit43) 1998; 70 Yi Y. (ref29/cit29) 2013; 49 ref46/cit46 Derfus A. M. (ref30/cit30) 2003; 4 Chen A. (ref17/cit17) 2011; 46 Li M. (ref21/cit21) 2013; 61 Liang M. (ref11/cit11) 2012; 85 Viswanathan S. (ref15/cit15) 2009; 24 Du D. (ref18/cit18) 2011; 84 Wu Z.-Q. (ref42/cit42) 2012; 84 Wang H. (ref3/cit3) 2008; 80 Du D. (ref27/cit27) 2008; 24 Gao X. (ref28/cit28) 2012; 36 ref44/cit44 Jiang X.-X. (ref20/cit20) 2011; 125 |
References_xml | – volume: 7 start-page: 7278 year: 2013 ident: ref31/cit31 publication-title: ACS Nano doi: 10.1021/nn402810x – volume: 11 start-page: 471 year: 1995 ident: ref1/cit1 publication-title: Biotechnol. Prog. doi: 10.1021/bp00034a018 – volume: 83 start-page: 1193 year: 2011 ident: ref22/cit22 publication-title: Anal. Chem. doi: 10.1021/ac1031447 – volume: 26 start-page: 3081 year: 2011 ident: ref7/cit7 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.12.021 – volume: 49 start-page: 612 year: 2013 ident: ref29/cit29 publication-title: Chem. Commun. doi: 10.1039/C2CC36282A – volume: 15 start-page: 409 year: 2004 ident: ref38/cit38 publication-title: Bioconjugate Chem. doi: 10.1021/bc030047k – volume: 36 start-page: 75 year: 2012 ident: ref28/cit28 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.03.042 – volume: 46 start-page: 1828 year: 2011 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es202689u – volume: 71 start-page: 1001 year: 2007 ident: ref19/cit19 publication-title: Talanta doi: 10.1016/j.talanta.2006.04.041 – volume: 25 start-page: 1370 year: 2010 ident: ref24/cit24 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.10.032 – ident: ref44/cit44 – volume: 82 start-page: 5125 year: 2010 ident: ref9/cit9 publication-title: Anal. Chem. doi: 10.1021/ac100260m – volume: 4 start-page: 11 year: 2003 ident: ref30/cit30 publication-title: Nano Lett. doi: 10.1021/nl0347334 – volume: 87 start-page: 955 year: 1987 ident: ref5/cit5 publication-title: Chem. Rev. doi: 10.1021/cr00081a005 – volume: 129 start-page: 5326 year: 2007 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068894w – volume: 30 start-page: 251 year: 1958 ident: ref40/cit40 publication-title: Anal. Chem. doi: 10.1021/ac60134a026 – volume: 103 start-page: 110 year: 2013 ident: ref10/cit10 publication-title: Talanta doi: 10.1016/j.talanta.2012.10.016 – volume: 46 start-page: 7882 year: 2007 ident: ref41/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701724 – volume: 70 start-page: 2848 year: 1998 ident: ref43/cit43 publication-title: Anal. Chem. doi: 10.1021/ac971374m – ident: ref45/cit45 – ident: ref46/cit46 – volume: 3 start-page: 157 year: 1998 ident: ref32/cit32 publication-title: Biomarkers doi: 10.1080/135475098231318 – volume: 1072 start-page: 55 year: 2005 ident: ref14/cit14 publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2004.11.076 – volume: 57 start-page: 6558 year: 2009 ident: ref16/cit16 publication-title: J. Agric. Food Chem. doi: 10.1021/jf901286e – volume: 84 start-page: 10586 year: 2012 ident: ref42/cit42 publication-title: Anal. Chem. doi: 10.1021/ac3030224 – volume: 1216 start-page: 3970 year: 2009 ident: ref13/cit13 publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2009.03.005 – volume: 85 start-page: 308 year: 2012 ident: ref11/cit11 publication-title: Anal. Chem. doi: 10.1021/ac302781r – volume: 84 start-page: 1380 year: 2011 ident: ref18/cit18 publication-title: Anal. Chem. doi: 10.1021/ac202391w – volume: 80 start-page: 1887 year: 1997 ident: ref2/cit2 publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19971115)80:10<1887::AID-CNCR2>3.0.CO;2-L – volume: 24 start-page: 2772 year: 2009 ident: ref15/cit15 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.01.044 – volume: 130 start-page: 10836 year: 2008 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8040477 – volume: 82 start-page: 9579 year: 2010 ident: ref6/cit6 publication-title: Anal. Chem. doi: 10.1021/ac102531z – volume: 84 start-page: 386 year: 2011 ident: ref8/cit8 publication-title: Anal. Chem. doi: 10.1021/ac202735v – volume: 21 start-page: 661 year: 2009 ident: ref34/cit34 publication-title: Adv. Mater. doi: 10.1002/adma.200801642 – volume: 84 start-page: 4185 year: 2012 ident: ref4/cit4 publication-title: Anal. Chem. doi: 10.1021/ac300545p – volume: 61 start-page: 3619 year: 2013 ident: ref21/cit21 publication-title: J. Agric. Food Chem. doi: 10.1021/jf400055s – volume: 83 start-page: 6856 year: 2011 ident: ref12/cit12 publication-title: Anal. Chem. doi: 10.1021/ac200807d – volume: 84 start-page: 4258 year: 2012 ident: ref23/cit23 publication-title: Anal. Chem. doi: 10.1021/ac300718p – volume: 24 start-page: 475 year: 2008 ident: ref27/cit27 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.05.005 – volume: 80 start-page: 8477 year: 2008 ident: ref3/cit3 publication-title: Anal. Chem. doi: 10.1021/ac801211s – volume: 17 start-page: 12872 year: 2011 ident: ref33/cit33 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201102356 – volume: 108 start-page: 1067 year: 1983 ident: ref36/cit36 publication-title: Analyst doi: 10.1039/an9830801067 – volume: 125 start-page: 1385 year: 2011 ident: ref20/cit20 publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.10.010 – volume: 23 start-page: 1382 year: 2008 ident: ref25/cit25 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.12.013 – volume: 84 start-page: 9706 year: 2012 ident: ref26/cit26 publication-title: Anal. Chem. doi: 10.1021/ac300867s – volume: 2 start-page: 873 year: 2008 ident: ref37/cit37 publication-title: ACS Nano doi: 10.1021/nn700319z |
SSID | ssj0011016 |
Score | 2.5124195 |
Snippet | Sensitive, rapid, and simple detection methods for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents are in urgent... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11464 |
SubjectTerms | acetylcholine acetylcholinesterase Analytical chemistry betaine Biosensing Techniques - methods Carbaryl Choline choline oxidase Chromatography Detection diazinon Fungicides high performance liquid chromatography Hydrogen peroxide Inhibition Insecticides Liquid chromatography Luminescent Measurements - methods nerve agents Organophosphorus pesticides Parathion Pesticide residues Pesticide toxicity Pesticides Pesticides - analysis phorate Photoluminescence Quantum dots Quantum Dots - chemistry Qunatum dots screening Sensors Silicon Silicon - chemistry Strategy toxicity |
Title | A Label-Free Silicon Quantum Dots-Based Photoluminescence Sensor for Ultrasensitive Detection of Pesticides |
URI | http://dx.doi.org/10.1021/ac403257p https://www.ncbi.nlm.nih.gov/pubmed/24160846 https://www.proquest.com/docview/1467451584 https://www.proquest.com/docview/1464888126 https://www.proquest.com/docview/1524407671 https://www.proquest.com/docview/1692332704 https://www.proquest.com/docview/2000302772 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9tAEB1BOACHtoS2hKZoSzn04tRe2xvvMSRECCGUKo3ELdqvCERqR7F96a9n1o6tIEI4e6z17szOvKcZzwBcUMlFwGXXcQMjnUBo6vAoEo5ALuKGhkldVvnesetJcHMf3u_Azzcy-NT7LVTg-mhYi13YoyzqWobV64_rVIGln9VYPJtFrdoHrb9qQ49KX4aeN_BkEVeGH2FQ_Z1TlpM8dfJMdtT_180at33yJ_iwwpWkVxrCEeyYuAn7_WqcWxMO1zoPHsNTj9wKaebOcGkMGT_O0SBi8ifHc87_kUGSpc4lxjdNRg9JZh2YrY5X1guQMRLfZEkQ7JLJPFuiVJwWBUhkYLKisCsmyYyMbPsO9ahN-hkmw6u__WtnNXcBNeRGmYOciXPBlKcl96NQukYjMDHI9BC8aK19D6O-bxiiiZmyQ0fR3yMOEzzUFPnHzP8CjTiJzQkQLlwh3Ej7gUDowAWXRtiWbAgqQq101IIzVMx0dW_SaZESp960PsEW_Kp0NlWrruV2eMZ8k-h5LbooW3VsEmpXil9b1Y5cQWAXBS34UT9G_djkiYhNkhcy6OsQDrEtMiHuy-2yrrdFhiGk9tFQt6xFC6ZKkfi04GtpnPWOEHHhwQfs9L2T-wYH1I7usKU3fhsa2TI33xFAZfKsuEDPIS8SNA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigceJRXoJQFgcTFxe94DxxCQpTSUBWlkXozu96NqBrsKraF4KfwV_hzfOvYJqASTpU4e-R9zOzM92lnZ4ieu5ILn8uuZftaWr5QrsWjSFgCXMQOdCjVMsv3MBxN_XcnwckGfW_ewmASOf6UV5f4v6oLOK9E4tse7Ou8TqA80F-_gJ7lr_cH0OUL1x2-Pe6PrLqDAMayo8IC-udchImjJPeiQNpaIcRqcBaEYaWU5yB-eTpEXJwlpn0mPBcQheCBcoGkZx7-e4WuAvS4htj1-pP2hsKw3qYbn7m8baoWrU7VRLwk_z3i_QXGVuFseJN-tBtRZbGc7ZWF3Eu-_VEj8v_cqVt0o0bRrLc0-9u0odNt2uo3zeu26fpKncU7dNZjYyH13BoutGaT0znMP2UfSlhV-ZkNsiK33iCaK3b0KSuMuzZvARLj89gEND9bMEB7Np0XC0ileZVuxQa6qNLYUpbN2JEpVpKcKp3fpemlrPwebaZZqh8Q48IWwo6U5wsAJS641MIUoAOEClSiog7tQmFx7SXyuEoAcJ241ViHXjamEid1jXbTKmR-keizVvR8WZjkIqGdxt5WRjUNZgBjI79DT9vP0I-5KhKpzspKBp4d4C9cIxNgXXY37DprZEIQCA_nY81YbsXLXdC8Dt1fnol2RcCX2Hg_fPivnXtCW6Pj9-N4vH948IiuuaZpiUk68nZos1iU-jGgYyF3qzPM6ONlH4WffJFxxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIkE58CivQCkLAqkXF7_jPXAICVFLqyooROrN7Ho3atVgR7EtBD-Gv8Jf41vHtgIq4VSJs0de7-48vk8zniF65UoufC67lu1raflCuRaPImEJcBE70KFUyyrfk_Bg4n84DU436EfzLww-Iseb8iqJb6x6rqZ1hwHnjUh824OOzesiyiP97SsoWv72cID7fO26w_ef-gdWPUUA69lRYYEBcC7CxFGSe1Egba0QZjV4C0KxUspzEMM8HSI2ThMzQhPeC6hC8EC5QNNTD--9RtdNetCQu15_3GYpDPNtJvKZBG7TuWj1U03US_Lfo95foGwV0oZ36Gd7GFUly8V-Wcj95PsffSL_39O6S7drNM16S_W_Rxs63aab_WaI3TbdWum3eJ8ueuxYSD2zhgut2fh8BjNI2ccS2lV-YYOsyK13iOqKjc6ywrht809AYnwfG4PuZwsGiM8ms2IBqTSvyq7YQBdVOVvKsikbmaYlybnS-QOaXMnOH9JmmqX6MTEubCHsSHm-AGDigkstTCM6QKlAJSrq0C4uLa69RR5XhQCuE7c31qG9Rl3ipO7VbkaGzC4TfdmKzpcNSi4T2ml0bmVVM2gGcDbyO_SifYz7MSkjkeqsrGTg4QECwzUyAfZld8Ous0YmBJHwYCNr1nIrfu6C7nXo0dIu2h0BZ-Lg_fDJv07uOd0YDYbx8eHJ0VPacs3sElN75O3QZrEo9TMgyELuVmbM6PNVW8Ivzi10Rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Label-Free+Silicon+Quantum+Dots-Based+Photoluminescence+Sensor+for+Ultrasensitive+Detection+of+Pesticides&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Yi%2C+Yinhui&rft.au=Zhu%2C+Gangbing&rft.au=Liu%2C+Chang&rft.au=Huang%2C+Yan&rft.date=2013-12-03&rft.issn=0003-2700&rft.volume=85&rft.issue=23&rft.spage=11464&rft.epage=11464&rft_id=info:doi/10.1021%2Fac403257p&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |