Characterization and Properties of Metallic Iron Nanoparticles:  Spectroscopy, Electrochemistry, and Kinetics

There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these repor...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 39; no. 5; pp. 1221 - 1230
Main Authors Nurmi, James T, Tratnyek, Paul G, Sarathy, Vaishnavi, Baer, Donald R, Amonette, James E, Pecher, Klaus, Wang, Chongmin, Linehan, John C, Matson, Dean W, Penn, R. Lee, Driessen, Michelle D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations:  one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). FeH2 is a two-phase material consisting of 40 nm α-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas FeBH is mostly 20−80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinonewhich presumably probes inner-sphere surface reactionsreacts more rapidly with FeBH than FeH2, whereas carbon tetrachloride reacts at similar rates with FeBH and FeH2, presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidly than micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH.
AbstractList There are reports that nano-sized zero-valent iron (FeO) exhibits greater reactivity than micro-sized particles of FeO, and it has been suggested that the higher reactivity of nano-FeO may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nanoFeO, we have used a variety of complementary techniques to characterize two widely studied nano-FeO preparations: one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). Fe H2 is a two-phase material consisting of 40 nm alpha-FeO(made up of crystals approximately the size of the particles) and Fe304 particles of similar size or larger containing reduced sulfur; whereas FeBH is Mostly 20-80 nm metallic Fe particles (aggregates of less than 1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The Fe BH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized FeO, or a solid FeO disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with Fe BH than FeH2, whereas carbon tetrachloride reacts at similar rates with Fe BH and Fe H2, presumably by outer-sphere electron transfer. Both types of nano-FeO react more rapidly than microsized FeO, based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH. [PUBLICATION ABSTRACT]
There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).
There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).
There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations:  one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). FeH2 is a two-phase material consisting of 40 nm α-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas FeBH is mostly 20−80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinonewhich presumably probes inner-sphere surface reactionsreacts more rapidly with FeBH than FeH2, whereas carbon tetrachloride reacts at similar rates with FeBH and FeH2, presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidly than micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH.
Author Nurmi, James T
Driessen, Michelle D
Linehan, John C
Penn, R. Lee
Pecher, Klaus
Baer, Donald R
Amonette, James E
Sarathy, Vaishnavi
Wang, Chongmin
Matson, Dean W
Tratnyek, Paul G
Author_xml – sequence: 1
  givenname: James T
  surname: Nurmi
  fullname: Nurmi, James T
– sequence: 2
  givenname: Paul G
  surname: Tratnyek
  fullname: Tratnyek, Paul G
– sequence: 3
  givenname: Vaishnavi
  surname: Sarathy
  fullname: Sarathy, Vaishnavi
– sequence: 4
  givenname: Donald R
  surname: Baer
  fullname: Baer, Donald R
– sequence: 5
  givenname: James E
  surname: Amonette
  fullname: Amonette, James E
– sequence: 6
  givenname: Klaus
  surname: Pecher
  fullname: Pecher, Klaus
– sequence: 7
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
– sequence: 8
  givenname: John C
  surname: Linehan
  fullname: Linehan, John C
– sequence: 9
  givenname: Dean W
  surname: Matson
  fullname: Matson, Dean W
– sequence: 10
  givenname: R. Lee
  surname: Penn
  fullname: Penn, R. Lee
– sequence: 11
  givenname: Michelle D
  surname: Driessen
  fullname: Driessen, Michelle D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15787360$$D View this record in MEDLINE/PubMed
BookMark eNptkdFOFTEQhhuDkQN64QuYjYkmJq5Md7ft1jtzBCSiQg4mhpum250NhT3bte0mwhW3vKZPYuEgJOhVM51v_sz_zwZZG9yAhDyn8I5CQbcwQCWphOkRmVFWQM5qRtfIDICWuSz5j3WyEcIpABQl1E_IOmWiFiWHGXHzE-21iejthY7WDZke2uzAuxF9tBgy12VfMOq-tybb86n_VQ9u1Klpegzvf19eZYsRTfQuGDeev822-5vKnODShujTz7XiZztgGglPyeNO9wGf3b6b5PvO9tH8U77_bXdv_mE_1wxEzDvJKy67SogW6wK4RqhaU9ctE5XsAFpTNk2y3jAuiqIrW0NNIzitTcNNIVm5SV6vdEfvfk4YokrbGOx7PaCbguKCVaJiIoEvH4CnbvJD2k2lsCgXNZQJenELTc0SWzV6u9T-XP3NMQFvVoBJOQSP3T0C6vpG6u5Gid16wBobb7KPXtv-vxP5aiIFir_upLU_Sz5KwdTRwUId7y4O5eFHqY4T_2rFaxPu7fyr-weUabAe
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_scitotenv_2018_05_096
crossref_primary_10_1016_j_watres_2015_06_004
crossref_primary_10_1002_jhet_3410
crossref_primary_10_1007_s00128_011_0425_6
crossref_primary_10_1016_j_tetlet_2019_151422
crossref_primary_10_1088_0957_4484_16_7_015
crossref_primary_10_1263_jbb_102_1
crossref_primary_10_1021_cm0511217
crossref_primary_10_1016_j_ultramic_2007_03_002
crossref_primary_10_2323_jgam_57_59
crossref_primary_10_1016_j_clay_2014_02_020
crossref_primary_10_1021_acsomega_8b02835
crossref_primary_10_1002_adma_201401376
crossref_primary_10_1016_j_jece_2024_113426
crossref_primary_10_1016_j_scitotenv_2020_143413
crossref_primary_10_1021_ie701762d
crossref_primary_10_1021_es060685o
crossref_primary_10_1088_2053_1591_ab525b
crossref_primary_10_1021_acs_est_8b01734
crossref_primary_10_1021_acs_est_8b01735
crossref_primary_10_1039_C3EN00063J
crossref_primary_10_1039_C8NR02278J
crossref_primary_10_4028_www_scientific_net_AMM_522_524_454
crossref_primary_10_1016_j_envpol_2012_07_045
crossref_primary_10_1002_wer_1265
crossref_primary_10_1016_j_molliq_2015_09_006
crossref_primary_10_1384_jsa_17_163
crossref_primary_10_1016_j_apcata_2014_09_001
crossref_primary_10_1016_j_chemosphere_2006_02_060
crossref_primary_10_1016_j_jhazmat_2007_06_044
crossref_primary_10_1016_j_powtec_2014_01_058
crossref_primary_10_1039_C5RA07052J
crossref_primary_10_3390_ijerph19106299
crossref_primary_10_1371_journal_pone_0122884
crossref_primary_10_1016_j_chemosphere_2019_124470
crossref_primary_10_1021_es4005202
crossref_primary_10_1007_s11270_013_1632_z
crossref_primary_10_1002_jpln_201700204
crossref_primary_10_1016_j_envpol_2017_09_052
crossref_primary_10_1016_j_cej_2019_122773
crossref_primary_10_1155_2017_2749575
crossref_primary_10_1021_es061349a
crossref_primary_10_1007_s11756_021_00814_w
crossref_primary_10_1007_s11051_012_1023_1
crossref_primary_10_1016_j_fct_2018_02_045
crossref_primary_10_1016_j_micromeso_2009_08_015
crossref_primary_10_1007_s11356_022_18668_3
crossref_primary_10_1007_s11051_009_9767_y
crossref_primary_10_1016_j_ica_2014_12_015
crossref_primary_10_1021_es050472j
crossref_primary_10_1016_j_watres_2009_09_012
crossref_primary_10_1016_j_jconhyd_2012_01_006
crossref_primary_10_1021_acs_est_4c02190
crossref_primary_10_1016_j_colsurfa_2007_05_029
crossref_primary_10_1089_ees_2016_0580
crossref_primary_10_1134_S0006350911060066
crossref_primary_10_1016_j_cej_2017_03_141
crossref_primary_10_1007_s11356_017_8597_1
crossref_primary_10_2208_journalofjsce_7_1_30
crossref_primary_10_1016_j_jconhyd_2007_04_001
crossref_primary_10_1016_S1001_0742_10_60534_7
crossref_primary_10_1039_D1RA01427G
crossref_primary_10_1016_j_jhazmat_2012_02_002
crossref_primary_10_1021_es0711967
crossref_primary_10_1021_nl0518268
crossref_primary_10_1007_s11051_009_9732_9
crossref_primary_10_1007_s11356_022_21849_9
crossref_primary_10_1021_es204024n
crossref_primary_10_1002_jctb_5072
crossref_primary_10_1002_rem_21750
crossref_primary_10_1016_j_colsurfa_2009_08_007
crossref_primary_10_1016_j_scitotenv_2017_10_002
crossref_primary_10_1021_es303422w
crossref_primary_10_7240_marufbd_346547
crossref_primary_10_1016_j_cej_2021_134143
crossref_primary_10_1016_j_jhazmat_2013_05_057
crossref_primary_10_1002_adma_201705703
crossref_primary_10_1007_s13762_022_04536_7
crossref_primary_10_1016_j_jfda_2014_01_007
crossref_primary_10_1007_s11164_018_3472_3
crossref_primary_10_1016_j_jconhyd_2013_11_007
crossref_primary_10_1070_RC2013v082n01ABEH004329
crossref_primary_10_1155_JNM_2006_54961
crossref_primary_10_1016_j_jhazmat_2022_129056
crossref_primary_10_1016_j_watres_2016_09_025
crossref_primary_10_1016_j_seppur_2016_11_053
crossref_primary_10_1089_ees_2007_24_45
crossref_primary_10_4028_www_scientific_net_MSF_694_224
crossref_primary_10_2174_2405461507666220405113715
crossref_primary_10_1007_s13762_024_05612_w
crossref_primary_10_1016_j_corsci_2007_06_016
crossref_primary_10_1021_acs_chemrev_0c01286
crossref_primary_10_1016_j_jcis_2014_04_014
crossref_primary_10_1021_ja2040464
crossref_primary_10_1016_j_biotechadv_2016_10_004
crossref_primary_10_1016_j_cej_2011_08_018
crossref_primary_10_2175_106143014X13975035525582
crossref_primary_10_2175_106143014X13975035525221
crossref_primary_10_1016_j_jece_2022_108950
crossref_primary_10_1002_aoc_5014
crossref_primary_10_1016_j_fuel_2024_131007
crossref_primary_10_1021_acs_est_4c04390
crossref_primary_10_1039_C6CP06921E
crossref_primary_10_1021_es503154q
crossref_primary_10_1021_es0525758
crossref_primary_10_1039_b616471b
crossref_primary_10_1007_s11356_012_1415_x
crossref_primary_10_1016_j_jenvman_2010_12_020
crossref_primary_10_1021_es803540b
crossref_primary_10_1016_j_watres_2017_11_002
crossref_primary_10_1080_10643389_2014_921975
crossref_primary_10_1007_s11051_010_9946_x
crossref_primary_10_3390_nano9091193
crossref_primary_10_1016_j_micromeso_2020_110522
crossref_primary_10_1007_s11051_008_9524_7
crossref_primary_10_1007_s11814_011_0292_1
crossref_primary_10_1016_j_apcata_2018_08_013
crossref_primary_10_1021_es0616534
crossref_primary_10_1016_j_jhazmat_2012_09_070
crossref_primary_10_1016_j_scitotenv_2015_05_033
crossref_primary_10_1016_j_inoche_2022_109588
crossref_primary_10_1016_j_jhazmat_2023_132977
crossref_primary_10_1039_C6RA15881A
crossref_primary_10_1016_j_chemosphere_2006_03_075
crossref_primary_10_1016_j_chemgeo_2010_09_002
crossref_primary_10_1002_rem_21302
crossref_primary_10_1002_rem_21426
crossref_primary_10_1007_s11051_007_9225_7
crossref_primary_10_1016_j_jhazmat_2016_03_069
crossref_primary_10_1016_j_jcat_2015_08_019
crossref_primary_10_1016_j_apcatb_2014_09_077
crossref_primary_10_1021_es0712625
crossref_primary_10_1089_ees_2007_24_21
crossref_primary_10_1016_j_apsusc_2019_06_062
crossref_primary_10_1007_s42247_022_00355_1
crossref_primary_10_1039_c1jm11435b
crossref_primary_10_1016_j_ultsonch_2014_03_002
crossref_primary_10_1007_s00216_005_0230_3
crossref_primary_10_1016_j_gca_2007_12_018
crossref_primary_10_1039_D1CS00857A
crossref_primary_10_1080_10962247_2023_2196964
crossref_primary_10_1039_C7NJ00761B
crossref_primary_10_1002_rem_21559
crossref_primary_10_1016_j_cep_2019_107683
crossref_primary_10_1016_j_electacta_2015_06_054
crossref_primary_10_1039_c0em00039f
crossref_primary_10_1016_j_apsusc_2015_08_184
crossref_primary_10_1016_j_chemosphere_2020_129026
crossref_primary_10_1016_j_cej_2017_10_019
crossref_primary_10_1007_s11356_012_0749_8
crossref_primary_10_1016_j_seppur_2016_12_050
crossref_primary_10_1016_j_watres_2006_11_019
crossref_primary_10_1016_j_chemosphere_2010_11_075
crossref_primary_10_1016_j_apcatb_2020_119198
crossref_primary_10_1016_j_arabjc_2018_02_005
crossref_primary_10_1080_00986445_2021_1983546
crossref_primary_10_1016_j_apcatb_2010_01_028
crossref_primary_10_1021_acs_est_1c02458
crossref_primary_10_1002_ange_200704943
crossref_primary_10_1016_j_envpol_2020_114728
crossref_primary_10_1039_b712709j
crossref_primary_10_1039_C3AY40517F
crossref_primary_10_2175_106143006X136784
crossref_primary_10_1039_D1RA03918K
crossref_primary_10_1016_j_cej_2020_124202
crossref_primary_10_1039_C6EN00398B
crossref_primary_10_1016_j_scitotenv_2021_148546
crossref_primary_10_1021_es400362w
crossref_primary_10_1016_j_gca_2011_09_007
crossref_primary_10_1016_j_matchemphys_2020_122812
crossref_primary_10_1016_j_jece_2023_110945
crossref_primary_10_1016_j_scitotenv_2018_02_038
crossref_primary_10_1016_j_jcis_2009_09_027
crossref_primary_10_1039_C5RA14130C
crossref_primary_10_1155_2014_431787
crossref_primary_10_1021_es9006383
crossref_primary_10_1088_1009_0630_9_3_05
crossref_primary_10_1016_j_jics_2021_100266
crossref_primary_10_1155_2013_786954
crossref_primary_10_1007_s13369_014_1229_x
crossref_primary_10_1021_es0520924
crossref_primary_10_1016_j_scitotenv_2012_11_073
crossref_primary_10_1080_09593330_2011_592225
crossref_primary_10_1021_es902924h
crossref_primary_10_1039_c3ta10282c
crossref_primary_10_1016_j_epsl_2006_09_005
crossref_primary_10_1016_j_cej_2010_01_054
crossref_primary_10_1007_s10646_008_0214_0
crossref_primary_10_1016_j_jconhyd_2015_04_007
crossref_primary_10_1557_opl_2016_61
crossref_primary_10_3390_molecules23030606
crossref_primary_10_1016_j_jhazmat_2011_11_073
crossref_primary_10_1021_acs_est_7b04177
crossref_primary_10_1021_es304441e
crossref_primary_10_1021_acs_langmuir_3c00967
crossref_primary_10_1080_10643380600620387
crossref_primary_10_1016_j_jhazmat_2019_03_080
crossref_primary_10_1016_j_chemosphere_2019_125044
crossref_primary_10_3389_fchem_2019_00847
crossref_primary_10_3103_S1063455X14060101
crossref_primary_10_1039_D1CC01946E
crossref_primary_10_1155_2016_4372136
crossref_primary_10_1080_19443994_2015_1061451
crossref_primary_10_1016_j_colsurfa_2013_12_031
crossref_primary_10_1016_j_clay_2011_06_010
crossref_primary_10_1016_j_watres_2012_02_006
crossref_primary_10_3109_07388551_2010_550568
crossref_primary_10_1016_j_colsurfa_2008_09_031
crossref_primary_10_1016_j_jmmm_2017_07_091
crossref_primary_10_1016_j_enmm_2023_100808
crossref_primary_10_1186_s12951_020_00704_4
crossref_primary_10_1007_s11270_008_9661_8
crossref_primary_10_1016_j_cej_2021_129073
crossref_primary_10_1007_s00216_008_2458_1
crossref_primary_10_1039_C8CY01346B
crossref_primary_10_1007_s11671_010_9753_4
crossref_primary_10_1021_es702560k
crossref_primary_10_1021_ja900353f
crossref_primary_10_1016_j_ijhydene_2016_10_072
crossref_primary_10_1061__ASCE_EE_1943_7870_0000936
crossref_primary_10_1016_j_cej_2016_08_140
crossref_primary_10_2174_0115734137271993231109174718
crossref_primary_10_1080_19443994_2014_903873
crossref_primary_10_1039_C7CY02259J
crossref_primary_10_1016_j_jece_2020_103909
crossref_primary_10_1016_j_matpr_2019_03_048
crossref_primary_10_1039_c1em10370a
crossref_primary_10_1016_j_colsurfa_2025_136653
crossref_primary_10_1016_j_watres_2020_116632
crossref_primary_10_1021_acs_nanolett_9b00579
crossref_primary_10_1007_s11356_015_5092_4
crossref_primary_10_1021_ie300992v
crossref_primary_10_1080_10643380701628933
crossref_primary_10_1089_ees_2006_23_272
crossref_primary_10_1016_j_jcis_2019_05_109
crossref_primary_10_1016_j_watres_2019_115319
crossref_primary_10_1016_j_eehl_2025_100134
crossref_primary_10_1116_1_4964867
crossref_primary_10_1177_1740349914540902
crossref_primary_10_1016_j_jconhyd_2008_02_003
crossref_primary_10_1061__ASCE_0733_9372_2009_135_5_317
crossref_primary_10_1016_j_watres_2018_04_037
crossref_primary_10_1039_C7TA08605A
crossref_primary_10_3390_polym8020032
crossref_primary_10_5402_2012_270830
crossref_primary_10_1016_j_apsusc_2008_05_093
crossref_primary_10_1016_j_biomaterials_2009_11_034
crossref_primary_10_1016_j_chemosphere_2019_04_158
crossref_primary_10_1016_j_partic_2013_04_002
crossref_primary_10_1021_es802187d
crossref_primary_10_1016_j_cej_2014_05_030
crossref_primary_10_1016_j_ces_2017_04_007
crossref_primary_10_1016_j_enmm_2020_100296
crossref_primary_10_3390_ma14164748
crossref_primary_10_1016_j_chemosphere_2008_02_002
crossref_primary_10_2134_jeq2007_0545
crossref_primary_10_1016_j_apcatb_2007_10_033
crossref_primary_10_1021_es4044209
crossref_primary_10_1021_es8001986
crossref_primary_10_1016_j_apcatb_2008_05_008
crossref_primary_10_1166_jnn_2021_18510
crossref_primary_10_1016_j_jhazmat_2007_06_122
crossref_primary_10_1039_C4AN00679H
crossref_primary_10_1007_s40201_021_00631_y
crossref_primary_10_1007_s11743_017_1941_0
crossref_primary_10_1016_j_chemosphere_2018_09_004
crossref_primary_10_1039_C7RA00464H
crossref_primary_10_1016_j_ibiod_2016_09_027
crossref_primary_10_1016_j_jece_2022_107457
crossref_primary_10_1016_j_cej_2013_03_019
crossref_primary_10_1016_j_elspec_2009_09_003
crossref_primary_10_1021_acs_est_8b06499
crossref_primary_10_1016_j_watres_2009_08_051
crossref_primary_10_3390_min13111385
crossref_primary_10_1007_s00604_021_04913_y
crossref_primary_10_1021_acsearthspacechem_8b00200
crossref_primary_10_1021_jp072295
crossref_primary_10_1039_C4CC06241H
crossref_primary_10_1155_2015_548961
crossref_primary_10_1007_s11051_005_7523_5
crossref_primary_10_1007_s11356_018_2628_4
crossref_primary_10_1016_j_cej_2017_03_056
crossref_primary_10_1080_10408436_2014_899890
crossref_primary_10_1016_j_jece_2016_03_048
crossref_primary_10_5004_dwt_2017_21754
crossref_primary_10_1016_j_scitotenv_2012_01_010
crossref_primary_10_1016_j_ultsonch_2013_04_015
crossref_primary_10_1039_C4RA16061D
crossref_primary_10_1039_d0pp00295j
crossref_primary_10_1002_sia_3260
crossref_primary_10_1016_j_chemosphere_2010_11_009
crossref_primary_10_1021_es061721m
crossref_primary_10_1021_es4056565
crossref_primary_10_1039_B706225G
crossref_primary_10_1016_j_jece_2024_113006
crossref_primary_10_4028_www_scientific_net_AMR_1028_30
crossref_primary_10_1088_1361_6528_ab622f
crossref_primary_10_1016_j_jenvrad_2016_06_027
crossref_primary_10_1134_S0020168517090011
crossref_primary_10_1007_s13762_016_1077_1
crossref_primary_10_1021_jp9051837
crossref_primary_10_1111_j_1745_6592_2010_01294_x
crossref_primary_10_1080_02652030802007553
crossref_primary_10_1021_es903278e
crossref_primary_10_1016_j_jece_2024_112023
crossref_primary_10_1021_acs_iecr_7b00587
crossref_primary_10_1016_j_jece_2021_106160
crossref_primary_10_1016_j_jhazmat_2016_04_037
crossref_primary_10_1021_ie101546k
crossref_primary_10_1021_acs_est_3c02039
crossref_primary_10_1088_1757_899X_98_1_012039
crossref_primary_10_1016_j_cej_2018_04_175
crossref_primary_10_1007_s10230_019_00605_5
crossref_primary_10_1007_s11051_009_9764_1
crossref_primary_10_1016_j_ijhydene_2019_08_009
crossref_primary_10_1016_j_cej_2011_01_048
crossref_primary_10_1007_s11270_013_1799_3
crossref_primary_10_1016_j_jhazmat_2019_121253
crossref_primary_10_1021_jp909137f
crossref_primary_10_1016_j_chemosphere_2020_127875
crossref_primary_10_1016_j_chemosphere_2018_06_008
crossref_primary_10_1016_j_scitotenv_2021_145550
crossref_primary_10_1016_j_jhazmat_2008_04_027
crossref_primary_10_1080_19443994_2015_1038734
crossref_primary_10_1346_CCMN_2012_0600204
crossref_primary_10_1016_j_clay_2009_11_044
crossref_primary_10_1021_jp0702189
crossref_primary_10_1016_j_nxmate_2024_100405
crossref_primary_10_1016_j_chemosphere_2009_12_061
crossref_primary_10_1016_j_colsurfa_2010_08_031
crossref_primary_10_1016_j_jcis_2018_08_075
crossref_primary_10_1016_j_colsurfa_2015_03_057
crossref_primary_10_4028_www_scientific_net_AMR_573_574_155
crossref_primary_10_1002_rem_20080
crossref_primary_10_1021_acs_est_5b00006
crossref_primary_10_1016_j_jclepro_2020_119955
crossref_primary_10_1021_es304829z
crossref_primary_10_1016_j_watres_2024_121494
crossref_primary_10_1021_es0712120
crossref_primary_10_1021_es7025664
crossref_primary_10_1088_2053_1591_ab83a3
crossref_primary_10_1016_j_envpol_2013_04_004
crossref_primary_10_1080_19430892_2012_706185
crossref_primary_10_1186_s12951_017_0268_3
crossref_primary_10_3103_S0147687414040085
crossref_primary_10_1007_s00396_016_3972_x
crossref_primary_10_1080_10408430601057611
crossref_primary_10_1016_j_chemosphere_2010_07_054
crossref_primary_10_1016_j_jece_2023_111412
crossref_primary_10_1021_es301753u
crossref_primary_10_1021_es401481a
crossref_primary_10_1016_j_clay_2017_04_022
crossref_primary_10_1016_j_heliyon_2019_e01750
crossref_primary_10_1080_00032719_2016_1159219
crossref_primary_10_1016_j_watres_2014_08_001
crossref_primary_10_1016_j_chemosphere_2009_04_067
crossref_primary_10_1016_j_jhazmat_2014_10_050
crossref_primary_10_1007_s11434_014_0440_1
crossref_primary_10_1021_es902595j
crossref_primary_10_1016_j_clay_2018_06_040
crossref_primary_10_1039_c1nr11000d
crossref_primary_10_1007_s13197_018_3266_z
crossref_primary_10_1016_j_gca_2016_10_039
crossref_primary_10_1021_es802726v
crossref_primary_10_1155_2016_8026843
crossref_primary_10_1016_j_chemosphere_2008_08_014
crossref_primary_10_1021_acs_est_7b01896
crossref_primary_10_1016_j_jhazmat_2020_122210
crossref_primary_10_1007_s11270_015_2421_7
crossref_primary_10_1007_s10973_014_3763_x
crossref_primary_10_1039_C5RA18282D
crossref_primary_10_1039_D1CP04411G
crossref_primary_10_1016_j_watres_2012_04_013
crossref_primary_10_1016_j_jmst_2020_08_031
crossref_primary_10_1016_j_cej_2012_05_018
crossref_primary_10_1016_j_cej_2014_11_046
crossref_primary_10_1039_C2EM30655G
crossref_primary_10_1021_ie4009524
crossref_primary_10_1016_j_jes_2014_06_016
crossref_primary_10_1016_j_wasman_2009_10_012
crossref_primary_10_1149_1_3223665
crossref_primary_10_1016_j_cej_2016_05_132
crossref_primary_10_1016_j_enmm_2019_100218
crossref_primary_10_1016_j_apcatb_2007_07_034
crossref_primary_10_1016_j_gca_2012_02_023
crossref_primary_10_1002_anie_200704943
crossref_primary_10_1016_j_foodcont_2024_111111
crossref_primary_10_1021_cm101996u
crossref_primary_10_1007_s11051_011_0291_5
crossref_primary_10_1016_j_apsusc_2020_147567
crossref_primary_10_1016_j_materresbull_2014_02_019
crossref_primary_10_1016_j_jece_2022_107191
crossref_primary_10_1039_C5AY02182K
crossref_primary_10_1007_s11783_013_0575_3
crossref_primary_10_1039_C7NR05823C
crossref_primary_10_1016_j_jhazmat_2019_04_056
crossref_primary_10_1039_c2cc16438h
crossref_primary_10_1016_j_watres_2014_10_043
crossref_primary_10_1021_acs_est_8b02399
crossref_primary_10_1016_j_apcatb_2007_06_003
crossref_primary_10_1016_j_colsurfa_2014_01_037
crossref_primary_10_1021_la1006633
crossref_primary_10_1016_j_colsurfa_2011_09_011
crossref_primary_10_1016_j_wasman_2006_12_012
crossref_primary_10_1016_j_watres_2009_05_046
crossref_primary_10_1021_jp810143y
crossref_primary_10_1021_es702579w
crossref_primary_10_1021_es801438f
crossref_primary_10_1016_j_mtchem_2023_101644
crossref_primary_10_1016_j_scitotenv_2009_05_033
crossref_primary_10_1007_s00216_009_3360_1
crossref_primary_10_4236_jwarp_2016_85051
crossref_primary_10_1016_j_jhazmat_2011_04_089
crossref_primary_10_1080_19443994_2015_1013992
crossref_primary_10_1016_j_seppur_2021_118663
crossref_primary_10_1016_j_jclepro_2013_12_026
crossref_primary_10_1007_s11356_016_6255_7
crossref_primary_10_1016_j_ultsonch_2009_01_005
crossref_primary_10_23939_chcht13_01_121
crossref_primary_10_1016_j_materresbull_2014_09_016
crossref_primary_10_1080_10934529_2012_707556
crossref_primary_10_1016_j_jtice_2014_08_021
crossref_primary_10_1557_PROC_876_R10_4
crossref_primary_10_1021_es503777a
crossref_primary_10_1021_am300402q
crossref_primary_10_3390_ijerph18179278
crossref_primary_10_1088_1755_1315_779_1_012113
crossref_primary_10_1021_jp0777418
crossref_primary_10_1007_s11051_012_0861_1
crossref_primary_10_1016_j_jhazmat_2021_127486
crossref_primary_10_1016_j_apcatb_2009_03_007
crossref_primary_10_1016_j_seppur_2010_10_015
crossref_primary_10_1021_ja3060035
crossref_primary_10_1016_j_jhazmat_2021_126026
crossref_primary_10_1016_j_jconhyd_2010_07_011
crossref_primary_10_1016_j_watres_2012_12_042
crossref_primary_10_1155_2014_825910
crossref_primary_10_1016_j_watres_2012_06_051
crossref_primary_10_1021_acs_est_7b03604
crossref_primary_10_1016_j_inoche_2024_112541
crossref_primary_10_22211_matwys_0172E
crossref_primary_10_3390_ma11060945
crossref_primary_10_1080_03601230902997501
crossref_primary_10_1007_s10973_022_11446_w
crossref_primary_10_1016_j_cattod_2012_12_011
crossref_primary_10_1007_s11270_014_2243_z
crossref_primary_10_1016_j_mencom_2016_11_031
crossref_primary_10_3389_fenvs_2018_00079
crossref_primary_10_1016_j_scitotenv_2010_01_039
crossref_primary_10_1016_j_chemgeo_2019_07_008
crossref_primary_10_1016_j_jconhyd_2015_03_004
crossref_primary_10_1007_s10934_015_0038_2
crossref_primary_10_1080_02603590500496721
crossref_primary_10_1038_srep18818
crossref_primary_10_1016_j_jhazmat_2016_07_042
crossref_primary_10_1016_j_jconhyd_2010_07_006
crossref_primary_10_1016_j_jhazmat_2024_135946
crossref_primary_10_1016_j_watres_2007_03_035
crossref_primary_10_1088_0957_4484_18_25_255603
crossref_primary_10_1088_1361_6528_acd38a
crossref_primary_10_1016_j_apcatb_2017_12_077
crossref_primary_10_1021_am503063m
crossref_primary_10_1016_j_clet_2021_100081
crossref_primary_10_1016_j_molliq_2022_120262
crossref_primary_10_1061__ASCE_EE_1943_7870_0000906
crossref_primary_10_1016_j_jiec_2019_09_024
crossref_primary_10_1021_acs_jpcc_1c08829
crossref_primary_10_1007_s11356_016_7285_x
crossref_primary_10_1016_j_watres_2015_01_002
crossref_primary_10_1021_acs_est_5b04988
crossref_primary_10_1016_j_jallcom_2019_153517
crossref_primary_10_1021_jp501846f
crossref_primary_10_1016_j_jhazmat_2014_08_049
crossref_primary_10_1080_10408410701710442
crossref_primary_10_1016_j_watres_2016_03_019
crossref_primary_10_2166_wst_2016_478
crossref_primary_10_1088_1742_6596_838_1_012034
crossref_primary_10_1016_j_watres_2011_04_010
crossref_primary_10_1016_j_cej_2021_130261
crossref_primary_10_1016_j_cej_2024_157832
crossref_primary_10_3184_146867807X244030
crossref_primary_10_1016_j_envres_2020_109855
crossref_primary_10_1016_j_jhazmat_2021_127343
crossref_primary_10_1016_j_jhazmat_2010_01_060
crossref_primary_10_1016_j_cattod_2008_09_038
crossref_primary_10_1016_S1748_0132_06_70048_2
crossref_primary_10_1007_s11051_011_0421_0
crossref_primary_10_1155_2014_152824
crossref_primary_10_1016_j_memsci_2017_02_021
crossref_primary_10_1016_j_jclepro_2021_127678
crossref_primary_10_1109_ACCESS_2019_2961513
crossref_primary_10_1016_j_jes_2018_01_029
crossref_primary_10_1155_2020_3286383
crossref_primary_10_1016_j_jiec_2012_12_020
crossref_primary_10_1016_j_jcis_2008_04_064
crossref_primary_10_1016_j_cej_2014_03_017
crossref_primary_10_1016_j_jenvman_2015_12_022
crossref_primary_10_1016_j_jhazmat_2010_11_029
crossref_primary_10_1021_jp8076062
crossref_primary_10_1016_j_scitotenv_2016_09_211
crossref_primary_10_1016_j_ultsonch_2012_11_015
crossref_primary_10_1007_s11270_013_1541_1
crossref_primary_10_1016_j_chemosphere_2013_04_025
crossref_primary_10_1016_j_jcis_2011_12_059
crossref_primary_10_1021_es071545x
crossref_primary_10_1021_es300516e
crossref_primary_10_1007_s11661_021_06326_1
crossref_primary_10_1016_j_gca_2015_02_014
crossref_primary_10_1016_j_sbsr_2018_100250
crossref_primary_10_1038_nnano_2009_242
crossref_primary_10_1016_j_aca_2015_10_040
crossref_primary_10_1039_b913056j
crossref_primary_10_1016_j_mtla_2020_100930
crossref_primary_10_1021_ie400702k
crossref_primary_10_1016_j_cej_2019_122120
crossref_primary_10_3390_nano11051141
crossref_primary_10_1002_pssa_201431843
crossref_primary_10_1177_0734242X20936761
crossref_primary_10_1021_jp2028824
crossref_primary_10_1016_j_microc_2018_06_025
crossref_primary_10_1021_acs_est_8b00487
crossref_primary_10_1039_D0SC03663C
crossref_primary_10_1007_s13762_023_04902_z
crossref_primary_10_1016_j_trac_2010_11_014
crossref_primary_10_1016_j_watres_2015_04_009
crossref_primary_10_1002_jctb_4365
crossref_primary_10_1002_sia_2760
crossref_primary_10_5004_dwt_2017_21049
crossref_primary_10_1016_j_jhazmat_2013_02_047
crossref_primary_10_1007_s13391_013_2123_5
crossref_primary_10_1021_es902772r
crossref_primary_10_1039_C9EM00592G
crossref_primary_10_1016_j_mtcomm_2020_101717
crossref_primary_10_1016_j_desal_2009_06_054
crossref_primary_10_3762_bjnano_6_167
crossref_primary_10_1016_j_jconhyd_2014_06_014
crossref_primary_10_1016_j_scitotenv_2023_162720
crossref_primary_10_1089_ees_2009_0147
crossref_primary_10_1007_s11051_007_9315_6
crossref_primary_10_1016_j_envpol_2011_06_021
crossref_primary_10_1016_j_jhazmat_2013_10_031
crossref_primary_10_1021_es062312t
crossref_primary_10_1016_j_jmmm_2022_169139
crossref_primary_10_1016_j_wasman_2019_10_003
crossref_primary_10_4081_ija_2013_e18
crossref_primary_10_1016_j_cej_2016_05_065
crossref_primary_10_1002_cjoc_202100426
crossref_primary_10_1021_es071774j
crossref_primary_10_1016_j_jcis_2017_07_024
crossref_primary_10_1016_j_jhazmat_2021_125246
crossref_primary_10_1016_j_surfin_2022_102098
crossref_primary_10_1061__ASCE_GT_1943_5606_0001015
crossref_primary_10_1002_pc_22669
crossref_primary_10_1016_j_susc_2007_12_014
crossref_primary_10_1039_D1TA02046C
crossref_primary_10_1016_j_scitotenv_2010_10_015
crossref_primary_10_1016_j_apsusc_2020_145438
crossref_primary_10_1016_j_jhazmat_2012_04_065
crossref_primary_10_1021_es200577n
crossref_primary_10_1016_j_scitotenv_2020_144246
crossref_primary_10_1016_j_susmat_2025_e01362
crossref_primary_10_1016_j_seppur_2018_01_032
crossref_primary_10_1063_1_2130890
crossref_primary_10_1016_j_cej_2015_11_046
crossref_primary_10_1016_j_jcis_2017_07_016
crossref_primary_10_1007_s10800_007_9450_x
crossref_primary_10_1007_s11814_008_0226_8
crossref_primary_10_1021_acs_iecr_8b04464
crossref_primary_10_1016_j_jece_2017_01_038
crossref_primary_10_1016_j_colsurfa_2016_07_054
crossref_primary_10_1016_j_wasman_2019_05_017
crossref_primary_10_1039_C6RA16657A
crossref_primary_10_1016_j_jmmm_2018_03_047
crossref_primary_10_1016_j_carbon_2015_05_081
crossref_primary_10_3390_molecules29194628
crossref_primary_10_1002_app_38335
crossref_primary_10_1016_j_cej_2011_12_089
crossref_primary_10_1021_acsestengg_4c00316
crossref_primary_10_1371_journal_pone_0132067
crossref_primary_10_1016_j_watres_2013_02_039
crossref_primary_10_1021_acs_est_9b02419
crossref_primary_10_1021_es202417t
crossref_primary_10_1007_s11434_009_0676_3
crossref_primary_10_1021_es204087q
crossref_primary_10_1016_j_cej_2014_01_061
crossref_primary_10_1016_j_jhazmat_2016_01_052
crossref_primary_10_1073_pnas_2204673119
crossref_primary_10_1007_s11356_013_2337_y
crossref_primary_10_1007_s41204_017_0015_x
crossref_primary_10_1016_j_apcata_2017_05_028
crossref_primary_10_1016_j_chemosphere_2013_11_010
crossref_primary_10_1021_la703689k
crossref_primary_10_1016_j_chemgeo_2015_01_018
crossref_primary_10_1016_j_chemosphere_2008_07_050
crossref_primary_10_1016_j_apsusc_2014_09_042
crossref_primary_10_1016_j_desal_2010_09_051
crossref_primary_10_1016_j_jnucmat_2013_07_018
crossref_primary_10_1016_j_apt_2021_11_018
crossref_primary_10_1016_j_jhazmat_2019_120836
crossref_primary_10_1016_j_envpol_2011_07_013
crossref_primary_10_1016_j_jhazmat_2011_09_067
crossref_primary_10_1016_j_chemosphere_2011_10_028
crossref_primary_10_1021_jp103896k
crossref_primary_10_1016_j_chemosphere_2012_12_037
crossref_primary_10_1016_j_jhazmat_2010_09_060
crossref_primary_10_3390_geosciences12080287
crossref_primary_10_1007_s13369_017_2432_3
crossref_primary_10_1016_j_scitotenv_2020_141037
crossref_primary_10_1016_j_advwatres_2012_02_005
crossref_primary_10_1016_j_jconhyd_2010_09_003
crossref_primary_10_1016_j_chemosphere_2006_04_012
crossref_primary_10_1016_j_chemosphere_2021_130177
crossref_primary_10_1016_j_psep_2010_06_002
crossref_primary_10_1016_j_materresbull_2010_06_046
crossref_primary_10_1039_c3ta10678k
crossref_primary_10_1021_es803535b
crossref_primary_10_4028_www_scientific_net_KEM_380_229
crossref_primary_10_1016_j_apcatb_2007_07_014
crossref_primary_10_1186_1556_276X_8_20
crossref_primary_10_1016_j_jnucmat_2008_09_026
crossref_primary_10_1016_j_carbpol_2018_06_097
crossref_primary_10_3390_nano10112189
crossref_primary_10_1007_s41204_022_00280_y
crossref_primary_10_1016_j_cis_2006_03_001
crossref_primary_10_3390_nano8100839
crossref_primary_10_3389_fchem_2018_00145
crossref_primary_10_2147_IJN_S423171
crossref_primary_10_1016_j_partic_2016_06_001
crossref_primary_10_1016_j_cjche_2016_05_042
crossref_primary_10_1021_cm061272p
crossref_primary_10_1021_es8015588
crossref_primary_10_1016_j_jhazmat_2010_06_009
crossref_primary_10_52679_978_81_952885_8_8_10
crossref_primary_10_1016_j_cej_2018_09_164
crossref_primary_10_1007_s11270_019_4166_1
crossref_primary_10_1016_j_cej_2008_01_024
crossref_primary_10_1016_j_chroma_2008_09_008
crossref_primary_10_1016_j_electacta_2010_11_044
crossref_primary_10_1016_j_jhazmat_2014_05_054
crossref_primary_10_1016_j_jhazmat_2023_133309
crossref_primary_10_1016_j_jhazmat_2019_03_107
crossref_primary_10_1016_j_materresbull_2013_04_094
crossref_primary_10_1021_jp204762u
crossref_primary_10_1039_C5CP07569F
crossref_primary_10_1007_s11051_012_0760_5
crossref_primary_10_1016_j_watres_2010_06_069
crossref_primary_10_1016_j_jes_2015_07_016
crossref_primary_10_22211_matwys_0172
crossref_primary_10_1016_j_apcatb_2011_04_005
crossref_primary_10_1016_S1001_0742_13_60506_9
crossref_primary_10_1016_j_matchemphys_2017_01_007
crossref_primary_10_1142_S1793292008001271
crossref_primary_10_1016_j_apcatb_2011_04_002
crossref_primary_10_1016_j_scitotenv_2019_01_180
crossref_primary_10_1016_j_jhazmat_2015_07_038
crossref_primary_10_1007_s11051_014_2712_8
crossref_primary_10_1021_la7019186
crossref_primary_10_1016_j_watres_2016_05_019
crossref_primary_10_1116_1_4818423
crossref_primary_10_1002_sia_2726
crossref_primary_10_1007_s00128_016_1865_9
crossref_primary_10_1007_s13762_023_05208_w
crossref_primary_10_1021_ie400507c
crossref_primary_10_1007_s11051_008_9405_0
crossref_primary_10_1039_C2EM30691C
crossref_primary_10_1021_es101601s
crossref_primary_10_1002_apj_1720
crossref_primary_10_1016_j_jmmm_2015_12_049
crossref_primary_10_1021_es103185t
crossref_primary_10_1021_ie301031u
crossref_primary_10_1021_acssuschemeng_6b00242
crossref_primary_10_1186_1556_276X_6_527
crossref_primary_10_1016_j_apcatb_2019_118057
crossref_primary_10_1016_j_seppur_2016_07_023
crossref_primary_10_1016_j_jenvman_2016_06_054
crossref_primary_10_1016_j_jhazmat_2021_126649
crossref_primary_10_1557_adv_2018_169
crossref_primary_10_1155_2014_518242
crossref_primary_10_1111_j_1745_6592_2011_01352_x
crossref_primary_10_1016_j_scitotenv_2022_159397
crossref_primary_10_1016_j_molliq_2020_113317
crossref_primary_10_1007_s11783_015_0784_z
crossref_primary_10_1016_j_apcata_2018_05_002
crossref_primary_10_1021_ie800081s
crossref_primary_10_1016_j_jhazmat_2023_131589
crossref_primary_10_1016_j_ceja_2021_100165
crossref_primary_10_1016_S1003_9953_11_60365_4
crossref_primary_10_1051_matecconf_20166105009
crossref_primary_10_1021_es3041412
Cites_doi 10.1021/cm0218108
10.1021/es0305508
10.1021/es026472q
10.1126/science.1075094
10.1021/cm020737i
10.1021/jp960224x
10.1021/j100403a003
10.1016/S0045-6535(99)00506-8
10.1149/1.1738135
10.1103/PhysRevB.68.195423
10.1021/la025798+
10.1103/PhysRevB.64.174420
10.1021/ic00105a009
10.1021/es034237h
10.1016/S0169-7722(97)00063-6
10.1021/es9911420
10.1016/S0021-9797(03)00463-6
10.1021/cm000288r
10.1021/jp973113m
10.1021/la981012p
10.1021/la00075a020
10.1016/S0016-7037(02)01229-2
10.1016/S0003-2670(00)86430-2
10.1021/es960999j
10.1016/0010-938X(94)00102-C
10.1021/es011191o
10.1016/j.jcis.2003.12.026
10.1006/jcis.1998.5993
10.1021/ef00043a002
10.1021/es0016856
10.1021/es030487m
ContentType Journal Article
Copyright Copyright © 2005 American Chemical Society
Copyright American Chemical Society Mar 1, 2005
Copyright_xml – notice: Copyright © 2005 American Chemical Society
– notice: Copyright American Chemical Society Mar 1, 2005
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/es049190u
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Chemistry
EISSN 1520-5851
EndPage 1230
ExternalDocumentID 806050661
15787360
10_1021_es049190u
ark_67375_TPS_ZGSQ9QD9_Z
f21549139
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID -
.K2
186
1AW
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABDEX
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFMIJ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
XSW
YV5
ZCA
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a507t-f96469f477de8206ae04dc88d5749f00dc3bb021b56722f3dc1cb7618cb6c2953
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Tue Aug 05 11:01:56 EDT 2025
Fri Jul 25 03:59:59 EDT 2025
Wed Feb 19 02:35:10 EST 2025
Thu Apr 24 23:01:48 EDT 2025
Tue Jul 01 03:25:57 EDT 2025
Wed Oct 30 09:31:08 EDT 2024
Thu Aug 27 13:42:22 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-f96469f477de8206ae04dc88d5749f00dc3bb021b56722f3dc1cb7618cb6c2953
Notes istex:6E21BC8CAD2DB8F1D540E258E8104AEA0546ED08
ark:/67375/TPS-ZGSQ9QD9-Z
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://digital.library.unt.edu/ark:/67531/metadc839894/m2/1/high_res_d/1052976.pdf
PMID 15787360
PQID 230167803
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_67547457
proquest_journals_230167803
pubmed_primary_15787360
crossref_primary_10_1021_es049190u
crossref_citationtrail_10_1021_es049190u
istex_primary_ark_67375_TPS_ZGSQ9QD9_Z
acs_journals_10_1021_es049190u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2005
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Elliott S. (es049190ub00019/es049190ub00019_1) 1998
Elliott D. W. (es049190ub00003/es049190ub00003_1) 2002; 35
Klabunde K. J. (es049190ub00016/es049190ub00016_1) 1996; 100
Xu Y. (es049190ub00007/es049190ub00007_1) 2000; 39
Matson D. W. (es049190ub00043/es049190ub00043_1) 1994; 8
Theil Kuhn L. (es049190ub00030/es049190ub00030_1) 2002; 14
Scherer M. M. (es049190ub00031/es049190ub00031_1) 1998
Sharma R. K. (es049190ub00028/es049190ub00028_1) 2003; 265
Campbell C. T. (es049190ub00018/es049190ub00018_1) 2002; 298
Signorini L. (es049190ub00029/es049190ub00029_1) 2003; 68
Stack A. G. (es049190ub00055/es049190ub00055_1) 2004; 274
Pecher K. (es049190ub00062/es049190ub00062_1) 2002; 36
Lowry G. V. (es049190ub00009/es049190ub00009_1) 2004; 44
Zaitsev V. S. (es049190ub00032/es049190ub00032_1) 1999; 212
Zhang W.-X (es049190ub00014/es049190ub00014_1) 2003; 5
Geiger C. (es049190ub00004/es049190ub00004_1) 2003
Miehr R. (es049190ub00044/es049190ub00044_1) 2004; 38
Tratnyek P. G. (es049190ub00001/es049190ub00001_1) 2003
Glavee G. N. (es049190ub00049/es049190ub00049_1) 1995; 34
Lien H.-L. (es049190ub00038/es049190ub00038_1)
Ponder S. M. (es049190ub00012/es049190ub00012_1) 2000; 34
Scherer M. M. (es049190ub00063/es049190ub00063_1) 1997; 31
Cohen M. (es049190ub00052/es049190ub00052_1) 1978
Wang C.-B. (es049190ub00005/es049190ub00005_1) 1997; 31
Logue B. A. (es049190ub00060/es049190ub00060_1) 2003; 37
es049190ub00035/es049190ub00035_1
Oblonsky L. J. (es049190ub00054/es049190ub00054_1) 1995; 37
Nepijko S. A. (es049190ub00023/es049190ub00023_1) 1998; 412
Pecher K. (es049190ub00045/es049190ub00045_1) 2003; 67
Tratnyek P. G. (es049190ub00068/es049190ub00068_1) 2004; 44
Geiger C. L. (es049190ub00037/es049190ub00037_1) 2003; 43
Scherer M. M. (es049190ub00069/es049190ub00069_1) 2001; 35
Punoose A. (es049190ub00027/es049190ub00027_1) 2001; 64
Vaughan G. M. (es049190ub00048/es049190ub00048_1) 1990; 231
Mulvaney P. (es049190ub00017/es049190ub00017_1) 2001
Brus L (es049190ub00020/es049190ub00020_1) 1986; 90
Nurmi J. T. (es049190ub00046/es049190ub00046_1) 2004; 151
Lien H.-L. (es049190ub00008/es049190ub00008_1) 2001; 191
Jovancicevic V. (es049190ub00053/es049190ub00053_1) 1987; 3
Johnson T. L. (es049190ub00015/es049190ub00015_1) 1996; 30
Gan S. (es049190ub00025/es049190ub00025_1) 2001; 105
Schrick B. (es049190ub00034/es049190ub00034_1) 2004; 16
Okinaka K. (es049190ub00036/es049190ub00036_1) 2004
Li T. (es049190ub00067/es049190ub00067_1) 2001; 35
Matson D. W. (es049190ub00042/es049190ub00042_1) 1996
Drazic D. M. (es049190ub00047/es049190ub00047_1) 1985; 25
McCormick M. L. (es049190ub00061/es049190ub00061_1) 2004; 38
Sato N. (es049190ub00051/es049190ub00051_1) 1978
Carpenter E. E. (es049190ub00050/es049190ub00050_1) 2003; 15
Lowry G. V. (es049190ub00010/es049190ub00010_1) 2004; 38
Kung K.-H. (es049190ub00056/es049190ub00056_1) 1988; 36
Johnson T. L. (es049190ub00065/es049190ub00065_1) 1998; 29
Baer D. R. (es049190ub00026/es049190ub00026_1) 2003; 47
Liu Y. (es049190ub00041/es049190ub00041_1) 2004; 44
Elsner M. (es049190ub00058/es049190ub00058_1) 2004; 38
Choe S. (es049190ub00011/es049190ub00011_1) 2000; 41
Gaspar D. J. (es049190ub00059/es049190ub00059_1) 2002; 18
Kriegman-King M. R. (es049190ub00070/es049190ub00070_1) 1994; 28
Glazier R. (es049190ub00002/es049190ub00002_1) 2003; 73
Támara M. (es049190ub00064/es049190ub00064_1) 2004; 38
Wang Y. (es049190ub00021/es049190ub00021_1) 1991; 95
Wang Y. (es049190ub00033/es049190ub00033_1) 2003; 3
Nepijko S. A. (es049190ub00024/es049190ub00024_1) 1999; 15
Scherer M. M. (es049190ub00066/es049190ub00066_1) 2000
Lien H.-L. (es049190ub00006/es049190ub00006_1) 1999; 125
Schrick B. (es049190ub00040/es049190ub00040_1) 2002; 14
Li F. (es049190ub00013/es049190ub00013_1) 2003; 223
Klimenkow M. (es049190ub00022/es049190ub00022_1) 1997; 391
Ponder S. M. (es049190ub00039/es049190ub00039_1) 2001; 13
Balko B. A. (es049190ub00057/es049190ub00057_1) 1998; 102
References_xml – volume: 16
  start-page: 2193
  year: 2004
  ident: es049190ub00034/es049190ub00034_1
  publication-title: Chem. Mater.
  doi: 10.1021/cm0218108
– volume: 38
  start-page: 1876
  year: 2004
  ident: es049190ub00064/es049190ub00064_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0305508
– volume: 412
  start-page: 201
  year: 1998
  ident: es049190ub00023/es049190ub00023_1
  publication-title: Surf. Sci.
– volume: 3
  start-page: 1559
  year: 2003
  ident: es049190ub00033/es049190ub00033_1
  publication-title: Nano Lett.
– volume: 37
  start-page: 2362
  year: 2003
  ident: es049190ub00060/es049190ub00060_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026472q
– volume: 95
  start-page: 532
  year: 1991
  ident: es049190ub00021/es049190ub00021_1
  publication-title: J. Phys. Chem.
– volume: 298
  start-page: 814
  year: 2002
  ident: es049190ub00018/es049190ub00018_1
  publication-title: Science
  doi: 10.1126/science.1075094
– volume: 14
  start-page: 5147
  year: 2002
  ident: es049190ub00040/es049190ub00040_1
  publication-title: Chem. Mater.
  doi: 10.1021/cm020737i
– volume-title: 215th National Meeting, Dallas, TX; American Chemical Society:  Washington, DC
  ident: es049190ub00038/es049190ub00038_1
– volume: 15
  start-page: 3246
  year: 2003
  ident: es049190ub00050/es049190ub00050_1
  publication-title: Chem. Mater.
– volume: 47
  start-page: 356
  year: 2003
  ident: es049190ub00026/es049190ub00026_1
  publication-title: Prog. Org. Coat.
– start-page: 140
  volume-title: Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup
  year: 2003
  ident: es049190ub00004/es049190ub00004_1
– volume: 100
  start-page: 12153
  year: 1996
  ident: es049190ub00016/es049190ub00016_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960224x
– volume-title: The Physics and Chemistry of Solids
  year: 1998
  ident: es049190ub00019/es049190ub00019_1
– volume: 14
  start-page: 13567
  year: 2002
  ident: es049190ub00030/es049190ub00030_1
  publication-title: J. Phys.: Condens. Matter
– volume: 90
  start-page: 2560
  year: 1986
  ident: es049190ub00020/es049190ub00020_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100403a003
– volume-title: Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May 24−27, 2004
  year: 2004
  ident: es049190ub00036/es049190ub00036_1
– volume: 191
  start-page: 105
  year: 2001
  ident: es049190ub00008/es049190ub00008_1
  publication-title: Colloid Surf. A
– volume: 25
  start-page: 216
  year: 1985
  ident: es049190ub00047/es049190ub00047_1
  publication-title: Corros. Sci.
– start-page: 545
  volume-title: Passivity of Metals
  year: 1978
  ident: es049190ub00052/es049190ub00052_1
– volume: 41
  start-page: 1311
  year: 2000
  ident: es049190ub00011/es049190ub00011_1
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00506-8
– volume: 125
  start-page: 1047
  year: 1999
  ident: es049190ub00006/es049190ub00006_1
  publication-title: J. Environ. Eng.
– volume: 151
  start-page: B353
  year: 2004
  ident: es049190ub00046/es049190ub00046_1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1738135
– volume-title: “Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater
  year: 2000
  ident: es049190ub00066/es049190ub00066_1
– volume: 68
  start-page: 195423
  year: 2003
  ident: es049190ub00029/es049190ub00029_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.195423
– volume: 5
  start-page: 332
  year: 2003
  ident: es049190ub00014/es049190ub00014_1
  publication-title: J. Nanopart. Res.
– volume: 31
  start-page: 2156
  year: 1997
  ident: es049190ub00005/es049190ub00005_1
  publication-title: Environ. Sci. Technol.
– start-page: 421
  volume-title: Chemical Degradation Methods for Wastes and Pollutants:  Environmental and Industrial Applications
  year: 2003
  ident: es049190ub00001/es049190ub00001_1
– volume: 105
  start-page: 2415
  year: 2001
  ident: es049190ub00025/es049190ub00025_1
  publication-title: J. Phys. Chem. B
– volume: 18
  start-page: 7693
  year: 2002
  ident: es049190ub00059/es049190ub00059_1
  publication-title: Langmuir
  doi: 10.1021/la025798+
– volume: 35
  start-page: 3565
  year: 2001
  ident: es049190ub00067/es049190ub00067_1
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 4926
  year: 2002
  ident: es049190ub00003/es049190ub00003_1
  publication-title: Environ. Sci. Technol.
– volume: 64
  start-page: 174420
  year: 2001
  ident: es049190ub00027/es049190ub00027_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.174420
– volume: 34
  start-page: 35
  year: 1995
  ident: es049190ub00049/es049190ub00049_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00105a009
– volume: 391
  start-page: 36
  year: 1997
  ident: es049190ub00022/es049190ub00022_1
  publication-title: Surf. Sci.
– volume: 38
  start-page: 147
  year: 2004
  ident: es049190ub00044/es049190ub00044_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034237h
– ident: es049190ub00035/es049190ub00035_1
– volume: 28
  start-page: 700
  year: 1994
  ident: es049190ub00070/es049190ub00070_1
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 396
  year: 1998
  ident: es049190ub00065/es049190ub00065_1
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(97)00063-6
– start-page: 167
  volume-title: Nanoscale Materials in Chemistry
  year: 2001
  ident: es049190ub00017/es049190ub00017_1
– volume: 44
  start-page: 460
  volume-title: 227th National Meeting, March 28−April 1, 2004
  year: 2004
  ident: es049190ub00068/es049190ub00068_1
– volume: 34
  start-page: 2569
  year: 2000
  ident: es049190ub00012/es049190ub00012_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9911420
– volume: 44
  start-page: 417
  volume-title: 228th National Meeting, August 22−26, 2004
  year: 2004
  ident: es049190ub00041/es049190ub00041_1
– volume: 265
  start-page: 140
  year: 2003
  ident: es049190ub00028/es049190ub00028_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00463-6
– volume: 73
  start-page: 69
  year: 2003
  ident: es049190ub00002/es049190ub00002_1
  publication-title: Civil Eng.
– volume: 44
  start-page: 493
  volume-title: 227th National Meeting, March 28−Apri1 l, 1229 2004
  year: 2004
  ident: es049190ub00009/es049190ub00009_1
– volume: 43
  start-page: 944
  volume-title: 225th National Meeting, March 23−27, 2003
  year: 2003
  ident: es049190ub00037/es049190ub00037_1
– volume: 13
  start-page: 486
  year: 2001
  ident: es049190ub00039/es049190ub00039_1
  publication-title: Chem. Mater.
  doi: 10.1021/cm000288r
– volume: 223
  start-page: 112
  year: 2003
  ident: es049190ub00013/es049190ub00013_1
  publication-title: Colloid Surf. A
– start-page: 322
  volume-title: Mineral−Water Interfacial Reactions:  Kinetics and Mechanisms
  year: 1998
  ident: es049190ub00031/es049190ub00031_1
– volume: 102
  start-page: 1465
  year: 1998
  ident: es049190ub00057/es049190ub00057_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973113m
– start-page: 283
  volume-title: Advanced Techniques in Catalyst Preparation
  year: 1996
  ident: es049190ub00042/es049190ub00042_1
– volume: 15
  start-page: 5313
  year: 1999
  ident: es049190ub00024/es049190ub00024_1
  publication-title: Langmuir
  doi: 10.1021/la981012p
– volume: 3
  start-page: 395
  year: 1987
  ident: es049190ub00053/es049190ub00053_1
  publication-title: Langmuir
  doi: 10.1021/la00075a020
– volume: 67
  start-page: 1098
  year: 2003
  ident: es049190ub00045/es049190ub00045_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01229-2
– volume: 231
  start-page: 303
  year: 1990
  ident: es049190ub00048/es049190ub00048_1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)86430-2
– volume: 30
  start-page: 2640
  year: 1996
  ident: es049190ub00015/es049190ub00015_1
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 2391
  year: 1997
  ident: es049190ub00063/es049190ub00063_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960999j
– start-page: 58
  volume-title: Passivity of Metals
  year: 1978
  ident: es049190ub00051/es049190ub00051_1
– volume: 39
  start-page: 2244
  year: 2000
  ident: es049190ub00007/es049190ub00007_1
  publication-title: Ind. Eng. Chem. Res.
– volume: 37
  start-page: 41
  year: 1995
  ident: es049190ub00054/es049190ub00054_1
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(94)00102-C
– volume: 36
  start-page: 1741
  year: 2002
  ident: es049190ub00062/es049190ub00062_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011191o
– volume: 38
  start-page: 5216
  year: 2004
  ident: es049190ub00010/es049190ub00010_1
  publication-title: Environ. Sci. Technol.
– volume: 274
  start-page: 441
  year: 2004
  ident: es049190ub00055/es049190ub00055_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.12.026
– volume: 36
  start-page: 309
  year: 1988
  ident: es049190ub00056/es049190ub00056_1
  publication-title: Clays Clay Miner.
– volume: 212
  start-page: 57
  year: 1999
  ident: es049190ub00032/es049190ub00032_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5993
– volume: 8
  start-page: 18
  year: 1994
  ident: es049190ub00043/es049190ub00043_1
  publication-title: Energy Fuels
  doi: 10.1021/ef00043a002
– volume: 35
  start-page: 2811
  year: 2001
  ident: es049190ub00069/es049190ub00069_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0016856
– volume: 38
  start-page: 2066
  year: 2004
  ident: es049190ub00058/es049190ub00058_1
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 1053
  year: 2004
  ident: es049190ub00061/es049190ub00061_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030487m
SSID ssj0002308
Score 2.4242496
Snippet There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the...
There are reports that nano-sized zero-valent iron (FeO) exhibits greater reactivity than micro-sized particles of FeO, and it has been suggested that the...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1221
SubjectTerms Carbon
Chemical Precipitation
Chemistry
Corrosion
Electrochemistry
Iron
Iron Compounds - chemistry
Kinetics
Materials Testing
Metals
Nanoparticles
Nanostructures
Physical properties
Spectrum Analysis
Title Characterization and Properties of Metallic Iron Nanoparticles:  Spectroscopy, Electrochemistry, and Kinetics
URI http://dx.doi.org/10.1021/es049190u
https://api.istex.fr/ark:/67375/TPS-ZGSQ9QD9-Z/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15787360
https://www.proquest.com/docview/230167803
https://www.proquest.com/docview/67547457
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT9VAEJ8gXPTgB4pWEDdqjAeKbbe723ojj4eo0UAeJC9cmu5XYiAtee1L1BNX_k3-Emf79TCCnjs7md2d2Znpzv4G4I3VuRaWMd-kaG5OKfw8D6zPaCqjgEuHIeaqLb7x_eP485RNl-D1LTf4UfjeVBjEotua34GViCfCZVg7o8lw3GIMnfRtClLKpz180PWhzvWo6g_Xs-JW8cftcWXjX_YewG7_SqctKzndntdyW_36G7TxX6I_hPtdfEl2WoV4BEumWIV711AHV2FtvHjchqSddVePoRwN6M3t40ySF5ocuN_1M4e7SkpLvhocc_ZdkU_IgeDZjEl3V1v34erikrh-9rVDyCzPf26RcdtkR_Vd5bYajl9QFocO_QSO98ZHo32_a8jg5xg21r5NOWbTNhZCG4f7npsg1ipJNBNxaoNAKyolTlwyLqLIUq1CJQUPEyW5ilJG12C5KAvzDIhNDSZqyCsUNJa5lZZapi2qFKq20NyDTdyxrDOoKmvuyqMwG5bUg3f9ZmaqgzN3XTXObiJ9NZCetxgeNxG9bTRioMhnp67oTbDs6GCSnXycHKaHu2l24sF6rzIL8VAJQ3T7AfXg5fAVV9bdvuSFKecV8mKxiJnw4GmrZwtZ3KlJefD8f3Neh7sNcmxTArcBy_Vsbl5gTFTLzcYmfgO3cQhM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7QE48CgUTKFdIUAc6uLXemMkDlWakpC2apVUinox3peEWsVRnAjKiSt_gb_Cv-GXMLt-pKAiTpU4ZzIaz87OQzvzDcBzLTPJNKWuSvC6GaNws8zTLg0THngxNxhiptviMO6eRO9HdLQE3-tZGBSiQE6FfcRfoAv4r1WBuSxGr3nVQNlXF5-wPCve9nbxLF8EwV5n2O661QYBN8M8Z-bqJMbyT0eMSWWAyjPlRVK0WpKyKNGeJ0XIOXLnNGZBoEMpfMGxsG8JHosgMRsh0L2vYNITmMJupz1ovDym7q16O0ISxqMateiyqCbiieK3iLdiDu_z39NZG9b27sCPRiG2m-Vsez7j2-LLH1iR_6fG7sLtKpsmO6X534MlNV6FW5cwFldhrbMY5UPSypcV9yFvN1jV5SgqycaSHJnHialBmSW5JgcK_3P-UZAeciAYifJJ3Un45ufXb2QwsUuEzGjPxRbplCuFRL1Db8ty7KMsBgv7AZxciyrWYHmcj9UjIDpRWJYiL5-FEc8016GmUuMFwovMZOzABp5gWrmPIrWdAYGfNkfowKvahlJRgbebHSLnV5E-a0gnJWLJVUQvrSE2FNn0zLT4MZoOjwbp6bvBcXK8m6SnDqzXlroQD23fxyTHCx3YbH5FzZq3pmys8nmBvGjEIsoceFia90IWEyPC2Hv8r2_ehBvd4cF-ut877K_DTYuZa5v_nsDybDpXTzEbnPENey0JfLhuq_4FT0RqGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5VrYTgwKNQMIV2hQBxqItf642ROFR50BCoUqWVol6M9yWhVnYUJ4Jy4sqf4K_wX_glzG5sp6AiTpU4ZzIa785TM_sNwFMtM8k0pa5K0NyMUrhZ5mmXhgkPvJgbDDEzbXEQ7x9Hb8d0vALf67cwKESJnErbxDdWPZG6QhjwX6oS81mMYPNqiHKgzj9hiVa-7nfwPp8FQa971N53qy0Cboa5zszVSYwloI4Yk8qAlWfKi6RotSRlUaI9T4qQc-TOacyCQIdS-IJjcd8SPBZBYrZCoItfM-1BU9zttUeNp8f0vVVvSEjCeFwjF10U1UQ9Uf4W9dbMBX7-e0prQ1vvFvxoDsVOtJzuzmd8V3z5Ay_y_z2123CzyqrJ3sIM7sCKytfhxgWsxXXY6C6f9CFp5dPKu1C0G8zqxZNUkuWSDE2TYmrQZkmhyXuF_zn7KEgfORCMSMWknih89fPrNzKa2GVC5onP-Q7pLlYLiXqX3o7lOEBZDCb2PTi-kqPYgNW8yNUDIDpRWJ4iL5-FEc8016GmUqMhoUEzGTuwhbeYVm6kTO2EQOCnzRU68KLWo1RUIO5ml8jZZaRPGtLJArnkMqLnVhkbimx6akb9GE2PhqP05M3oMDnsJOmJA5u1ti7FQ_33MdnxQge2m1_xZE3PKctVMS-RF41YRJkD9xcqvpTFxIow9h7-65u34dqw00vf9Q8Gm3DdQufaGcBHsDqbztVjTApnfMtaJoEPV63UvwAobmyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+properties+of+metallic+iron+nanoparticles%3A+spectroscopy%2C+electrochemistry%2C+and+kinetics&rft.jtitle=Environmental+science+%26+technology&rft.au=Nurmi%2C+James+T&rft.au=Tratnyek%2C+Paul+G&rft.au=Sarathy%2C+Vaishnavi&rft.au=Baer%2C+Donald+R&rft.date=2005-03-01&rft.issn=0013-936X&rft.volume=39&rft.issue=5&rft.spage=1221&rft_id=info:doi/10.1021%2Fes049190u&rft_id=info%3Apmid%2F15787360&rft.externalDocID=15787360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon