Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics
There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these repor...
Saved in:
Published in | Environmental science & technology Vol. 39; no. 5; pp. 1221 - 1230 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.03.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). FeH2 is a two-phase material consisting of 40 nm α-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas FeBH is mostly 20−80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinonewhich presumably probes inner-sphere surface reactionsreacts more rapidly with FeBH than FeH2, whereas carbon tetrachloride reacts at similar rates with FeBH and FeH2, presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidly than micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH. |
---|---|
AbstractList | There are reports that nano-sized zero-valent iron (FeO) exhibits greater reactivity than micro-sized particles of FeO, and it has been suggested that the higher reactivity of nano-FeO may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nanoFeO, we have used a variety of complementary techniques to characterize two widely studied nano-FeO preparations: one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). Fe H2 is a two-phase material consisting of 40 nm alpha-FeO(made up of crystals approximately the size of the particles) and Fe304 particles of similar size or larger containing reduced sulfur; whereas FeBH is Mostly 20-80 nm metallic Fe particles (aggregates of less than 1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The Fe BH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized FeO, or a solid FeO disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with Fe BH than FeH2, whereas carbon tetrachloride reacts at similar rates with Fe BH and Fe H2, presumably by outer-sphere electron transfer. Both types of nano-FeO react more rapidly than microsized FeO, based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH. [PUBLICATION ABSTRACT] There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH). There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH). There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a host of potentially significant (and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (FeH2) and the other by reductive precipitation with borohydride (FeBH). FeH2 is a two-phase material consisting of 40 nm α-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas FeBH is mostly 20−80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinonewhich presumably probes inner-sphere surface reactionsreacts more rapidly with FeBH than FeH2, whereas carbon tetrachloride reacts at similar rates with FeBH and FeH2, presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidly than micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with FeH2, which produces less chloroform than reaction with FeBH. |
Author | Nurmi, James T Driessen, Michelle D Linehan, John C Penn, R. Lee Pecher, Klaus Baer, Donald R Amonette, James E Sarathy, Vaishnavi Wang, Chongmin Matson, Dean W Tratnyek, Paul G |
Author_xml | – sequence: 1 givenname: James T surname: Nurmi fullname: Nurmi, James T – sequence: 2 givenname: Paul G surname: Tratnyek fullname: Tratnyek, Paul G – sequence: 3 givenname: Vaishnavi surname: Sarathy fullname: Sarathy, Vaishnavi – sequence: 4 givenname: Donald R surname: Baer fullname: Baer, Donald R – sequence: 5 givenname: James E surname: Amonette fullname: Amonette, James E – sequence: 6 givenname: Klaus surname: Pecher fullname: Pecher, Klaus – sequence: 7 givenname: Chongmin surname: Wang fullname: Wang, Chongmin – sequence: 8 givenname: John C surname: Linehan fullname: Linehan, John C – sequence: 9 givenname: Dean W surname: Matson fullname: Matson, Dean W – sequence: 10 givenname: R. Lee surname: Penn fullname: Penn, R. Lee – sequence: 11 givenname: Michelle D surname: Driessen fullname: Driessen, Michelle D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15787360$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFOFTEQhhuDkQN64QuYjYkmJq5Md7ft1jtzBCSiQg4mhpum250NhT3bte0mwhW3vKZPYuEgJOhVM51v_sz_zwZZG9yAhDyn8I5CQbcwQCWphOkRmVFWQM5qRtfIDICWuSz5j3WyEcIpABQl1E_IOmWiFiWHGXHzE-21iejthY7WDZke2uzAuxF9tBgy12VfMOq-tybb86n_VQ9u1Klpegzvf19eZYsRTfQuGDeev822-5vKnODShujTz7XiZztgGglPyeNO9wGf3b6b5PvO9tH8U77_bXdv_mE_1wxEzDvJKy67SogW6wK4RqhaU9ctE5XsAFpTNk2y3jAuiqIrW0NNIzitTcNNIVm5SV6vdEfvfk4YokrbGOx7PaCbguKCVaJiIoEvH4CnbvJD2k2lsCgXNZQJenELTc0SWzV6u9T-XP3NMQFvVoBJOQSP3T0C6vpG6u5Gid16wBobb7KPXtv-vxP5aiIFir_upLU_Sz5KwdTRwUId7y4O5eFHqY4T_2rFaxPu7fyr-weUabAe |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_05_096 crossref_primary_10_1016_j_watres_2015_06_004 crossref_primary_10_1002_jhet_3410 crossref_primary_10_1007_s00128_011_0425_6 crossref_primary_10_1016_j_tetlet_2019_151422 crossref_primary_10_1088_0957_4484_16_7_015 crossref_primary_10_1263_jbb_102_1 crossref_primary_10_1021_cm0511217 crossref_primary_10_1016_j_ultramic_2007_03_002 crossref_primary_10_2323_jgam_57_59 crossref_primary_10_1016_j_clay_2014_02_020 crossref_primary_10_1021_acsomega_8b02835 crossref_primary_10_1002_adma_201401376 crossref_primary_10_1016_j_jece_2024_113426 crossref_primary_10_1016_j_scitotenv_2020_143413 crossref_primary_10_1021_ie701762d crossref_primary_10_1021_es060685o crossref_primary_10_1088_2053_1591_ab525b crossref_primary_10_1021_acs_est_8b01734 crossref_primary_10_1021_acs_est_8b01735 crossref_primary_10_1039_C3EN00063J crossref_primary_10_1039_C8NR02278J crossref_primary_10_4028_www_scientific_net_AMM_522_524_454 crossref_primary_10_1016_j_envpol_2012_07_045 crossref_primary_10_1002_wer_1265 crossref_primary_10_1016_j_molliq_2015_09_006 crossref_primary_10_1384_jsa_17_163 crossref_primary_10_1016_j_apcata_2014_09_001 crossref_primary_10_1016_j_chemosphere_2006_02_060 crossref_primary_10_1016_j_jhazmat_2007_06_044 crossref_primary_10_1016_j_powtec_2014_01_058 crossref_primary_10_1039_C5RA07052J crossref_primary_10_3390_ijerph19106299 crossref_primary_10_1371_journal_pone_0122884 crossref_primary_10_1016_j_chemosphere_2019_124470 crossref_primary_10_1021_es4005202 crossref_primary_10_1007_s11270_013_1632_z crossref_primary_10_1002_jpln_201700204 crossref_primary_10_1016_j_envpol_2017_09_052 crossref_primary_10_1016_j_cej_2019_122773 crossref_primary_10_1155_2017_2749575 crossref_primary_10_1021_es061349a crossref_primary_10_1007_s11756_021_00814_w crossref_primary_10_1007_s11051_012_1023_1 crossref_primary_10_1016_j_fct_2018_02_045 crossref_primary_10_1016_j_micromeso_2009_08_015 crossref_primary_10_1007_s11356_022_18668_3 crossref_primary_10_1007_s11051_009_9767_y crossref_primary_10_1016_j_ica_2014_12_015 crossref_primary_10_1021_es050472j crossref_primary_10_1016_j_watres_2009_09_012 crossref_primary_10_1016_j_jconhyd_2012_01_006 crossref_primary_10_1021_acs_est_4c02190 crossref_primary_10_1016_j_colsurfa_2007_05_029 crossref_primary_10_1089_ees_2016_0580 crossref_primary_10_1134_S0006350911060066 crossref_primary_10_1016_j_cej_2017_03_141 crossref_primary_10_1007_s11356_017_8597_1 crossref_primary_10_2208_journalofjsce_7_1_30 crossref_primary_10_1016_j_jconhyd_2007_04_001 crossref_primary_10_1016_S1001_0742_10_60534_7 crossref_primary_10_1039_D1RA01427G crossref_primary_10_1016_j_jhazmat_2012_02_002 crossref_primary_10_1021_es0711967 crossref_primary_10_1021_nl0518268 crossref_primary_10_1007_s11051_009_9732_9 crossref_primary_10_1007_s11356_022_21849_9 crossref_primary_10_1021_es204024n crossref_primary_10_1002_jctb_5072 crossref_primary_10_1002_rem_21750 crossref_primary_10_1016_j_colsurfa_2009_08_007 crossref_primary_10_1016_j_scitotenv_2017_10_002 crossref_primary_10_1021_es303422w crossref_primary_10_7240_marufbd_346547 crossref_primary_10_1016_j_cej_2021_134143 crossref_primary_10_1016_j_jhazmat_2013_05_057 crossref_primary_10_1002_adma_201705703 crossref_primary_10_1007_s13762_022_04536_7 crossref_primary_10_1016_j_jfda_2014_01_007 crossref_primary_10_1007_s11164_018_3472_3 crossref_primary_10_1016_j_jconhyd_2013_11_007 crossref_primary_10_1070_RC2013v082n01ABEH004329 crossref_primary_10_1155_JNM_2006_54961 crossref_primary_10_1016_j_jhazmat_2022_129056 crossref_primary_10_1016_j_watres_2016_09_025 crossref_primary_10_1016_j_seppur_2016_11_053 crossref_primary_10_1089_ees_2007_24_45 crossref_primary_10_4028_www_scientific_net_MSF_694_224 crossref_primary_10_2174_2405461507666220405113715 crossref_primary_10_1007_s13762_024_05612_w crossref_primary_10_1016_j_corsci_2007_06_016 crossref_primary_10_1021_acs_chemrev_0c01286 crossref_primary_10_1016_j_jcis_2014_04_014 crossref_primary_10_1021_ja2040464 crossref_primary_10_1016_j_biotechadv_2016_10_004 crossref_primary_10_1016_j_cej_2011_08_018 crossref_primary_10_2175_106143014X13975035525582 crossref_primary_10_2175_106143014X13975035525221 crossref_primary_10_1016_j_jece_2022_108950 crossref_primary_10_1002_aoc_5014 crossref_primary_10_1016_j_fuel_2024_131007 crossref_primary_10_1021_acs_est_4c04390 crossref_primary_10_1039_C6CP06921E crossref_primary_10_1021_es503154q crossref_primary_10_1021_es0525758 crossref_primary_10_1039_b616471b crossref_primary_10_1007_s11356_012_1415_x crossref_primary_10_1016_j_jenvman_2010_12_020 crossref_primary_10_1021_es803540b crossref_primary_10_1016_j_watres_2017_11_002 crossref_primary_10_1080_10643389_2014_921975 crossref_primary_10_1007_s11051_010_9946_x crossref_primary_10_3390_nano9091193 crossref_primary_10_1016_j_micromeso_2020_110522 crossref_primary_10_1007_s11051_008_9524_7 crossref_primary_10_1007_s11814_011_0292_1 crossref_primary_10_1016_j_apcata_2018_08_013 crossref_primary_10_1021_es0616534 crossref_primary_10_1016_j_jhazmat_2012_09_070 crossref_primary_10_1016_j_scitotenv_2015_05_033 crossref_primary_10_1016_j_inoche_2022_109588 crossref_primary_10_1016_j_jhazmat_2023_132977 crossref_primary_10_1039_C6RA15881A crossref_primary_10_1016_j_chemosphere_2006_03_075 crossref_primary_10_1016_j_chemgeo_2010_09_002 crossref_primary_10_1002_rem_21302 crossref_primary_10_1002_rem_21426 crossref_primary_10_1007_s11051_007_9225_7 crossref_primary_10_1016_j_jhazmat_2016_03_069 crossref_primary_10_1016_j_jcat_2015_08_019 crossref_primary_10_1016_j_apcatb_2014_09_077 crossref_primary_10_1021_es0712625 crossref_primary_10_1089_ees_2007_24_21 crossref_primary_10_1016_j_apsusc_2019_06_062 crossref_primary_10_1007_s42247_022_00355_1 crossref_primary_10_1039_c1jm11435b crossref_primary_10_1016_j_ultsonch_2014_03_002 crossref_primary_10_1007_s00216_005_0230_3 crossref_primary_10_1016_j_gca_2007_12_018 crossref_primary_10_1039_D1CS00857A crossref_primary_10_1080_10962247_2023_2196964 crossref_primary_10_1039_C7NJ00761B crossref_primary_10_1002_rem_21559 crossref_primary_10_1016_j_cep_2019_107683 crossref_primary_10_1016_j_electacta_2015_06_054 crossref_primary_10_1039_c0em00039f crossref_primary_10_1016_j_apsusc_2015_08_184 crossref_primary_10_1016_j_chemosphere_2020_129026 crossref_primary_10_1016_j_cej_2017_10_019 crossref_primary_10_1007_s11356_012_0749_8 crossref_primary_10_1016_j_seppur_2016_12_050 crossref_primary_10_1016_j_watres_2006_11_019 crossref_primary_10_1016_j_chemosphere_2010_11_075 crossref_primary_10_1016_j_apcatb_2020_119198 crossref_primary_10_1016_j_arabjc_2018_02_005 crossref_primary_10_1080_00986445_2021_1983546 crossref_primary_10_1016_j_apcatb_2010_01_028 crossref_primary_10_1021_acs_est_1c02458 crossref_primary_10_1002_ange_200704943 crossref_primary_10_1016_j_envpol_2020_114728 crossref_primary_10_1039_b712709j crossref_primary_10_1039_C3AY40517F crossref_primary_10_2175_106143006X136784 crossref_primary_10_1039_D1RA03918K crossref_primary_10_1016_j_cej_2020_124202 crossref_primary_10_1039_C6EN00398B crossref_primary_10_1016_j_scitotenv_2021_148546 crossref_primary_10_1021_es400362w crossref_primary_10_1016_j_gca_2011_09_007 crossref_primary_10_1016_j_matchemphys_2020_122812 crossref_primary_10_1016_j_jece_2023_110945 crossref_primary_10_1016_j_scitotenv_2018_02_038 crossref_primary_10_1016_j_jcis_2009_09_027 crossref_primary_10_1039_C5RA14130C crossref_primary_10_1155_2014_431787 crossref_primary_10_1021_es9006383 crossref_primary_10_1088_1009_0630_9_3_05 crossref_primary_10_1016_j_jics_2021_100266 crossref_primary_10_1155_2013_786954 crossref_primary_10_1007_s13369_014_1229_x crossref_primary_10_1021_es0520924 crossref_primary_10_1016_j_scitotenv_2012_11_073 crossref_primary_10_1080_09593330_2011_592225 crossref_primary_10_1021_es902924h crossref_primary_10_1039_c3ta10282c crossref_primary_10_1016_j_epsl_2006_09_005 crossref_primary_10_1016_j_cej_2010_01_054 crossref_primary_10_1007_s10646_008_0214_0 crossref_primary_10_1016_j_jconhyd_2015_04_007 crossref_primary_10_1557_opl_2016_61 crossref_primary_10_3390_molecules23030606 crossref_primary_10_1016_j_jhazmat_2011_11_073 crossref_primary_10_1021_acs_est_7b04177 crossref_primary_10_1021_es304441e crossref_primary_10_1021_acs_langmuir_3c00967 crossref_primary_10_1080_10643380600620387 crossref_primary_10_1016_j_jhazmat_2019_03_080 crossref_primary_10_1016_j_chemosphere_2019_125044 crossref_primary_10_3389_fchem_2019_00847 crossref_primary_10_3103_S1063455X14060101 crossref_primary_10_1039_D1CC01946E crossref_primary_10_1155_2016_4372136 crossref_primary_10_1080_19443994_2015_1061451 crossref_primary_10_1016_j_colsurfa_2013_12_031 crossref_primary_10_1016_j_clay_2011_06_010 crossref_primary_10_1016_j_watres_2012_02_006 crossref_primary_10_3109_07388551_2010_550568 crossref_primary_10_1016_j_colsurfa_2008_09_031 crossref_primary_10_1016_j_jmmm_2017_07_091 crossref_primary_10_1016_j_enmm_2023_100808 crossref_primary_10_1186_s12951_020_00704_4 crossref_primary_10_1007_s11270_008_9661_8 crossref_primary_10_1016_j_cej_2021_129073 crossref_primary_10_1007_s00216_008_2458_1 crossref_primary_10_1039_C8CY01346B crossref_primary_10_1007_s11671_010_9753_4 crossref_primary_10_1021_es702560k crossref_primary_10_1021_ja900353f crossref_primary_10_1016_j_ijhydene_2016_10_072 crossref_primary_10_1061__ASCE_EE_1943_7870_0000936 crossref_primary_10_1016_j_cej_2016_08_140 crossref_primary_10_2174_0115734137271993231109174718 crossref_primary_10_1080_19443994_2014_903873 crossref_primary_10_1039_C7CY02259J crossref_primary_10_1016_j_jece_2020_103909 crossref_primary_10_1016_j_matpr_2019_03_048 crossref_primary_10_1039_c1em10370a crossref_primary_10_1016_j_colsurfa_2025_136653 crossref_primary_10_1016_j_watres_2020_116632 crossref_primary_10_1021_acs_nanolett_9b00579 crossref_primary_10_1007_s11356_015_5092_4 crossref_primary_10_1021_ie300992v crossref_primary_10_1080_10643380701628933 crossref_primary_10_1089_ees_2006_23_272 crossref_primary_10_1016_j_jcis_2019_05_109 crossref_primary_10_1016_j_watres_2019_115319 crossref_primary_10_1016_j_eehl_2025_100134 crossref_primary_10_1116_1_4964867 crossref_primary_10_1177_1740349914540902 crossref_primary_10_1016_j_jconhyd_2008_02_003 crossref_primary_10_1061__ASCE_0733_9372_2009_135_5_317 crossref_primary_10_1016_j_watres_2018_04_037 crossref_primary_10_1039_C7TA08605A crossref_primary_10_3390_polym8020032 crossref_primary_10_5402_2012_270830 crossref_primary_10_1016_j_apsusc_2008_05_093 crossref_primary_10_1016_j_biomaterials_2009_11_034 crossref_primary_10_1016_j_chemosphere_2019_04_158 crossref_primary_10_1016_j_partic_2013_04_002 crossref_primary_10_1021_es802187d crossref_primary_10_1016_j_cej_2014_05_030 crossref_primary_10_1016_j_ces_2017_04_007 crossref_primary_10_1016_j_enmm_2020_100296 crossref_primary_10_3390_ma14164748 crossref_primary_10_1016_j_chemosphere_2008_02_002 crossref_primary_10_2134_jeq2007_0545 crossref_primary_10_1016_j_apcatb_2007_10_033 crossref_primary_10_1021_es4044209 crossref_primary_10_1021_es8001986 crossref_primary_10_1016_j_apcatb_2008_05_008 crossref_primary_10_1166_jnn_2021_18510 crossref_primary_10_1016_j_jhazmat_2007_06_122 crossref_primary_10_1039_C4AN00679H crossref_primary_10_1007_s40201_021_00631_y crossref_primary_10_1007_s11743_017_1941_0 crossref_primary_10_1016_j_chemosphere_2018_09_004 crossref_primary_10_1039_C7RA00464H crossref_primary_10_1016_j_ibiod_2016_09_027 crossref_primary_10_1016_j_jece_2022_107457 crossref_primary_10_1016_j_cej_2013_03_019 crossref_primary_10_1016_j_elspec_2009_09_003 crossref_primary_10_1021_acs_est_8b06499 crossref_primary_10_1016_j_watres_2009_08_051 crossref_primary_10_3390_min13111385 crossref_primary_10_1007_s00604_021_04913_y crossref_primary_10_1021_acsearthspacechem_8b00200 crossref_primary_10_1021_jp072295 crossref_primary_10_1039_C4CC06241H crossref_primary_10_1155_2015_548961 crossref_primary_10_1007_s11051_005_7523_5 crossref_primary_10_1007_s11356_018_2628_4 crossref_primary_10_1016_j_cej_2017_03_056 crossref_primary_10_1080_10408436_2014_899890 crossref_primary_10_1016_j_jece_2016_03_048 crossref_primary_10_5004_dwt_2017_21754 crossref_primary_10_1016_j_scitotenv_2012_01_010 crossref_primary_10_1016_j_ultsonch_2013_04_015 crossref_primary_10_1039_C4RA16061D crossref_primary_10_1039_d0pp00295j crossref_primary_10_1002_sia_3260 crossref_primary_10_1016_j_chemosphere_2010_11_009 crossref_primary_10_1021_es061721m crossref_primary_10_1021_es4056565 crossref_primary_10_1039_B706225G crossref_primary_10_1016_j_jece_2024_113006 crossref_primary_10_4028_www_scientific_net_AMR_1028_30 crossref_primary_10_1088_1361_6528_ab622f crossref_primary_10_1016_j_jenvrad_2016_06_027 crossref_primary_10_1134_S0020168517090011 crossref_primary_10_1007_s13762_016_1077_1 crossref_primary_10_1021_jp9051837 crossref_primary_10_1111_j_1745_6592_2010_01294_x crossref_primary_10_1080_02652030802007553 crossref_primary_10_1021_es903278e crossref_primary_10_1016_j_jece_2024_112023 crossref_primary_10_1021_acs_iecr_7b00587 crossref_primary_10_1016_j_jece_2021_106160 crossref_primary_10_1016_j_jhazmat_2016_04_037 crossref_primary_10_1021_ie101546k crossref_primary_10_1021_acs_est_3c02039 crossref_primary_10_1088_1757_899X_98_1_012039 crossref_primary_10_1016_j_cej_2018_04_175 crossref_primary_10_1007_s10230_019_00605_5 crossref_primary_10_1007_s11051_009_9764_1 crossref_primary_10_1016_j_ijhydene_2019_08_009 crossref_primary_10_1016_j_cej_2011_01_048 crossref_primary_10_1007_s11270_013_1799_3 crossref_primary_10_1016_j_jhazmat_2019_121253 crossref_primary_10_1021_jp909137f crossref_primary_10_1016_j_chemosphere_2020_127875 crossref_primary_10_1016_j_chemosphere_2018_06_008 crossref_primary_10_1016_j_scitotenv_2021_145550 crossref_primary_10_1016_j_jhazmat_2008_04_027 crossref_primary_10_1080_19443994_2015_1038734 crossref_primary_10_1346_CCMN_2012_0600204 crossref_primary_10_1016_j_clay_2009_11_044 crossref_primary_10_1021_jp0702189 crossref_primary_10_1016_j_nxmate_2024_100405 crossref_primary_10_1016_j_chemosphere_2009_12_061 crossref_primary_10_1016_j_colsurfa_2010_08_031 crossref_primary_10_1016_j_jcis_2018_08_075 crossref_primary_10_1016_j_colsurfa_2015_03_057 crossref_primary_10_4028_www_scientific_net_AMR_573_574_155 crossref_primary_10_1002_rem_20080 crossref_primary_10_1021_acs_est_5b00006 crossref_primary_10_1016_j_jclepro_2020_119955 crossref_primary_10_1021_es304829z crossref_primary_10_1016_j_watres_2024_121494 crossref_primary_10_1021_es0712120 crossref_primary_10_1021_es7025664 crossref_primary_10_1088_2053_1591_ab83a3 crossref_primary_10_1016_j_envpol_2013_04_004 crossref_primary_10_1080_19430892_2012_706185 crossref_primary_10_1186_s12951_017_0268_3 crossref_primary_10_3103_S0147687414040085 crossref_primary_10_1007_s00396_016_3972_x crossref_primary_10_1080_10408430601057611 crossref_primary_10_1016_j_chemosphere_2010_07_054 crossref_primary_10_1016_j_jece_2023_111412 crossref_primary_10_1021_es301753u crossref_primary_10_1021_es401481a crossref_primary_10_1016_j_clay_2017_04_022 crossref_primary_10_1016_j_heliyon_2019_e01750 crossref_primary_10_1080_00032719_2016_1159219 crossref_primary_10_1016_j_watres_2014_08_001 crossref_primary_10_1016_j_chemosphere_2009_04_067 crossref_primary_10_1016_j_jhazmat_2014_10_050 crossref_primary_10_1007_s11434_014_0440_1 crossref_primary_10_1021_es902595j crossref_primary_10_1016_j_clay_2018_06_040 crossref_primary_10_1039_c1nr11000d crossref_primary_10_1007_s13197_018_3266_z crossref_primary_10_1016_j_gca_2016_10_039 crossref_primary_10_1021_es802726v crossref_primary_10_1155_2016_8026843 crossref_primary_10_1016_j_chemosphere_2008_08_014 crossref_primary_10_1021_acs_est_7b01896 crossref_primary_10_1016_j_jhazmat_2020_122210 crossref_primary_10_1007_s11270_015_2421_7 crossref_primary_10_1007_s10973_014_3763_x crossref_primary_10_1039_C5RA18282D crossref_primary_10_1039_D1CP04411G crossref_primary_10_1016_j_watres_2012_04_013 crossref_primary_10_1016_j_jmst_2020_08_031 crossref_primary_10_1016_j_cej_2012_05_018 crossref_primary_10_1016_j_cej_2014_11_046 crossref_primary_10_1039_C2EM30655G crossref_primary_10_1021_ie4009524 crossref_primary_10_1016_j_jes_2014_06_016 crossref_primary_10_1016_j_wasman_2009_10_012 crossref_primary_10_1149_1_3223665 crossref_primary_10_1016_j_cej_2016_05_132 crossref_primary_10_1016_j_enmm_2019_100218 crossref_primary_10_1016_j_apcatb_2007_07_034 crossref_primary_10_1016_j_gca_2012_02_023 crossref_primary_10_1002_anie_200704943 crossref_primary_10_1016_j_foodcont_2024_111111 crossref_primary_10_1021_cm101996u crossref_primary_10_1007_s11051_011_0291_5 crossref_primary_10_1016_j_apsusc_2020_147567 crossref_primary_10_1016_j_materresbull_2014_02_019 crossref_primary_10_1016_j_jece_2022_107191 crossref_primary_10_1039_C5AY02182K crossref_primary_10_1007_s11783_013_0575_3 crossref_primary_10_1039_C7NR05823C crossref_primary_10_1016_j_jhazmat_2019_04_056 crossref_primary_10_1039_c2cc16438h crossref_primary_10_1016_j_watres_2014_10_043 crossref_primary_10_1021_acs_est_8b02399 crossref_primary_10_1016_j_apcatb_2007_06_003 crossref_primary_10_1016_j_colsurfa_2014_01_037 crossref_primary_10_1021_la1006633 crossref_primary_10_1016_j_colsurfa_2011_09_011 crossref_primary_10_1016_j_wasman_2006_12_012 crossref_primary_10_1016_j_watres_2009_05_046 crossref_primary_10_1021_jp810143y crossref_primary_10_1021_es702579w crossref_primary_10_1021_es801438f crossref_primary_10_1016_j_mtchem_2023_101644 crossref_primary_10_1016_j_scitotenv_2009_05_033 crossref_primary_10_1007_s00216_009_3360_1 crossref_primary_10_4236_jwarp_2016_85051 crossref_primary_10_1016_j_jhazmat_2011_04_089 crossref_primary_10_1080_19443994_2015_1013992 crossref_primary_10_1016_j_seppur_2021_118663 crossref_primary_10_1016_j_jclepro_2013_12_026 crossref_primary_10_1007_s11356_016_6255_7 crossref_primary_10_1016_j_ultsonch_2009_01_005 crossref_primary_10_23939_chcht13_01_121 crossref_primary_10_1016_j_materresbull_2014_09_016 crossref_primary_10_1080_10934529_2012_707556 crossref_primary_10_1016_j_jtice_2014_08_021 crossref_primary_10_1557_PROC_876_R10_4 crossref_primary_10_1021_es503777a crossref_primary_10_1021_am300402q crossref_primary_10_3390_ijerph18179278 crossref_primary_10_1088_1755_1315_779_1_012113 crossref_primary_10_1021_jp0777418 crossref_primary_10_1007_s11051_012_0861_1 crossref_primary_10_1016_j_jhazmat_2021_127486 crossref_primary_10_1016_j_apcatb_2009_03_007 crossref_primary_10_1016_j_seppur_2010_10_015 crossref_primary_10_1021_ja3060035 crossref_primary_10_1016_j_jhazmat_2021_126026 crossref_primary_10_1016_j_jconhyd_2010_07_011 crossref_primary_10_1016_j_watres_2012_12_042 crossref_primary_10_1155_2014_825910 crossref_primary_10_1016_j_watres_2012_06_051 crossref_primary_10_1021_acs_est_7b03604 crossref_primary_10_1016_j_inoche_2024_112541 crossref_primary_10_22211_matwys_0172E crossref_primary_10_3390_ma11060945 crossref_primary_10_1080_03601230902997501 crossref_primary_10_1007_s10973_022_11446_w crossref_primary_10_1016_j_cattod_2012_12_011 crossref_primary_10_1007_s11270_014_2243_z crossref_primary_10_1016_j_mencom_2016_11_031 crossref_primary_10_3389_fenvs_2018_00079 crossref_primary_10_1016_j_scitotenv_2010_01_039 crossref_primary_10_1016_j_chemgeo_2019_07_008 crossref_primary_10_1016_j_jconhyd_2015_03_004 crossref_primary_10_1007_s10934_015_0038_2 crossref_primary_10_1080_02603590500496721 crossref_primary_10_1038_srep18818 crossref_primary_10_1016_j_jhazmat_2016_07_042 crossref_primary_10_1016_j_jconhyd_2010_07_006 crossref_primary_10_1016_j_jhazmat_2024_135946 crossref_primary_10_1016_j_watres_2007_03_035 crossref_primary_10_1088_0957_4484_18_25_255603 crossref_primary_10_1088_1361_6528_acd38a crossref_primary_10_1016_j_apcatb_2017_12_077 crossref_primary_10_1021_am503063m crossref_primary_10_1016_j_clet_2021_100081 crossref_primary_10_1016_j_molliq_2022_120262 crossref_primary_10_1061__ASCE_EE_1943_7870_0000906 crossref_primary_10_1016_j_jiec_2019_09_024 crossref_primary_10_1021_acs_jpcc_1c08829 crossref_primary_10_1007_s11356_016_7285_x crossref_primary_10_1016_j_watres_2015_01_002 crossref_primary_10_1021_acs_est_5b04988 crossref_primary_10_1016_j_jallcom_2019_153517 crossref_primary_10_1021_jp501846f crossref_primary_10_1016_j_jhazmat_2014_08_049 crossref_primary_10_1080_10408410701710442 crossref_primary_10_1016_j_watres_2016_03_019 crossref_primary_10_2166_wst_2016_478 crossref_primary_10_1088_1742_6596_838_1_012034 crossref_primary_10_1016_j_watres_2011_04_010 crossref_primary_10_1016_j_cej_2021_130261 crossref_primary_10_1016_j_cej_2024_157832 crossref_primary_10_3184_146867807X244030 crossref_primary_10_1016_j_envres_2020_109855 crossref_primary_10_1016_j_jhazmat_2021_127343 crossref_primary_10_1016_j_jhazmat_2010_01_060 crossref_primary_10_1016_j_cattod_2008_09_038 crossref_primary_10_1016_S1748_0132_06_70048_2 crossref_primary_10_1007_s11051_011_0421_0 crossref_primary_10_1155_2014_152824 crossref_primary_10_1016_j_memsci_2017_02_021 crossref_primary_10_1016_j_jclepro_2021_127678 crossref_primary_10_1109_ACCESS_2019_2961513 crossref_primary_10_1016_j_jes_2018_01_029 crossref_primary_10_1155_2020_3286383 crossref_primary_10_1016_j_jiec_2012_12_020 crossref_primary_10_1016_j_jcis_2008_04_064 crossref_primary_10_1016_j_cej_2014_03_017 crossref_primary_10_1016_j_jenvman_2015_12_022 crossref_primary_10_1016_j_jhazmat_2010_11_029 crossref_primary_10_1021_jp8076062 crossref_primary_10_1016_j_scitotenv_2016_09_211 crossref_primary_10_1016_j_ultsonch_2012_11_015 crossref_primary_10_1007_s11270_013_1541_1 crossref_primary_10_1016_j_chemosphere_2013_04_025 crossref_primary_10_1016_j_jcis_2011_12_059 crossref_primary_10_1021_es071545x crossref_primary_10_1021_es300516e crossref_primary_10_1007_s11661_021_06326_1 crossref_primary_10_1016_j_gca_2015_02_014 crossref_primary_10_1016_j_sbsr_2018_100250 crossref_primary_10_1038_nnano_2009_242 crossref_primary_10_1016_j_aca_2015_10_040 crossref_primary_10_1039_b913056j crossref_primary_10_1016_j_mtla_2020_100930 crossref_primary_10_1021_ie400702k crossref_primary_10_1016_j_cej_2019_122120 crossref_primary_10_3390_nano11051141 crossref_primary_10_1002_pssa_201431843 crossref_primary_10_1177_0734242X20936761 crossref_primary_10_1021_jp2028824 crossref_primary_10_1016_j_microc_2018_06_025 crossref_primary_10_1021_acs_est_8b00487 crossref_primary_10_1039_D0SC03663C crossref_primary_10_1007_s13762_023_04902_z crossref_primary_10_1016_j_trac_2010_11_014 crossref_primary_10_1016_j_watres_2015_04_009 crossref_primary_10_1002_jctb_4365 crossref_primary_10_1002_sia_2760 crossref_primary_10_5004_dwt_2017_21049 crossref_primary_10_1016_j_jhazmat_2013_02_047 crossref_primary_10_1007_s13391_013_2123_5 crossref_primary_10_1021_es902772r crossref_primary_10_1039_C9EM00592G crossref_primary_10_1016_j_mtcomm_2020_101717 crossref_primary_10_1016_j_desal_2009_06_054 crossref_primary_10_3762_bjnano_6_167 crossref_primary_10_1016_j_jconhyd_2014_06_014 crossref_primary_10_1016_j_scitotenv_2023_162720 crossref_primary_10_1089_ees_2009_0147 crossref_primary_10_1007_s11051_007_9315_6 crossref_primary_10_1016_j_envpol_2011_06_021 crossref_primary_10_1016_j_jhazmat_2013_10_031 crossref_primary_10_1021_es062312t crossref_primary_10_1016_j_jmmm_2022_169139 crossref_primary_10_1016_j_wasman_2019_10_003 crossref_primary_10_4081_ija_2013_e18 crossref_primary_10_1016_j_cej_2016_05_065 crossref_primary_10_1002_cjoc_202100426 crossref_primary_10_1021_es071774j crossref_primary_10_1016_j_jcis_2017_07_024 crossref_primary_10_1016_j_jhazmat_2021_125246 crossref_primary_10_1016_j_surfin_2022_102098 crossref_primary_10_1061__ASCE_GT_1943_5606_0001015 crossref_primary_10_1002_pc_22669 crossref_primary_10_1016_j_susc_2007_12_014 crossref_primary_10_1039_D1TA02046C crossref_primary_10_1016_j_scitotenv_2010_10_015 crossref_primary_10_1016_j_apsusc_2020_145438 crossref_primary_10_1016_j_jhazmat_2012_04_065 crossref_primary_10_1021_es200577n crossref_primary_10_1016_j_scitotenv_2020_144246 crossref_primary_10_1016_j_susmat_2025_e01362 crossref_primary_10_1016_j_seppur_2018_01_032 crossref_primary_10_1063_1_2130890 crossref_primary_10_1016_j_cej_2015_11_046 crossref_primary_10_1016_j_jcis_2017_07_016 crossref_primary_10_1007_s10800_007_9450_x crossref_primary_10_1007_s11814_008_0226_8 crossref_primary_10_1021_acs_iecr_8b04464 crossref_primary_10_1016_j_jece_2017_01_038 crossref_primary_10_1016_j_colsurfa_2016_07_054 crossref_primary_10_1016_j_wasman_2019_05_017 crossref_primary_10_1039_C6RA16657A crossref_primary_10_1016_j_jmmm_2018_03_047 crossref_primary_10_1016_j_carbon_2015_05_081 crossref_primary_10_3390_molecules29194628 crossref_primary_10_1002_app_38335 crossref_primary_10_1016_j_cej_2011_12_089 crossref_primary_10_1021_acsestengg_4c00316 crossref_primary_10_1371_journal_pone_0132067 crossref_primary_10_1016_j_watres_2013_02_039 crossref_primary_10_1021_acs_est_9b02419 crossref_primary_10_1021_es202417t crossref_primary_10_1007_s11434_009_0676_3 crossref_primary_10_1021_es204087q crossref_primary_10_1016_j_cej_2014_01_061 crossref_primary_10_1016_j_jhazmat_2016_01_052 crossref_primary_10_1073_pnas_2204673119 crossref_primary_10_1007_s11356_013_2337_y crossref_primary_10_1007_s41204_017_0015_x crossref_primary_10_1016_j_apcata_2017_05_028 crossref_primary_10_1016_j_chemosphere_2013_11_010 crossref_primary_10_1021_la703689k crossref_primary_10_1016_j_chemgeo_2015_01_018 crossref_primary_10_1016_j_chemosphere_2008_07_050 crossref_primary_10_1016_j_apsusc_2014_09_042 crossref_primary_10_1016_j_desal_2010_09_051 crossref_primary_10_1016_j_jnucmat_2013_07_018 crossref_primary_10_1016_j_apt_2021_11_018 crossref_primary_10_1016_j_jhazmat_2019_120836 crossref_primary_10_1016_j_envpol_2011_07_013 crossref_primary_10_1016_j_jhazmat_2011_09_067 crossref_primary_10_1016_j_chemosphere_2011_10_028 crossref_primary_10_1021_jp103896k crossref_primary_10_1016_j_chemosphere_2012_12_037 crossref_primary_10_1016_j_jhazmat_2010_09_060 crossref_primary_10_3390_geosciences12080287 crossref_primary_10_1007_s13369_017_2432_3 crossref_primary_10_1016_j_scitotenv_2020_141037 crossref_primary_10_1016_j_advwatres_2012_02_005 crossref_primary_10_1016_j_jconhyd_2010_09_003 crossref_primary_10_1016_j_chemosphere_2006_04_012 crossref_primary_10_1016_j_chemosphere_2021_130177 crossref_primary_10_1016_j_psep_2010_06_002 crossref_primary_10_1016_j_materresbull_2010_06_046 crossref_primary_10_1039_c3ta10678k crossref_primary_10_1021_es803535b crossref_primary_10_4028_www_scientific_net_KEM_380_229 crossref_primary_10_1016_j_apcatb_2007_07_014 crossref_primary_10_1186_1556_276X_8_20 crossref_primary_10_1016_j_jnucmat_2008_09_026 crossref_primary_10_1016_j_carbpol_2018_06_097 crossref_primary_10_3390_nano10112189 crossref_primary_10_1007_s41204_022_00280_y crossref_primary_10_1016_j_cis_2006_03_001 crossref_primary_10_3390_nano8100839 crossref_primary_10_3389_fchem_2018_00145 crossref_primary_10_2147_IJN_S423171 crossref_primary_10_1016_j_partic_2016_06_001 crossref_primary_10_1016_j_cjche_2016_05_042 crossref_primary_10_1021_cm061272p crossref_primary_10_1021_es8015588 crossref_primary_10_1016_j_jhazmat_2010_06_009 crossref_primary_10_52679_978_81_952885_8_8_10 crossref_primary_10_1016_j_cej_2018_09_164 crossref_primary_10_1007_s11270_019_4166_1 crossref_primary_10_1016_j_cej_2008_01_024 crossref_primary_10_1016_j_chroma_2008_09_008 crossref_primary_10_1016_j_electacta_2010_11_044 crossref_primary_10_1016_j_jhazmat_2014_05_054 crossref_primary_10_1016_j_jhazmat_2023_133309 crossref_primary_10_1016_j_jhazmat_2019_03_107 crossref_primary_10_1016_j_materresbull_2013_04_094 crossref_primary_10_1021_jp204762u crossref_primary_10_1039_C5CP07569F crossref_primary_10_1007_s11051_012_0760_5 crossref_primary_10_1016_j_watres_2010_06_069 crossref_primary_10_1016_j_jes_2015_07_016 crossref_primary_10_22211_matwys_0172 crossref_primary_10_1016_j_apcatb_2011_04_005 crossref_primary_10_1016_S1001_0742_13_60506_9 crossref_primary_10_1016_j_matchemphys_2017_01_007 crossref_primary_10_1142_S1793292008001271 crossref_primary_10_1016_j_apcatb_2011_04_002 crossref_primary_10_1016_j_scitotenv_2019_01_180 crossref_primary_10_1016_j_jhazmat_2015_07_038 crossref_primary_10_1007_s11051_014_2712_8 crossref_primary_10_1021_la7019186 crossref_primary_10_1016_j_watres_2016_05_019 crossref_primary_10_1116_1_4818423 crossref_primary_10_1002_sia_2726 crossref_primary_10_1007_s00128_016_1865_9 crossref_primary_10_1007_s13762_023_05208_w crossref_primary_10_1021_ie400507c crossref_primary_10_1007_s11051_008_9405_0 crossref_primary_10_1039_C2EM30691C crossref_primary_10_1021_es101601s crossref_primary_10_1002_apj_1720 crossref_primary_10_1016_j_jmmm_2015_12_049 crossref_primary_10_1021_es103185t crossref_primary_10_1021_ie301031u crossref_primary_10_1021_acssuschemeng_6b00242 crossref_primary_10_1186_1556_276X_6_527 crossref_primary_10_1016_j_apcatb_2019_118057 crossref_primary_10_1016_j_seppur_2016_07_023 crossref_primary_10_1016_j_jenvman_2016_06_054 crossref_primary_10_1016_j_jhazmat_2021_126649 crossref_primary_10_1557_adv_2018_169 crossref_primary_10_1155_2014_518242 crossref_primary_10_1111_j_1745_6592_2011_01352_x crossref_primary_10_1016_j_scitotenv_2022_159397 crossref_primary_10_1016_j_molliq_2020_113317 crossref_primary_10_1007_s11783_015_0784_z crossref_primary_10_1016_j_apcata_2018_05_002 crossref_primary_10_1021_ie800081s crossref_primary_10_1016_j_jhazmat_2023_131589 crossref_primary_10_1016_j_ceja_2021_100165 crossref_primary_10_1016_S1003_9953_11_60365_4 crossref_primary_10_1051_matecconf_20166105009 crossref_primary_10_1021_es3041412 |
Cites_doi | 10.1021/cm0218108 10.1021/es0305508 10.1021/es026472q 10.1126/science.1075094 10.1021/cm020737i 10.1021/jp960224x 10.1021/j100403a003 10.1016/S0045-6535(99)00506-8 10.1149/1.1738135 10.1103/PhysRevB.68.195423 10.1021/la025798+ 10.1103/PhysRevB.64.174420 10.1021/ic00105a009 10.1021/es034237h 10.1016/S0169-7722(97)00063-6 10.1021/es9911420 10.1016/S0021-9797(03)00463-6 10.1021/cm000288r 10.1021/jp973113m 10.1021/la981012p 10.1021/la00075a020 10.1016/S0016-7037(02)01229-2 10.1016/S0003-2670(00)86430-2 10.1021/es960999j 10.1016/0010-938X(94)00102-C 10.1021/es011191o 10.1016/j.jcis.2003.12.026 10.1006/jcis.1998.5993 10.1021/ef00043a002 10.1021/es0016856 10.1021/es030487m |
ContentType | Journal Article |
Copyright | Copyright © 2005 American Chemical Society Copyright American Chemical Society Mar 1, 2005 |
Copyright_xml | – notice: Copyright © 2005 American Chemical Society – notice: Copyright American Chemical Society Mar 1, 2005 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/es049190u |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Chemistry |
EISSN | 1520-5851 |
EndPage | 1230 |
ExternalDocumentID | 806050661 15787360 10_1021_es049190u ark_67375_TPS_ZGSQ9QD9_Z f21549139 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a507t-f96469f477de8206ae04dc88d5749f00dc3bb021b56722f3dc1cb7618cb6c2953 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Tue Aug 05 11:01:56 EDT 2025 Fri Jul 25 03:59:59 EDT 2025 Wed Feb 19 02:35:10 EST 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 01 03:25:57 EDT 2025 Wed Oct 30 09:31:08 EDT 2024 Thu Aug 27 13:42:22 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a507t-f96469f477de8206ae04dc88d5749f00dc3bb021b56722f3dc1cb7618cb6c2953 |
Notes | istex:6E21BC8CAD2DB8F1D540E258E8104AEA0546ED08 ark:/67375/TPS-ZGSQ9QD9-Z SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://digital.library.unt.edu/ark:/67531/metadc839894/m2/1/high_res_d/1052976.pdf |
PMID | 15787360 |
PQID | 230167803 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67547457 proquest_journals_230167803 pubmed_primary_15787360 crossref_primary_10_1021_es049190u crossref_citationtrail_10_1021_es049190u istex_primary_ark_67375_TPS_ZGSQ9QD9_Z acs_journals_10_1021_es049190u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03-01 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2005 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Elliott S. (es049190ub00019/es049190ub00019_1) 1998 Elliott D. W. (es049190ub00003/es049190ub00003_1) 2002; 35 Klabunde K. J. (es049190ub00016/es049190ub00016_1) 1996; 100 Xu Y. (es049190ub00007/es049190ub00007_1) 2000; 39 Matson D. W. (es049190ub00043/es049190ub00043_1) 1994; 8 Theil Kuhn L. (es049190ub00030/es049190ub00030_1) 2002; 14 Scherer M. M. (es049190ub00031/es049190ub00031_1) 1998 Sharma R. K. (es049190ub00028/es049190ub00028_1) 2003; 265 Campbell C. T. (es049190ub00018/es049190ub00018_1) 2002; 298 Signorini L. (es049190ub00029/es049190ub00029_1) 2003; 68 Stack A. G. (es049190ub00055/es049190ub00055_1) 2004; 274 Pecher K. (es049190ub00062/es049190ub00062_1) 2002; 36 Lowry G. V. (es049190ub00009/es049190ub00009_1) 2004; 44 Zaitsev V. S. (es049190ub00032/es049190ub00032_1) 1999; 212 Zhang W.-X (es049190ub00014/es049190ub00014_1) 2003; 5 Geiger C. (es049190ub00004/es049190ub00004_1) 2003 Miehr R. (es049190ub00044/es049190ub00044_1) 2004; 38 Tratnyek P. G. (es049190ub00001/es049190ub00001_1) 2003 Glavee G. N. (es049190ub00049/es049190ub00049_1) 1995; 34 Lien H.-L. (es049190ub00038/es049190ub00038_1) Ponder S. M. (es049190ub00012/es049190ub00012_1) 2000; 34 Scherer M. M. (es049190ub00063/es049190ub00063_1) 1997; 31 Cohen M. (es049190ub00052/es049190ub00052_1) 1978 Wang C.-B. (es049190ub00005/es049190ub00005_1) 1997; 31 Logue B. A. (es049190ub00060/es049190ub00060_1) 2003; 37 es049190ub00035/es049190ub00035_1 Oblonsky L. J. (es049190ub00054/es049190ub00054_1) 1995; 37 Nepijko S. A. (es049190ub00023/es049190ub00023_1) 1998; 412 Pecher K. (es049190ub00045/es049190ub00045_1) 2003; 67 Tratnyek P. G. (es049190ub00068/es049190ub00068_1) 2004; 44 Geiger C. L. (es049190ub00037/es049190ub00037_1) 2003; 43 Scherer M. M. (es049190ub00069/es049190ub00069_1) 2001; 35 Punoose A. (es049190ub00027/es049190ub00027_1) 2001; 64 Vaughan G. M. (es049190ub00048/es049190ub00048_1) 1990; 231 Mulvaney P. (es049190ub00017/es049190ub00017_1) 2001 Brus L (es049190ub00020/es049190ub00020_1) 1986; 90 Nurmi J. T. (es049190ub00046/es049190ub00046_1) 2004; 151 Lien H.-L. (es049190ub00008/es049190ub00008_1) 2001; 191 Jovancicevic V. (es049190ub00053/es049190ub00053_1) 1987; 3 Johnson T. L. (es049190ub00015/es049190ub00015_1) 1996; 30 Gan S. (es049190ub00025/es049190ub00025_1) 2001; 105 Schrick B. (es049190ub00034/es049190ub00034_1) 2004; 16 Okinaka K. (es049190ub00036/es049190ub00036_1) 2004 Li T. (es049190ub00067/es049190ub00067_1) 2001; 35 Matson D. W. (es049190ub00042/es049190ub00042_1) 1996 Drazic D. M. (es049190ub00047/es049190ub00047_1) 1985; 25 McCormick M. L. (es049190ub00061/es049190ub00061_1) 2004; 38 Sato N. (es049190ub00051/es049190ub00051_1) 1978 Carpenter E. E. (es049190ub00050/es049190ub00050_1) 2003; 15 Lowry G. V. (es049190ub00010/es049190ub00010_1) 2004; 38 Kung K.-H. (es049190ub00056/es049190ub00056_1) 1988; 36 Johnson T. L. (es049190ub00065/es049190ub00065_1) 1998; 29 Baer D. R. (es049190ub00026/es049190ub00026_1) 2003; 47 Liu Y. (es049190ub00041/es049190ub00041_1) 2004; 44 Elsner M. (es049190ub00058/es049190ub00058_1) 2004; 38 Choe S. (es049190ub00011/es049190ub00011_1) 2000; 41 Gaspar D. J. (es049190ub00059/es049190ub00059_1) 2002; 18 Kriegman-King M. R. (es049190ub00070/es049190ub00070_1) 1994; 28 Glazier R. (es049190ub00002/es049190ub00002_1) 2003; 73 Támara M. (es049190ub00064/es049190ub00064_1) 2004; 38 Wang Y. (es049190ub00021/es049190ub00021_1) 1991; 95 Wang Y. (es049190ub00033/es049190ub00033_1) 2003; 3 Nepijko S. A. (es049190ub00024/es049190ub00024_1) 1999; 15 Scherer M. M. (es049190ub00066/es049190ub00066_1) 2000 Lien H.-L. (es049190ub00006/es049190ub00006_1) 1999; 125 Schrick B. (es049190ub00040/es049190ub00040_1) 2002; 14 Li F. (es049190ub00013/es049190ub00013_1) 2003; 223 Klimenkow M. (es049190ub00022/es049190ub00022_1) 1997; 391 Ponder S. M. (es049190ub00039/es049190ub00039_1) 2001; 13 Balko B. A. (es049190ub00057/es049190ub00057_1) 1998; 102 |
References_xml | – volume: 16 start-page: 2193 year: 2004 ident: es049190ub00034/es049190ub00034_1 publication-title: Chem. Mater. doi: 10.1021/cm0218108 – volume: 38 start-page: 1876 year: 2004 ident: es049190ub00064/es049190ub00064_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0305508 – volume: 412 start-page: 201 year: 1998 ident: es049190ub00023/es049190ub00023_1 publication-title: Surf. Sci. – volume: 3 start-page: 1559 year: 2003 ident: es049190ub00033/es049190ub00033_1 publication-title: Nano Lett. – volume: 37 start-page: 2362 year: 2003 ident: es049190ub00060/es049190ub00060_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es026472q – volume: 95 start-page: 532 year: 1991 ident: es049190ub00021/es049190ub00021_1 publication-title: J. Phys. Chem. – volume: 298 start-page: 814 year: 2002 ident: es049190ub00018/es049190ub00018_1 publication-title: Science doi: 10.1126/science.1075094 – volume: 14 start-page: 5147 year: 2002 ident: es049190ub00040/es049190ub00040_1 publication-title: Chem. Mater. doi: 10.1021/cm020737i – volume-title: 215th National Meeting, Dallas, TX; American Chemical Society: Washington, DC ident: es049190ub00038/es049190ub00038_1 – volume: 15 start-page: 3246 year: 2003 ident: es049190ub00050/es049190ub00050_1 publication-title: Chem. Mater. – volume: 47 start-page: 356 year: 2003 ident: es049190ub00026/es049190ub00026_1 publication-title: Prog. Org. Coat. – start-page: 140 volume-title: Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup year: 2003 ident: es049190ub00004/es049190ub00004_1 – volume: 100 start-page: 12153 year: 1996 ident: es049190ub00016/es049190ub00016_1 publication-title: J. Phys. Chem. doi: 10.1021/jp960224x – volume-title: The Physics and Chemistry of Solids year: 1998 ident: es049190ub00019/es049190ub00019_1 – volume: 14 start-page: 13567 year: 2002 ident: es049190ub00030/es049190ub00030_1 publication-title: J. Phys.: Condens. Matter – volume: 90 start-page: 2560 year: 1986 ident: es049190ub00020/es049190ub00020_1 publication-title: J. Phys. Chem. doi: 10.1021/j100403a003 – volume-title: Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May 24−27, 2004 year: 2004 ident: es049190ub00036/es049190ub00036_1 – volume: 191 start-page: 105 year: 2001 ident: es049190ub00008/es049190ub00008_1 publication-title: Colloid Surf. A – volume: 25 start-page: 216 year: 1985 ident: es049190ub00047/es049190ub00047_1 publication-title: Corros. Sci. – start-page: 545 volume-title: Passivity of Metals year: 1978 ident: es049190ub00052/es049190ub00052_1 – volume: 41 start-page: 1311 year: 2000 ident: es049190ub00011/es049190ub00011_1 publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00506-8 – volume: 125 start-page: 1047 year: 1999 ident: es049190ub00006/es049190ub00006_1 publication-title: J. Environ. Eng. – volume: 151 start-page: B353 year: 2004 ident: es049190ub00046/es049190ub00046_1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1738135 – volume-title: “Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater year: 2000 ident: es049190ub00066/es049190ub00066_1 – volume: 68 start-page: 195423 year: 2003 ident: es049190ub00029/es049190ub00029_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.195423 – volume: 5 start-page: 332 year: 2003 ident: es049190ub00014/es049190ub00014_1 publication-title: J. Nanopart. Res. – volume: 31 start-page: 2156 year: 1997 ident: es049190ub00005/es049190ub00005_1 publication-title: Environ. Sci. Technol. – start-page: 421 volume-title: Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications year: 2003 ident: es049190ub00001/es049190ub00001_1 – volume: 105 start-page: 2415 year: 2001 ident: es049190ub00025/es049190ub00025_1 publication-title: J. Phys. Chem. B – volume: 18 start-page: 7693 year: 2002 ident: es049190ub00059/es049190ub00059_1 publication-title: Langmuir doi: 10.1021/la025798+ – volume: 35 start-page: 3565 year: 2001 ident: es049190ub00067/es049190ub00067_1 publication-title: Environ. Sci. Technol. – volume: 35 start-page: 4926 year: 2002 ident: es049190ub00003/es049190ub00003_1 publication-title: Environ. Sci. Technol. – volume: 64 start-page: 174420 year: 2001 ident: es049190ub00027/es049190ub00027_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.174420 – volume: 34 start-page: 35 year: 1995 ident: es049190ub00049/es049190ub00049_1 publication-title: Inorg. Chem. doi: 10.1021/ic00105a009 – volume: 391 start-page: 36 year: 1997 ident: es049190ub00022/es049190ub00022_1 publication-title: Surf. Sci. – volume: 38 start-page: 147 year: 2004 ident: es049190ub00044/es049190ub00044_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es034237h – ident: es049190ub00035/es049190ub00035_1 – volume: 28 start-page: 700 year: 1994 ident: es049190ub00070/es049190ub00070_1 publication-title: Environ. Sci. Technol. – volume: 29 start-page: 396 year: 1998 ident: es049190ub00065/es049190ub00065_1 publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(97)00063-6 – start-page: 167 volume-title: Nanoscale Materials in Chemistry year: 2001 ident: es049190ub00017/es049190ub00017_1 – volume: 44 start-page: 460 volume-title: 227th National Meeting, March 28−April 1, 2004 year: 2004 ident: es049190ub00068/es049190ub00068_1 – volume: 34 start-page: 2569 year: 2000 ident: es049190ub00012/es049190ub00012_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es9911420 – volume: 44 start-page: 417 volume-title: 228th National Meeting, August 22−26, 2004 year: 2004 ident: es049190ub00041/es049190ub00041_1 – volume: 265 start-page: 140 year: 2003 ident: es049190ub00028/es049190ub00028_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(03)00463-6 – volume: 73 start-page: 69 year: 2003 ident: es049190ub00002/es049190ub00002_1 publication-title: Civil Eng. – volume: 44 start-page: 493 volume-title: 227th National Meeting, March 28−Apri1 l, 1229 2004 year: 2004 ident: es049190ub00009/es049190ub00009_1 – volume: 43 start-page: 944 volume-title: 225th National Meeting, March 23−27, 2003 year: 2003 ident: es049190ub00037/es049190ub00037_1 – volume: 13 start-page: 486 year: 2001 ident: es049190ub00039/es049190ub00039_1 publication-title: Chem. Mater. doi: 10.1021/cm000288r – volume: 223 start-page: 112 year: 2003 ident: es049190ub00013/es049190ub00013_1 publication-title: Colloid Surf. A – start-page: 322 volume-title: Mineral−Water Interfacial Reactions: Kinetics and Mechanisms year: 1998 ident: es049190ub00031/es049190ub00031_1 – volume: 102 start-page: 1465 year: 1998 ident: es049190ub00057/es049190ub00057_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp973113m – start-page: 283 volume-title: Advanced Techniques in Catalyst Preparation year: 1996 ident: es049190ub00042/es049190ub00042_1 – volume: 15 start-page: 5313 year: 1999 ident: es049190ub00024/es049190ub00024_1 publication-title: Langmuir doi: 10.1021/la981012p – volume: 3 start-page: 395 year: 1987 ident: es049190ub00053/es049190ub00053_1 publication-title: Langmuir doi: 10.1021/la00075a020 – volume: 67 start-page: 1098 year: 2003 ident: es049190ub00045/es049190ub00045_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01229-2 – volume: 231 start-page: 303 year: 1990 ident: es049190ub00048/es049190ub00048_1 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)86430-2 – volume: 30 start-page: 2640 year: 1996 ident: es049190ub00015/es049190ub00015_1 publication-title: Environ. Sci. Technol. – volume: 31 start-page: 2391 year: 1997 ident: es049190ub00063/es049190ub00063_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es960999j – start-page: 58 volume-title: Passivity of Metals year: 1978 ident: es049190ub00051/es049190ub00051_1 – volume: 39 start-page: 2244 year: 2000 ident: es049190ub00007/es049190ub00007_1 publication-title: Ind. Eng. Chem. Res. – volume: 37 start-page: 41 year: 1995 ident: es049190ub00054/es049190ub00054_1 publication-title: Corros. Sci. doi: 10.1016/0010-938X(94)00102-C – volume: 36 start-page: 1741 year: 2002 ident: es049190ub00062/es049190ub00062_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es011191o – volume: 38 start-page: 5216 year: 2004 ident: es049190ub00010/es049190ub00010_1 publication-title: Environ. Sci. Technol. – volume: 274 start-page: 441 year: 2004 ident: es049190ub00055/es049190ub00055_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.12.026 – volume: 36 start-page: 309 year: 1988 ident: es049190ub00056/es049190ub00056_1 publication-title: Clays Clay Miner. – volume: 212 start-page: 57 year: 1999 ident: es049190ub00032/es049190ub00032_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5993 – volume: 8 start-page: 18 year: 1994 ident: es049190ub00043/es049190ub00043_1 publication-title: Energy Fuels doi: 10.1021/ef00043a002 – volume: 35 start-page: 2811 year: 2001 ident: es049190ub00069/es049190ub00069_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0016856 – volume: 38 start-page: 2066 year: 2004 ident: es049190ub00058/es049190ub00058_1 publication-title: Environ. Sci. Technol. – volume: 38 start-page: 1053 year: 2004 ident: es049190ub00061/es049190ub00061_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es030487m |
SSID | ssj0002308 |
Score | 2.4242496 |
Snippet | There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the... There are reports that nano-sized zero-valent iron (FeO) exhibits greater reactivity than micro-sized particles of FeO, and it has been suggested that the... |
SourceID | proquest pubmed crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1221 |
SubjectTerms | Carbon Chemical Precipitation Chemistry Corrosion Electrochemistry Iron Iron Compounds - chemistry Kinetics Materials Testing Metals Nanoparticles Nanostructures Physical properties Spectrum Analysis |
Title | Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics |
URI | http://dx.doi.org/10.1021/es049190u https://api.istex.fr/ark:/67375/TPS-ZGSQ9QD9-Z/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15787360 https://www.proquest.com/docview/230167803 https://www.proquest.com/docview/67547457 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT9VAEJ8gXPTgB4pWEDdqjAeKbbe723ojj4eo0UAeJC9cmu5XYiAtee1L1BNX_k3-Emf79TCCnjs7md2d2Znpzv4G4I3VuRaWMd-kaG5OKfw8D6zPaCqjgEuHIeaqLb7x_eP485RNl-D1LTf4UfjeVBjEotua34GViCfCZVg7o8lw3GIMnfRtClLKpz180PWhzvWo6g_Xs-JW8cftcWXjX_YewG7_SqctKzndntdyW_36G7TxX6I_hPtdfEl2WoV4BEumWIV711AHV2FtvHjchqSddVePoRwN6M3t40ySF5ocuN_1M4e7SkpLvhocc_ZdkU_IgeDZjEl3V1v34erikrh-9rVDyCzPf26RcdtkR_Vd5bYajl9QFocO_QSO98ZHo32_a8jg5xg21r5NOWbTNhZCG4f7npsg1ipJNBNxaoNAKyolTlwyLqLIUq1CJQUPEyW5ilJG12C5KAvzDIhNDSZqyCsUNJa5lZZapi2qFKq20NyDTdyxrDOoKmvuyqMwG5bUg3f9ZmaqgzN3XTXObiJ9NZCetxgeNxG9bTRioMhnp67oTbDs6GCSnXycHKaHu2l24sF6rzIL8VAJQ3T7AfXg5fAVV9bdvuSFKecV8mKxiJnw4GmrZwtZ3KlJefD8f3Neh7sNcmxTArcBy_Vsbl5gTFTLzcYmfgO3cQhM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7QE48CgUTKFdIUAc6uLXemMkDlWakpC2apVUinox3peEWsVRnAjKiSt_gb_Cv-GXMLt-pKAiTpU4ZzIaz87OQzvzDcBzLTPJNKWuSvC6GaNws8zTLg0THngxNxhiptviMO6eRO9HdLQE3-tZGBSiQE6FfcRfoAv4r1WBuSxGr3nVQNlXF5-wPCve9nbxLF8EwV5n2O661QYBN8M8Z-bqJMbyT0eMSWWAyjPlRVK0WpKyKNGeJ0XIOXLnNGZBoEMpfMGxsG8JHosgMRsh0L2vYNITmMJupz1ovDym7q16O0ISxqMateiyqCbiieK3iLdiDu_z39NZG9b27sCPRiG2m-Vsez7j2-LLH1iR_6fG7sLtKpsmO6X534MlNV6FW5cwFldhrbMY5UPSypcV9yFvN1jV5SgqycaSHJnHialBmSW5JgcK_3P-UZAeciAYifJJ3Un45ufXb2QwsUuEzGjPxRbplCuFRL1Db8ty7KMsBgv7AZxciyrWYHmcj9UjIDpRWJYiL5-FEc8016GmUuMFwovMZOzABp5gWrmPIrWdAYGfNkfowKvahlJRgbebHSLnV5E-a0gnJWLJVUQvrSE2FNn0zLT4MZoOjwbp6bvBcXK8m6SnDqzXlroQD23fxyTHCx3YbH5FzZq3pmys8nmBvGjEIsoceFia90IWEyPC2Hv8r2_ehBvd4cF-ut877K_DTYuZa5v_nsDybDpXTzEbnPENey0JfLhuq_4FT0RqGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5VrYTgwKNQMIV2hQBxqItf642ROFR50BCoUqWVol6M9yWhVnYUJ4Jy4sqf4K_wX_glzG5sp6AiTpU4ZzIa785TM_sNwFMtM8k0pa5K0NyMUrhZ5mmXhgkPvJgbDDEzbXEQ7x9Hb8d0vALf67cwKESJnErbxDdWPZG6QhjwX6oS81mMYPNqiHKgzj9hiVa-7nfwPp8FQa971N53qy0Cboa5zszVSYwloI4Yk8qAlWfKi6RotSRlUaI9T4qQc-TOacyCQIdS-IJjcd8SPBZBYrZCoItfM-1BU9zttUeNp8f0vVVvSEjCeFwjF10U1UQ9Uf4W9dbMBX7-e0prQ1vvFvxoDsVOtJzuzmd8V3z5Ay_y_z2123CzyqrJ3sIM7sCKytfhxgWsxXXY6C6f9CFp5dPKu1C0G8zqxZNUkuWSDE2TYmrQZkmhyXuF_zn7KEgfORCMSMWknih89fPrNzKa2GVC5onP-Q7pLlYLiXqX3o7lOEBZDCb2PTi-kqPYgNW8yNUDIDpRWJ4iL5-FEc8016GmUqMhoUEzGTuwhbeYVm6kTO2EQOCnzRU68KLWo1RUIO5ml8jZZaRPGtLJArnkMqLnVhkbimx6akb9GE2PhqP05M3oMDnsJOmJA5u1ti7FQ_33MdnxQge2m1_xZE3PKctVMS-RF41YRJkD9xcqvpTFxIow9h7-65u34dqw00vf9Q8Gm3DdQufaGcBHsDqbztVjTApnfMtaJoEPV63UvwAobmyc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+properties+of+metallic+iron+nanoparticles%3A+spectroscopy%2C+electrochemistry%2C+and+kinetics&rft.jtitle=Environmental+science+%26+technology&rft.au=Nurmi%2C+James+T&rft.au=Tratnyek%2C+Paul+G&rft.au=Sarathy%2C+Vaishnavi&rft.au=Baer%2C+Donald+R&rft.date=2005-03-01&rft.issn=0013-936X&rft.volume=39&rft.issue=5&rft.spage=1221&rft_id=info:doi/10.1021%2Fes049190u&rft_id=info%3Apmid%2F15787360&rft.externalDocID=15787360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |