Characteristics and environmental aspects of slag: A review

•Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included o...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 57; pp. 236 - 266
Main Authors Piatak, Nadine M., Parsons, Michael B., Seal, Robert R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included own data. Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product. The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.
AbstractList •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included own data. Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product. The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.
Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.
Author Seal, Robert R.
Parsons, Michael B.
Piatak, Nadine M.
Author_xml – sequence: 1
  givenname: Nadine M.
  surname: Piatak
  fullname: Piatak, Nadine M.
  email: npiatak@usgs.gov
  organization: U.S. Geological Survey, 954 National Center, Reston, VA 20176, United States
– sequence: 2
  givenname: Michael B.
  surname: Parsons
  fullname: Parsons, Michael B.
  organization: Geological Survey of Canada, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada
– sequence: 3
  givenname: Robert R.
  surname: Seal
  fullname: Seal, Robert R.
  organization: U.S. Geological Survey, 954 National Center, Reston, VA 20176, United States
BookMark eNqNkE1LAzEURYNUsK3-BmfpZupLZpqZKC5K8QsKbnQdMpmXNmWa1CSt-O-dUnHhRuHC29xz4Z0RGTjvkJBLChMKlF-vJ2q7RK9XuJkwoOUE-oA4IUNaVywXtCgHZAh1XeRMsOqMjGJcA8C0AjYkt_OVCkonDDYmq2OmXJuh29vg3QZdUl2m4hZ1ipk3WezU8iabZQH3Fj_OyalRXcSL7zsmbw_3r_OnfPHy-DyfLXI1hSrlWJii4RorWjaM1qiLqmq5mjYt5SU0YFrTiFIzIXhDDWjDSyGwVazmjBvFijG5Ou5ug3_fYUxyY6PGrlMO_S5K1n9DC8oL2lerY1UHH2NAI7fBblT4lBTkQZdcyx9d8qBLQh8QPXn3i9Q2qWS9S0HZ7h_87Mhjb6K3E2TUFp3G1oZen2y9_XPjC0Rfjns
CitedBy_id crossref_primary_10_1007_s42461_024_01161_5
crossref_primary_10_1016_j_cemconcomp_2017_08_017
crossref_primary_10_1016_j_apgeochem_2015_09_011
crossref_primary_10_1016_j_chemosphere_2024_143562
crossref_primary_10_1016_j_apgeochem_2015_09_019
crossref_primary_10_1007_s10751_022_01797_z
crossref_primary_10_1007_s40831_020_00281_8
crossref_primary_10_1016_j_seppur_2015_10_051
crossref_primary_10_3390_min10090728
crossref_primary_10_3390_environments11070143
crossref_primary_10_1016_j_apgeochem_2023_105649
crossref_primary_10_1016_j_fuproc_2022_107361
crossref_primary_10_1111_jace_17431
crossref_primary_10_1007_s11356_023_25241_z
crossref_primary_10_1016_j_jmst_2016_09_008
crossref_primary_10_3390_ma15165726
crossref_primary_10_1021_acs_est_9b01265
crossref_primary_10_1007_s10653_019_00378_4
crossref_primary_10_1016_j_jece_2024_112448
crossref_primary_10_1016_j_nucengdes_2025_113895
crossref_primary_10_3390_met13111862
crossref_primary_10_3390_ma16186189
crossref_primary_10_1016_j_jobe_2022_105480
crossref_primary_10_1016_j_jnoncrysol_2019_119675
crossref_primary_10_1111_jace_15354
crossref_primary_10_1016_j_envpol_2018_03_022
crossref_primary_10_1002_tqem_21885
crossref_primary_10_1007_s11104_023_06436_2
crossref_primary_10_1016_S1003_6326_19_65172_1
crossref_primary_10_3390_met9080902
crossref_primary_10_1016_j_mineng_2021_107232
crossref_primary_10_1021_acs_jpclett_4c03568
crossref_primary_10_3390_coatings12020221
crossref_primary_10_1016_j_gexplo_2025_107743
crossref_primary_10_1016_j_jclepro_2015_09_111
crossref_primary_10_3389_fmicb_2019_01320
crossref_primary_10_3390_ijerph17062069
crossref_primary_10_1007_s10853_023_08815_7
crossref_primary_10_1016_j_jas_2020_105204
crossref_primary_10_1016_j_apgeochem_2016_03_006
crossref_primary_10_1088_1755_1315_1108_1_012073
crossref_primary_10_1177_09544097251316710
crossref_primary_10_2139_ssrn_4179205
crossref_primary_10_3390_min12121520
crossref_primary_10_1144_esss2024_010
crossref_primary_10_3390_su15064834
crossref_primary_10_3390_su13168805
crossref_primary_10_1111_jace_19727
crossref_primary_10_1016_j_scitotenv_2022_157296
crossref_primary_10_3390_met14101119
crossref_primary_10_1007_s11244_019_01162_5
crossref_primary_10_1016_j_jenvman_2024_121731
crossref_primary_10_1016_j_jhazmat_2019_120798
crossref_primary_10_1134_S0020168517140175
crossref_primary_10_3390_min14010097
crossref_primary_10_1016_j_jmrt_2023_10_171
crossref_primary_10_1016_j_resenv_2020_100001
crossref_primary_10_1016_j_jhazmat_2023_130784
crossref_primary_10_1016_j_conbuildmat_2025_140575
crossref_primary_10_1080_21650373_2023_2250786
crossref_primary_10_1016_j_jclepro_2019_117736
crossref_primary_10_2355_isijinternational_ISIJINT_2018_338
crossref_primary_10_1016_j_anthro_2024_103343
crossref_primary_10_1016_j_agee_2019_106716
crossref_primary_10_2139_ssrn_3944463
crossref_primary_10_1016_j_jclepro_2024_142250
crossref_primary_10_3390_su14148783
crossref_primary_10_1016_j_agee_2016_01_042
crossref_primary_10_3390_min11010024
crossref_primary_10_1016_j_scitotenv_2022_158322
crossref_primary_10_1016_j_gexplo_2024_107599
crossref_primary_10_1021_acs_est_8b01883
crossref_primary_10_3390_met13071265
crossref_primary_10_1016_j_apgeochem_2023_105670
crossref_primary_10_1016_j_jenvman_2017_09_032
crossref_primary_10_1016_j_resconrec_2020_105366
crossref_primary_10_1007_s11356_021_16438_1
crossref_primary_10_1515_zpch_2019_0001
crossref_primary_10_1002_jrs_4815
crossref_primary_10_3390_ma14195864
crossref_primary_10_1111_jace_14224
crossref_primary_10_3989_revmetalm_083
crossref_primary_10_1016_j_hybadv_2024_100186
crossref_primary_10_1007_s41939_024_00444_0
crossref_primary_10_1051_mattech_2024026
crossref_primary_10_3390_ma14174806
crossref_primary_10_1016_j_psep_2020_03_036
crossref_primary_10_3390_met14070804
crossref_primary_10_3390_min10040313
crossref_primary_10_1016_j_conbuildmat_2020_119400
crossref_primary_10_1016_j_cattod_2019_04_033
crossref_primary_10_1007_s11356_024_33897_4
crossref_primary_10_1016_j_jcou_2024_102984
crossref_primary_10_3390_min9080468
crossref_primary_10_3390_ma15165654
crossref_primary_10_1002_ldr_4438
crossref_primary_10_1007_s11270_023_06463_w
crossref_primary_10_1515_eng_2024_0014
crossref_primary_10_1016_j_jclepro_2016_05_106
crossref_primary_10_1007_s12517_023_11721_6
crossref_primary_10_1007_s11356_015_5861_0
crossref_primary_10_3390_min12081047
crossref_primary_10_3390_min9070415
crossref_primary_10_1016_j_mineng_2021_107150
crossref_primary_10_1016_j_conbuildmat_2020_121942
crossref_primary_10_3390_pr12091998
crossref_primary_10_1520_GTJ20230297
crossref_primary_10_1016_j_jobe_2024_111361
crossref_primary_10_1016_j_apgeochem_2024_105997
crossref_primary_10_1007_s40831_024_00812_7
crossref_primary_10_1111_jace_16869
crossref_primary_10_1016_j_scitotenv_2019_03_362
crossref_primary_10_1007_s10163_020_01162_8
crossref_primary_10_1039_D0RA08449B
crossref_primary_10_31025_2611_4135_2019_13815
crossref_primary_10_1016_j_jenvman_2018_04_083
crossref_primary_10_1186_s40069_022_00541_9
crossref_primary_10_1180_mgm_2019_51
crossref_primary_10_1016_j_heliyon_2024_e32426
crossref_primary_10_3390_cryst11121504
crossref_primary_10_1016_j_jhazmat_2022_128493
crossref_primary_10_1016_j_psep_2023_12_057
crossref_primary_10_1016_j_gexplo_2022_106987
crossref_primary_10_1016_j_ceramint_2018_07_180
crossref_primary_10_1016_j_jenvman_2023_118876
crossref_primary_10_1016_j_apgeochem_2024_106061
crossref_primary_10_37208_tgn28123
crossref_primary_10_1016_j_reffit_2016_05_001
crossref_primary_10_1016_j_hydromet_2016_08_014
crossref_primary_10_1016_j_jclepro_2017_07_212
crossref_primary_10_1007_s12649_024_02686_y
crossref_primary_10_3390_min5010082
crossref_primary_10_1016_j_scitotenv_2022_157433
crossref_primary_10_1016_j_agee_2024_108924
crossref_primary_10_1016_j_apgeochem_2018_09_009
crossref_primary_10_1016_j_apgeochem_2024_106068
crossref_primary_10_5004_dwt_2020_24868
crossref_primary_10_1016_j_jcou_2023_102418
crossref_primary_10_30657_pea_2022_28_31
crossref_primary_10_3390_min10111006
crossref_primary_10_5937_podrad2037033K
crossref_primary_10_1016_j_cscee_2021_100147
crossref_primary_10_1016_j_conbuildmat_2022_128630
crossref_primary_10_1016_j_scitotenv_2017_01_053
crossref_primary_10_1002_aesr_202400338
crossref_primary_10_1016_j_cej_2024_151486
crossref_primary_10_1007_s40831_021_00445_0
crossref_primary_10_1016_j_mineng_2022_107474
crossref_primary_10_1080_10643389_2015_1046769
crossref_primary_10_1016_j_conbuildmat_2023_134480
crossref_primary_10_1002_wer_1208
crossref_primary_10_1016_j_jclepro_2024_142678
crossref_primary_10_1016_j_jobe_2024_110862
crossref_primary_10_1016_j_conbuildmat_2016_11_074
crossref_primary_10_15407_ufm_23_01_108
crossref_primary_10_7717_peerj_10825
crossref_primary_10_1364_AO_56_007789
crossref_primary_10_1016_j_resconrec_2021_106098
crossref_primary_10_1109_ACCESS_2025_3529280
crossref_primary_10_1016_j_jobe_2024_109349
crossref_primary_10_1515_georec_2017_0003
crossref_primary_10_1016_j_resconrec_2018_04_023
crossref_primary_10_1007_s41062_024_01736_7
crossref_primary_10_1134_S1062739120016564
crossref_primary_10_1016_j_jenvman_2018_10_028
crossref_primary_10_3390_min11030262
crossref_primary_10_1080_14680629_2023_2268723
crossref_primary_10_1016_j_chemosphere_2022_136319
crossref_primary_10_3390_su12052118
crossref_primary_10_1016_j_scitotenv_2020_138300
crossref_primary_10_1007_s10661_023_11561_7
crossref_primary_10_1007_s11356_018_2486_0
crossref_primary_10_1007_s12520_022_01704_1
crossref_primary_10_1016_j_conbuildmat_2022_127357
crossref_primary_10_1016_S1003_6326_24_66635_5
crossref_primary_10_1007_s11356_022_23569_6
crossref_primary_10_1016_j_geoforum_2017_03_021
crossref_primary_10_1016_j_jes_2024_09_030
crossref_primary_10_3390_met13081467
crossref_primary_10_3390_app11094028
crossref_primary_10_1007_s10973_018_7439_9
crossref_primary_10_1002_apj_2150
crossref_primary_10_3389_fenrg_2021_771603
crossref_primary_10_1016_j_eti_2021_101467
crossref_primary_10_1016_j_energy_2022_123962
crossref_primary_10_1016_j_jwpe_2020_101369
crossref_primary_10_1002_gea_21726
crossref_primary_10_3989_mc_2019_06018
crossref_primary_10_1016_j_jenvman_2018_05_071
crossref_primary_10_1016_j_jece_2022_107338
crossref_primary_10_1016_j_ancene_2019_100229
crossref_primary_10_1016_j_apt_2020_07_010
crossref_primary_10_1016_j_chemosphere_2024_143662
crossref_primary_10_1016_j_cscm_2025_e04336
crossref_primary_10_1016_j_scitotenv_2021_150961
crossref_primary_10_1016_j_jclepro_2020_125584
crossref_primary_10_3390_min10121097
crossref_primary_10_1016_j_jhazmat_2018_08_046
crossref_primary_10_1007_s42947_024_00494_0
crossref_primary_10_3390_buildings14041091
crossref_primary_10_1016_j_wasman_2018_06_012
crossref_primary_10_1016_j_apgeochem_2018_08_027
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000612
crossref_primary_10_1002_adsu_202300559
crossref_primary_10_1007_s11663_022_02609_z
crossref_primary_10_1016_j_ufug_2017_01_015
crossref_primary_10_1016_j_jenvman_2018_05_056
crossref_primary_10_3390_min10080705
crossref_primary_10_1061__ASCE_GT_1943_5606_0001980
crossref_primary_10_1007_s10653_014_9672_x
crossref_primary_10_1021_acs_est_7b00874
crossref_primary_10_3390_geosciences11040167
crossref_primary_10_1016_j_gexplo_2017_12_001
crossref_primary_10_1016_j_jenvman_2020_110191
crossref_primary_10_1007_s40831_015_0028_2
crossref_primary_10_1002_srin_202300854
crossref_primary_10_1038_s41598_020_63783_1
crossref_primary_10_3390_molecules29071502
crossref_primary_10_1016_j_jece_2022_107671
crossref_primary_10_1016_j_jece_2022_107792
crossref_primary_10_1134_S0003683819010058
crossref_primary_10_1016_j_trgeo_2020_100485
crossref_primary_10_1016_j_jclepro_2022_134421
crossref_primary_10_1016_j_jece_2020_103833
crossref_primary_10_1016_j_mtla_2024_102159
crossref_primary_10_1080_09593330_2024_2381645
crossref_primary_10_1016_j_mineng_2020_106407
crossref_primary_10_1021_acs_est_7b02844
crossref_primary_10_1080_19392699_2024_2400574
crossref_primary_10_1016_j_jclepro_2021_129804
crossref_primary_10_2166_wst_2017_294
crossref_primary_10_3389_fmats_2021_803106
crossref_primary_10_1007_s11104_023_06398_5
crossref_primary_10_1016_j_ijggc_2019_05_021
crossref_primary_10_1002_ep_12591
crossref_primary_10_1016_j_cej_2023_144171
crossref_primary_10_1007_s12665_021_09594_7
crossref_primary_10_1016_j_cemconres_2024_107756
crossref_primary_10_1080_10584587_2017_1352401
crossref_primary_10_1016_j_conbuildmat_2023_130606
crossref_primary_10_3390_min9090542
crossref_primary_10_1088_1755_1315_1130_1_012002
crossref_primary_10_1007_s11368_017_1892_0
crossref_primary_10_3390_buildings14051323
crossref_primary_10_1016_j_mineng_2019_106068
crossref_primary_10_3390_app13095716
crossref_primary_10_1016_j_heliyon_2024_e26004
crossref_primary_10_1007_s11771_024_5604_9
crossref_primary_10_32434_0321_4095_2021_135_2_95_103
crossref_primary_10_1007_s12598_024_02853_z
crossref_primary_10_1088_1748_9326_abc217
crossref_primary_10_1016_j_apgeochem_2014_12_014
crossref_primary_10_1007_s11663_016_0693_y
crossref_primary_10_1016_j_jhazmat_2019_120936
crossref_primary_10_1021_acs_energyfuels_3c05108
crossref_primary_10_1016_j_ijhydene_2022_04_209
crossref_primary_10_1016_j_conbuildmat_2022_128473
crossref_primary_10_1080_00084433_2021_2016345
crossref_primary_10_1080_00084433_2021_2016346
crossref_primary_10_1016_j_envpol_2019_01_060
crossref_primary_10_3390_min10020149
crossref_primary_10_1016_j_proche_2016_03_111
crossref_primary_10_3390_su16125244
crossref_primary_10_3389_fenvs_2024_1290969
crossref_primary_10_1002_srin_201600322
crossref_primary_10_2174_1877946810666200128152729
crossref_primary_10_1016_j_jenvman_2016_05_052
crossref_primary_10_1007_s10967_023_08909_1
crossref_primary_10_1007_s10230_016_0388_2
crossref_primary_10_1016_j_conbuildmat_2021_123432
crossref_primary_10_1016_j_jenvman_2018_08_045
crossref_primary_10_3390_min14090852
crossref_primary_10_1007_s11595_021_2396_8
crossref_primary_10_1021_acsestengg_1c00343
crossref_primary_10_2355_isijinternational_ISIJINT_2022_247
crossref_primary_10_1016_j_psep_2023_05_036
crossref_primary_10_22201_fa_2007252Xp_2023_27_85764
crossref_primary_10_1016_j_jas_2022_105639
crossref_primary_10_1080_03067319_2022_2079082
crossref_primary_10_1016_j_gexplo_2016_03_015
crossref_primary_10_2139_ssrn_3963864
crossref_primary_10_1016_j_mineng_2016_08_029
crossref_primary_10_1007_s11356_018_1260_7
crossref_primary_10_1016_j_jobe_2023_108375
crossref_primary_10_3390_ma12040621
crossref_primary_10_1016_j_cemconres_2023_107155
crossref_primary_10_1016_j_chemosphere_2019_124824
crossref_primary_10_1016_j_jece_2022_109242
crossref_primary_10_1007_s11837_022_05597_2
crossref_primary_10_1016_j_jclepro_2019_118144
crossref_primary_10_3390_min12111442
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000472
crossref_primary_10_1080_08827508_2023_2282702
crossref_primary_10_1017_S0885715617000999
crossref_primary_10_1016_j_jnoncrysol_2023_122397
crossref_primary_10_1016_j_cogsc_2020_100377
crossref_primary_10_1016_j_jmrt_2021_03_090
crossref_primary_10_1016_j_cemconcomp_2020_103875
crossref_primary_10_1016_j_apgeochem_2018_11_017
crossref_primary_10_2208_jscejge_72_179
crossref_primary_10_3390_min14121204
crossref_primary_10_1007_s42247_024_00847_2
crossref_primary_10_1016_j_jclepro_2017_10_130
crossref_primary_10_1016_j_scp_2024_101898
crossref_primary_10_3390_min10010033
crossref_primary_10_1016_j_conbuildmat_2020_120275
crossref_primary_10_1016_j_jclepro_2016_02_013
crossref_primary_10_1002_cben_202300024
crossref_primary_10_1021_acsami_2c08778
crossref_primary_10_3390_ma16237295
crossref_primary_10_1007_s11356_023_27898_y
crossref_primary_10_1016_j_resconrec_2019_104627
crossref_primary_10_1088_2058_6272_ad0c25
crossref_primary_10_1016_j_gexplo_2022_107109
crossref_primary_10_1016_j_ultsonch_2021_105503
crossref_primary_10_1007_s11356_022_24230_y
crossref_primary_10_3389_fenrg_2021_760312
crossref_primary_10_3390_min10080654
crossref_primary_10_1016_j_resconrec_2019_03_036
crossref_primary_10_1007_s13762_017_1514_9
crossref_primary_10_1080_10643389_2020_1853458
crossref_primary_10_1016_j_jhazmat_2020_124201
crossref_primary_10_1016_S1003_6326_20_65352_3
crossref_primary_10_1017_S0885715623000179
crossref_primary_10_3390_buildings13051193
crossref_primary_10_1088_1757_899X_969_1_012042
crossref_primary_10_1007_s10653_019_00419_y
crossref_primary_10_1021_acsomega_2c04302
crossref_primary_10_1016_j_scitotenv_2016_12_132
crossref_primary_10_1016_j_wasman_2019_06_018
crossref_primary_10_1080_02670836_2022_2062812
crossref_primary_10_1002_jrs_6453
crossref_primary_10_1155_2016_9535940
crossref_primary_10_1007_s40831_023_00683_4
crossref_primary_10_1016_j_apradiso_2021_109851
crossref_primary_10_1016_j_scitotenv_2015_01_072
crossref_primary_10_1016_j_gexplo_2019_106364
crossref_primary_10_1016_j_matpr_2021_03_617
crossref_primary_10_1016_j_gexplo_2020_106631
crossref_primary_10_3390_min12091153
crossref_primary_10_1016_j_conbuildmat_2015_12_043
crossref_primary_10_1016_j_conbuildmat_2021_125663
crossref_primary_10_1016_j_gexplo_2020_106630
crossref_primary_10_1016_j_mineng_2015_01_012
crossref_primary_10_1016_j_gexplo_2022_107044
crossref_primary_10_1016_S1002_0160_20_60058_3
crossref_primary_10_1016_j_conbuildmat_2024_139435
crossref_primary_10_1021_acs_est_1c02505
crossref_primary_10_1016_j_jas_2020_105142
crossref_primary_10_1016_j_jenvman_2016_11_037
crossref_primary_10_1016_j_cemconcomp_2021_104087
crossref_primary_10_1016_j_envpol_2015_11_030
crossref_primary_10_1016_j_matpr_2023_04_042
crossref_primary_10_1016_j_conbuildmat_2019_117630
crossref_primary_10_1021_acsestengg_2c00035
crossref_primary_10_1007_s13762_018_1952_z
crossref_primary_10_1016_j_conbuildmat_2015_12_153
crossref_primary_10_1016_j_jhazmat_2020_124225
crossref_primary_10_1016_j_gexplo_2021_106808
crossref_primary_10_1016_j_gexplo_2020_106629
crossref_primary_10_3389_feart_2017_00086
crossref_primary_10_1007_s11356_023_31527_z
crossref_primary_10_1016_j_wasman_2019_11_040
crossref_primary_10_1016_j_jwpe_2023_103723
crossref_primary_10_1016_j_cemconres_2021_106655
crossref_primary_10_1016_j_ceramint_2023_11_059
crossref_primary_10_1002_cben_202000021
crossref_primary_10_1016_j_envpol_2019_04_077
crossref_primary_10_1016_j_cemconres_2022_106834
crossref_primary_10_1016_j_scitotenv_2017_06_237
crossref_primary_10_1021_acssuschemeng_0c06355
crossref_primary_10_1016_j_chemosphere_2017_03_015
crossref_primary_10_1016_j_jclepro_2022_133095
crossref_primary_10_1016_j_cemconres_2020_106287
crossref_primary_10_1016_j_coesh_2021_100253
crossref_primary_10_1016_j_mineng_2024_109066
crossref_primary_10_1016_j_chemosphere_2019_124885
crossref_primary_10_1016_j_jhazmat_2018_04_023
crossref_primary_10_1007_s11663_015_0394_y
crossref_primary_10_1016_j_jece_2020_104450
crossref_primary_10_3390_polym16101306
crossref_primary_10_3390_app15010010
crossref_primary_10_1007_s42243_021_00713_z
crossref_primary_10_1016_j_mineng_2020_106238
crossref_primary_10_3389_fenrg_2017_00029
crossref_primary_10_1016_j_chemosphere_2021_130337
crossref_primary_10_3390_min12020184
crossref_primary_10_1016_j_mineng_2020_106234
crossref_primary_10_1134_S1087659618030070
crossref_primary_10_3390_min8110513
crossref_primary_10_1016_j_conbuildmat_2019_116694
crossref_primary_10_1016_j_jclepro_2020_121203
crossref_primary_10_1016_j_hydromet_2015_10_032
crossref_primary_10_1016_j_jece_2023_111320
crossref_primary_10_1016_j_jclepro_2016_05_073
crossref_primary_10_1016_j_jnoncrysol_2019_119771
crossref_primary_10_1016_j_conbuildmat_2018_05_056
crossref_primary_10_1016_j_hydromet_2022_105899
crossref_primary_10_1016_j_jenvman_2019_02_032
crossref_primary_10_1080_10584587_2016_1171178
crossref_primary_10_1016_j_scitotenv_2022_159121
crossref_primary_10_1016_j_csite_2021_101003
crossref_primary_10_1016_j_wasman_2017_09_037
crossref_primary_10_1016_j_wasman_2019_05_031
crossref_primary_10_1016_j_cemconres_2021_106466
crossref_primary_10_1016_j_cemconres_2022_106984
crossref_primary_10_1016_j_envint_2023_108067
crossref_primary_10_3390_met10101347
crossref_primary_10_3390_su151310496
crossref_primary_10_1016_j_asej_2024_102790
crossref_primary_10_1016_j_jenvman_2022_116676
crossref_primary_10_1016_j_chemosphere_2022_135902
crossref_primary_10_1051_metal_2021020
crossref_primary_10_1080_14680629_2016_1197143
crossref_primary_10_2355_isijinternational_ISIJINT_2017_478
crossref_primary_10_3390_cryst11040348
crossref_primary_10_1016_j_gexplo_2019_04_009
crossref_primary_10_1111_ijac_14993
crossref_primary_10_1002_cjce_25046
crossref_primary_10_1016_j_scitotenv_2017_11_026
crossref_primary_10_1080_10643389_2015_1131560
crossref_primary_10_1016_j_jhazmat_2017_01_050
crossref_primary_10_1016_j_matpr_2020_11_648
crossref_primary_10_36790_epistemus_v16i32_190
crossref_primary_10_1016_j_envpol_2020_115118
crossref_primary_10_1016_j_apgeochem_2019_104473
crossref_primary_10_1016_j_conbuildmat_2019_116799
crossref_primary_10_21809_rilemtechlett_2022_157
crossref_primary_10_1016_j_cemconcomp_2023_105427
crossref_primary_10_1016_j_rineng_2023_100987
crossref_primary_10_1016_j_chemosphere_2025_144155
crossref_primary_10_1016_j_apenergy_2019_05_064
crossref_primary_10_1016_j_jenvrad_2017_03_004
crossref_primary_10_1080_01490400_2019_1627963
crossref_primary_10_1016_j_conbuildmat_2023_131572
crossref_primary_10_1016_j_scitotenv_2021_145929
crossref_primary_10_3390_app10010035
crossref_primary_10_3390_app142411734
crossref_primary_10_1016_j_jenvman_2024_123782
crossref_primary_10_1007_s41024_023_00264_8
crossref_primary_10_1016_j_jobe_2021_103813
crossref_primary_10_1080_00084433_2024_2399462
crossref_primary_10_1016_j_mineng_2024_109154
crossref_primary_10_1016_j_matpr_2020_05_422
crossref_primary_10_1016_j_gerr_2023_100012
crossref_primary_10_1016_j_scitotenv_2023_161405
crossref_primary_10_1016_j_conbuildmat_2018_02_102
crossref_primary_10_1016_j_scitotenv_2022_161351
crossref_primary_10_1016_j_jnoncrysol_2024_122843
crossref_primary_10_3390_min12060767
crossref_primary_10_1021_acs_energyfuels_9b03274
crossref_primary_10_1016_j_jclepro_2023_138649
crossref_primary_10_1016_j_chemosphere_2018_06_038
crossref_primary_10_1007_s11837_022_05614_4
crossref_primary_10_1016_j_jenvman_2020_110506
crossref_primary_10_1016_j_jnoncrysol_2023_122541
Cites_doi 10.1180/minmag.2008.072.1.489
10.1111/j.1745-6584.2005.00060.x
10.1180/0026461056950284
10.5402/2012/231458
10.5276/JSWTM.2012.17
10.1016/j.apgeochem.2008.10.003
10.1007/s00254-003-0875-1
10.1016/j.jhazmat.2006.02.060
10.1016/0016-7037(68)90100-2
10.1016/S0950-0618(02)00046-6
10.1007/s10653-007-9110-4
10.1002/ep.10063
10.1002/ep.670050108
10.1016/j.scitotenv.2007.03.034
10.1021/es970934w
10.3133/pp1270
10.3133/ofr20051283
10.1016/j.wasman.2006.08.002
10.1180/minmag.1986.050.355.19
10.1021/es049670l
10.1007/BF00770598
10.1016/j.wasman.2004.07.014
10.1180/minmag.1977.041.320.11
10.1016/0304-3894(83)80039-9
10.1016/j.mineng.2012.04.013
10.1016/S0921-3449(02)00171-4
10.3133/sir20115014
10.1016/j.agee.2008.04.014
10.1080/15320380903548508
10.1016/j.apgeochem.2004.01.005
10.1016/S0375-6742(96)00062-3
10.1016/j.cemconres.2009.05.007
10.1016/S0304-386X(00)00090-6
10.1177/0734242X9701500105
10.1127/0935-1221/2001/0013/0949
10.1016/j.watres.2006.02.001
10.1021/es0347843
10.1016/S0166-1116(08)70288-7
10.1007/s00254-007-1131-x
10.2138/am.2009.3171
10.1016/j.cemconres.2007.03.008
10.3749/canmin.47.3.557
10.1016/j.envpol.2005.08.034
10.1016/0883-2927(94)90020-5
10.1016/0008-8846(86)90039-6
10.1016/S0883-2927(01)00032-4
10.3133/sir20105084
10.5382/Rev.06.13
10.1180/0026461036760164
10.1016/0304-386X(80)90025-0
10.1016/j.jhazmat.2007.07.093
10.1007/s102300200024
10.2113/gscanmin.45.5.1189
10.1016/j.apgeochem.2008.01.005
10.1016/j.wasman.2007.09.017
10.2172/138820
10.1016/j.scitotenv.2005.03.022
10.1016/S0950-0618(02)00095-8
10.1016/j.chemgeo.2010.05.018
10.1016/S1002-0160(12)60039-3
10.1016/j.jhazmat.2012.01.074
10.1180/0026461026640043
10.1515/9781501509797-012
10.1016/j.hydromet.2009.03.007
10.1021/es801626d
10.2134/jeq2010.0516
10.1016/S0375-6742(01)00178-9
10.1016/j.gexplo.2012.09.008
10.1016/j.jhazmat.2008.07.125
10.1002/etc.2342
10.1016/j.chemosphere.2004.07.022
10.1155/2011/463638
10.1111/j.1475-4754.2008.00455.x
10.1016/j.jhazmat.2012.04.015
10.1016/j.jhazmat.2011.02.091
10.21000/JASMR99010651
10.1016/j.apgeochem.2009.12.001
10.1180/minmag.2010.074.4.581
10.1016/j.jhazmat.2010.05.116
10.1016/j.scitotenv.2009.05.039
10.1127/0935-1221/2011/0023-2167
10.1179/cmq.1993.32.1.1
10.2113/gscanmin.41.3.627
10.1016/0191-815X(85)90005-1
10.1016/j.apgeochem.2007.07.012
10.1016/S0043-1354(02)00120-3
10.2113/173.2.161
10.1021/ba-1967-0067.ch010
10.1016/0024-4937(77)90037-8
10.1016/j.apgeochem.2011.12.011
10.1016/j.cemconres.2008.11.002
10.1016/S0166-1116(97)80245-2
10.3749/canmin.46.5.1235
10.3749/canmin.49.5.1281
10.1016/j.jhazmat.2011.09.102
10.1016/j.hydromet.2005.10.007
10.1007/s00410-007-0277-6
10.1016/j.jhazmat.2007.04.007
10.2113/gscanmin.39.2.331
10.1016/j.jas.2010.01.026
10.5382/Rev.06.06
10.1016/j.apgeochem.2008.09.009
10.2298/JMMB120814011S
10.1127/0935-1221/2010/0022-2055
10.1021/es9906002
10.1016/j.watres.2012.02.012
10.1016/j.wasman.2010.05.018
10.1016/j.apgeochem.2008.08.005
10.1016/j.mineng.2012.07.010
10.1016/j.cemconcomp.2012.02.011
10.1016/j.hydromet.2010.02.009
10.2172/138643
10.1080/10934529.2013.815571
10.1016/j.gexplo.2005.08.006
10.1021/es011502v
10.1127/0077-7757/2005/0016
10.1016/j.chemer.2008.03.001
10.2166/wst.2007.513
10.2113/gscanmin.39.3.873
10.1016/S0166-1116(08)71446-8
10.1680/adcr.12.00004
10.1016/j.hydromet.2008.05.042
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2014.04.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
EndPage 266
ExternalDocumentID 10_1016_j_apgeochem_2014_04_009
S0883292714000821
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a507t-e3f3b6ce714b218ec377d6a5bd1640b0fdfb94c2996b1f0cf6499eda28626fa23
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Thu Aug 07 14:39:03 EDT 2025
Tue Jul 01 01:59:31 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Fri Feb 23 02:30:13 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-e3f3b6ce714b218ec377d6a5bd1640b0fdfb94c2996b1f0cf6499eda28626fa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000131631
PQPubID 24069
PageCount 31
ParticipantIDs proquest_miscellaneous_2000131631
crossref_primary_10_1016_j_apgeochem_2014_04_009
crossref_citationtrail_10_1016_j_apgeochem_2014_04_009
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2014_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied geochemistry
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dimitrova (b0190) 2002; 36
De Windt, Chaurand, Rose (b0185) 2011; 31
Ivanov, I.T., 2000. Phase composition of metallurgical slags in Bulgaria. In: Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R.B., Pentinghaus, H. (Eds.), Proceedings of the Sixth International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, July 17–19, 2000.
Johnson, E.A., Oden, L.L., Sanker, P.E., 1982. Results of E.P.A. Extraction Procedure Toxicity Test Applied to Copper Reverberatory Slags: U.S. Bureau of Mines Report of Investigation 8648, 16p.
Suer, Lindqvist, Arm, Frogner-Kockum (b0780) 2009; 407
Ettler, Johan, Vítkova, Skála, Kotrlý, Habler, Klementová (b0260) 2012; 221–222
Vdović, Billon, Gabelle, Potdevin (b0850) 2006; 141
Bril, Zainoun, Puziewicz, Courtin-Nomade, Vanaecker, Bollinger (b0105) 2008; 46
Matthes, S.A., 1980. Rapid Low-cost Analysis of a Copper Slag for 13 Elements by Flame Atomic Absorption Spectroscopy: U.S. Bureau of Mines Report of Investigations 8484, 8p.
Milačič, Zuliani, Oblak, Mladenovič, Ščančar (b0485) 2011; 40
U.S. Environmental Protection Agency (USEPA), 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846 third ed.
Ettler, Komárková, Jehlička, Coufal, Hradil, Machovič, Delorme (b0240) 2004; 57
Álvarez-Valero, Pérez-López, Matos, Capitán, Nieto, Sáez, Delgado, Caraballo (b0025) 2008; 55
Lopez, Lopez-Delgado, Belcazar (b0430) 1997
Roadcap, Kelly (b0650) 1994
Gee, Ramsey, Maskall, Thornton (b0315) 1997; 58
De Andrade Lima, Bernardez (b0175) 2011; 189
Chang, His, Hseu, Jheng (b0130) 2013; 48
Shen, Zhou, Ma, Hu, Cai (b0735) 2009; 164
CDM Fed Programs Corporation, 1993. Draft Work Plan for Waste Compatibility Evaluation Study – Sharon Steel Tailings Site/Midvale Slag Site. USEPA, Midvale, Utah. Contract No. 68-W9-0021.
Alpers, Nordstrom (b0015) 1999; vol. 6A
Chaudhuri, Newesely (b0135) 1993; 32
Leonard, R.P., Ziegler, R.C., Brown, W.R., Yang, J.Y., Reif, H.C., 1977. Assessment of Industrial Hazardous Waste Practices in the Metal Smelting and Refining Industry, vol. IV, Appendices: U.S. Environmental Protection Agency, EPA/530/SW-145c.4, pp. 31–39.
Partymiller, K., 1992. Horsehead Resource Development Company, Inc. Flame Reactor Technology: Applications Analysis Report. Environmental Protection Agency, EPA/540/A5-91/005.
Barna, Moszkowicz, Gervais (b0055) 2004; 24
Kourounis, Tsivilis, Tsakiridis, Papadimitriou, Tsibouki (b0390) 2007; 37
Simmons, Ziemkiewicz, Black (b0750) 2002; 21
Drizo, Forget, Chapuis, Comeau (b0210) 2006; 40
Piatak, N.M., Seal II, R.R., 2012b. Leaching tests to characterize ferrous and nonferrous slag drainage chemistry. In: Price, W.A., Hogan, C., Tremblay, G. (Eds.), Proceedings from the Ninth International Conference on Acid Rock Drainage, Ottawa, Canada, 12p.
Scott, Critchley, Wilkinson (b0700) 1986; 50
Tshiongo, Mbaya, Maweja, Tshabalala (b0820) 2010; 70
Yang, Rui-lin, Wang-dong, Hui (b0920) 2010; 103
Maslehuddin, Sharif, Shameem, Ibrahim, Barry (b0470) 2003; 17
Barca, Gérente, Meyer, Chazarenc, Andrès (b0050) 2012; 46
Carroll, Rutherford (b0115) 1988; 73
Muhmood, Vitta, Venkateswaran (b0500) 2009; 39
Canadian Council of Ministers of the Environment (CCME), 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
Wilson, L.J., 1994. Literature Review on Slag Leaching: Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories Division Report 94-3 (CR), Ottawa.
Weston Solutions, Inc., 2007. Final Remedial Investigation Report Hegeler Zinc Site, Danville, Vermilion County, Illinois. Document Control No. RFW250-2A-AWOO. Prepared for USEPA.
Helgeson (b0350) 1968; 32
Shibayama, Takasaki, William, Yamatodani, Higuchi, Sunagawa, Ono (b0740) 2010; 181
Anderson (b0040) 1991; 30
Levin, Robbins, McMurdie (b0415) 1964
Rosenqvist (b0670) 2004
Seal II, R.R., Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., Ingersoll, C.G., 2010. Aquatic Assessment of the Ely Copper Mine Superfund Site, Vershire, Vermont: U.S. Geological Survey Scientific Investigation, Report 2010-5084, 150p.
Ettler, Jehlička, Mašek, Hruška (b0245) 2005; 69
Brandt, Warner (b0100) 2009
Paris, Giuli, Carroll, Davoli (b0550) 2001; 39
Oh, Rhee, Oh, Park (b0545) 2012; 213–214
Blowes, D.W., Bain, J.G., Smyth, D., McGregor, R., Ludwig, P., Wilkens, J.A., Ptacek, C.J., Spink, L., 2005, Treatment of Arsenic Using Permeable Reactive Barriers: Geological Society of America Annual Meeting Program with Abstracts, vol. 37, no. 7, p. 102.
Gorai, Jana, Premchand (b0325) 2003; 39
Seignez, Gauthier, Bulteel, Damidot, Potdevin (b0715) 2008; 23
Srivastava, Neuffer, Grano, Khan, Staudt, Jozewicz (b0770) 2005; 24
U.S. Environmental Protection Agency (USEPA), 2010. Regional Screening Levels (Formerly PRGs).
Parsons, M.B., 2001. Geochemical and Mineralogical Controls on Trace Element Release from Base-metal Smelter Slags. Unpublished Ph.D. Thesis, Stanford University, Stanford, California, 307p.
Tatarinov (b0800) 2002; 40
Twidwell (b0825) 1983; 8
Twidwell, Mehta (b0830) 1985; 5
Vítková, Ettler, Johan, Kříbek, Šebek, Mihaljevič (b0855) 2010; 74
Anand, Rao, Jena (b0035) 1980; 5
Mandin, D., van der Sloot, H.A., Gervais, C., Barna, R., Mehu, J., 1997. Valorization of lead–zinc primary smelters slags. In: Goumans, J.J.J., Senden, G.J., van der Sloot, H.A. (Eds.), Waste Materials in Construction: Putting Theory into Practice. Studies in Environmental Science, vol. 71, pp. 617–630.
Pérez-López, Álvarez-Valero, Nieto, Sáez, Matos (b0580) 2008; 23
Negim, Eloifi, Mench, Bes, Gaste, Montelica-Heino, Le Coustumer (b0520) 2010; 19
Chirikure, Heimann, Killick (b0150) 2010; 37
Crock, J.G., Arbogast, B.F., Lamothe, P.J., 1999. Laboratory methods for the analysis of environmental samples. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology, vol. 6A, pp. 265–287 (Chapter 13).
(accessed 09.09.13).
Costagliola, Benvenuti, Chiarantini, Bianchi, Di Benedetto, Paolieri, Rossato (b0155) 2008; 23
Proctor, Fehling, Shay, Wittenborn, Green, Avent, Bigham, Connolly, Lee, Shepker, Zak (b0615) 2000; 34
Bowden, Jarvis, Younger, Johnson (b0095) 2009; 43
Lottermoser (b0440) 2002; 66
Puziewicz, Zainoun, Bril (b0620) 2007; 45
Sáez, Nocete, Nieto, Capitán, Rovira (b0680) 2003; 41
Wendling, Douglas, Coleman (b0880) 2012; 39
Douglas, Zerbino (b0195) 1986; 16
Rizza, I.L., Farthing, D.J., 2007. Catch the Rainbow: Geochemical Analysis of Colored Slag from Ironville, Adirondack State Park, New York: Geological Society of America, Abstracts with Programs, vol. 39, no. 6, p. 320.
Shacklette, H.T., Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270, 104p.
(assessed September 2013).
Roadcap, Kelly, Bethke (b0655) 2005; 43
Glynn, P., Brown, J., 1996. Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Reactive Transport in Porous Media: Mineralogical Society of America, Reviews in Mineralogy, vol. 34, pp. 377–438 (Chapter 9).
Morrison, Gulson (b0490) 2007; 382
Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, vol. 6A. Society of Economic Geologists, Littleton, CO, pp. 133–160 (Chapter 6).
Kierczak, Potysz, Pietranik, Tyszka, Modelska, Néel, Ettler, Mihaljevič (b0385) 2013; 124
Robbins, Bundy, Stanga (b0660) 1983; vol. 2
Seignez, Gauthier, Bulteel, Buatier, Recourt, Damidot, Potdevin (b0710) 2007; 149
Van Oss, H.G., 2013. Slag, Iron and Steel: U.S. Geological Survey, 2011 Minerals Yearbook, vol. 1, pp. 69.1–69.9.
Woodley, Walters (b0915) 1986; 5
Tetra Tech Inc., 1985. Granulated Slag Pile: Draft Stage 1 Remedial Investigation Report. Anaconda Minerals Company.
European Committee for Standardization, 2002. Final Draft prEN 12457–2. Characterization of Waste Leaching-compliance Test of Leaching of Granular Waste Material and Sludges – Part 2: One-stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials With Particle Size Below 4 mm (With or Without Particle Reduction), Czech Standard Institute, Prague.
Ali, Agarwal, Pahuja (b0010) 2013; 25
Bethke (b0080) 2008
Navarro, Cardellach, Mendoza, Corbella, Domènech (b0510) 2008; 23
Gbor, Ahmed, Jia (b0305) 2000; 57
National Slag Association (NSA), 2009. Slag’s Ain’t Slag’s.
Ochola, Moo-Young (b0540) 2004; 38
Federal Highway Administration (FHWA), U.S. Department of Transportation, 1997.User Guidelines for Waste and Byproduct Materials in Pavement Construction: FHWA-RD-97-148, McLean, VA, USA.
Bayless, Bullen, Fitzpatrick (b0075) 2004; 38
Ettler, Mihaljevič, Touray, Piantone (b0230) 2002; 173
Ettler, Johan, Kříbek, Šebek, Mihaljevič (b0255) 2009; 24
Gbor, Hoque, Jia (b0310) 2006; 81
Baker, Blowes, Ptacek (b0045) 1998; 32
Navarro, Díaz, Villa-García (b0515) 2010; 44
Vivenzio, Farthing (b0865) 2005; 37
Lottermoser (b0445) 2005; 181
Tack, Masscheleyn, Verloo (b0795) 1993; 55
Ali, Oh, Kim (b0005) 2008; 128
Chaurand, Rose, Briois, Olivi, Hazemann, Proux, Domas, Bottero (b0145) 2007; B139
Sato (b0690) 1977; 10
Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory, Livermore, California.
Cottrell (b0160) 1995
Garrels, R.M., Mackenzie, F.T., 1967, Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, Advances in Chemistry Series 67: American Chemical Society, Washington, DC, pp. 2
10.1016/j.apgeochem.2014.04.009_b0905
Tshiongo (10.1016/j.apgeochem.2014.04.009_b0820) 2010; 70
Brandt (10.1016/j.apgeochem.2014.04.009_b0100) 2009
10.1016/j.apgeochem.2014.04.009_b0505
Rao (10.1016/j.apgeochem.2014.04.009_b0635) 1992; 40
Ettler (10.1016/j.apgeochem.2014.04.009_b0245) 2005; 69
Piatak (10.1016/j.apgeochem.2014.04.009_b0610) 2004; 19
10.1016/j.apgeochem.2014.04.009_b0900
Gbor (10.1016/j.apgeochem.2014.04.009_b0305) 2000; 57
Chaurand (10.1016/j.apgeochem.2014.04.009_b0140) 2006; 88
Ishimaru (10.1016/j.apgeochem.2014.04.009_b0355) 2008; 156
Drizo (10.1016/j.apgeochem.2014.04.009_b0205) 2002; 36
Navarro (10.1016/j.apgeochem.2014.04.009_b0515) 2010; 44
Vítková (10.1016/j.apgeochem.2014.04.009_b0855) 2010; 74
10.1016/j.apgeochem.2014.04.009_b0070
Álvarez-Valero (10.1016/j.apgeochem.2014.04.009_b0025) 2008; 55
Ettler (10.1016/j.apgeochem.2014.04.009_b0255) 2009; 24
De Angelis (10.1016/j.apgeochem.2014.04.009_b0180) 2012; 38
Heimann (10.1016/j.apgeochem.2014.04.009_b0345) 2010; 22
Rosenqvist (10.1016/j.apgeochem.2014.04.009_b0670) 2004
Piatak (10.1016/j.apgeochem.2014.04.009_b0595) 2012; 27
Paris (10.1016/j.apgeochem.2014.04.009_b0550) 2001; 39
Ettler (10.1016/j.apgeochem.2014.04.009_b0240) 2004; 57
Wendling (10.1016/j.apgeochem.2014.04.009_b0880) 2012; 39
Roy (10.1016/j.apgeochem.2014.04.009_b0675) 2009; 39
Hanski (10.1016/j.apgeochem.2014.04.009_b0340) 2007; 71
Chaudhuri (10.1016/j.apgeochem.2014.04.009_b0135) 1993; 32
Morrison (10.1016/j.apgeochem.2014.04.009_b0490) 2007; 382
Altepeter (10.1016/j.apgeochem.2014.04.009_b0020) 1992
10.1016/j.apgeochem.2014.04.009_b0575
Suer (10.1016/j.apgeochem.2014.04.009_b0780) 2009; 407
10.1016/j.apgeochem.2014.04.009_b0460
Tossavainen (10.1016/j.apgeochem.2014.04.009_b0810) 2007; 27
Álvarez-Valero (10.1016/j.apgeochem.2014.04.009_b0030) 2009; 94
Chirikure (10.1016/j.apgeochem.2014.04.009_b0150) 2010; 37
Pérez-López (10.1016/j.apgeochem.2014.04.009_b0585) 2010; 276
Manasse (10.1016/j.apgeochem.2014.04.009_b0455) 2001; 13
Scott (10.1016/j.apgeochem.2014.04.009_b0700) 1986; 50
Lopez (10.1016/j.apgeochem.2014.04.009_b0430) 1997
Oh (10.1016/j.apgeochem.2014.04.009_b0545) 2012; 213–214
10.1016/j.apgeochem.2014.04.009_b0725
10.1016/j.apgeochem.2014.04.009_b0605
Sun (10.1016/j.apgeochem.2014.04.009_b0785) 2009; 30
10.1016/j.apgeochem.2014.04.009_b0845
Dimitrova (10.1016/j.apgeochem.2014.04.009_b0190) 2002; 36
10.1016/j.apgeochem.2014.04.009_b0600
Park (10.1016/j.apgeochem.2014.04.009_b0555) 1994; 32
10.1016/j.apgeochem.2014.04.009_b0565
10.1016/j.apgeochem.2014.04.009_b0840
Kucha (10.1016/j.apgeochem.2014.04.009_b0395) 1996; 27
10.1016/j.apgeochem.2014.04.009_b0165
10.1016/j.apgeochem.2014.04.009_b0320
Robbins (10.1016/j.apgeochem.2014.04.009_b0660) 1983; vol. 2
Ettler (10.1016/j.apgeochem.2014.04.009_b0230) 2002; 173
Gahan (10.1016/j.apgeochem.2014.04.009_b0290) 2009; 95
Kierczak (10.1016/j.apgeochem.2014.04.009_b0375) 2011; 49
Bayless (10.1016/j.apgeochem.2014.04.009_b0075) 2004; 38
10.1016/j.apgeochem.2014.04.009_b0170
Twidwell (10.1016/j.apgeochem.2014.04.009_b0825) 1983; 8
Kourounis (10.1016/j.apgeochem.2014.04.009_b0390) 2007; 37
Simmons (10.1016/j.apgeochem.2014.04.009_b0750) 2002; 21
Mahé-Le Carlier (10.1016/j.apgeochem.2014.04.009_b0450) 2000; 330
Cottrell (10.1016/j.apgeochem.2014.04.009_b0160) 1995
Kierczak (10.1016/j.apgeochem.2014.04.009_b0380) 2009; 47
Parkhurst (10.1016/j.apgeochem.2014.04.009_b0560) 1993
Svirenko (10.1016/j.apgeochem.2014.04.009_b0790) 2003
Alpers (10.1016/j.apgeochem.2014.04.009_b0015) 1999; vol. 6A
Butler (10.1016/j.apgeochem.2014.04.009_b0110) 1977; 41
Milačič (10.1016/j.apgeochem.2014.04.009_b0485) 2011; 40
Sobanska (10.1016/j.apgeochem.2014.04.009_b0765) 2000; 331
Weber (10.1016/j.apgeochem.2014.04.009_b0870) 2007; 56
10.1016/j.apgeochem.2014.04.009_b0835
Woodley (10.1016/j.apgeochem.2014.04.009_b0915) 1986; 5
10.1016/j.apgeochem.2014.04.009_b0435
Lottermoser (10.1016/j.apgeochem.2014.04.009_b0440) 2002; 66
Srivastava (10.1016/j.apgeochem.2014.04.009_b0770) 2005; 24
10.1016/j.apgeochem.2014.04.009_b0275
Ettler (10.1016/j.apgeochem.2014.04.009_b0225) 2001; 40
10.1016/j.apgeochem.2014.04.009_b0285
10.1016/j.apgeochem.2014.04.009_b0280
Douglas (10.1016/j.apgeochem.2014.04.009_b0195) 1986; 16
Strömberg (10.1016/j.apgeochem.2014.04.009_b0775) 1994; 9
Sáez (10.1016/j.apgeochem.2014.04.009_b0680) 2003; 41
Manz (10.1016/j.apgeochem.2014.04.009_b0465) 1997; 98
Maslehuddin (10.1016/j.apgeochem.2014.04.009_b0470) 2003; 17
Ali (10.1016/j.apgeochem.2014.04.009_b0005) 2008; 128
Ettler (10.1016/j.apgeochem.2014.04.009_b0260) 2012; 221–222
Bäverman (10.1016/j.apgeochem.2014.04.009_b0060) 1997; 15
Drizo (10.1016/j.apgeochem.2014.04.009_b0210) 2006; 40
Gbor (10.1016/j.apgeochem.2014.04.009_b0310) 2006; 81
10.1016/j.apgeochem.2014.04.009_b0705
Bril (10.1016/j.apgeochem.2014.04.009_b0105) 2008; 46
Seignez (10.1016/j.apgeochem.2014.04.009_b0710) 2007; 149
Parsons (10.1016/j.apgeochem.2014.04.009_b0570) 2001; 16
Shen (10.1016/j.apgeochem.2014.04.009_b0735) 2009; 164
Gee (10.1016/j.apgeochem.2014.04.009_b0315) 1997; 58
Kierczak (10.1016/j.apgeochem.2014.04.009_b0385) 2013; 124
10.1016/j.apgeochem.2014.04.009_b0420
10.1016/j.apgeochem.2014.04.009_b0300
Costagliola (10.1016/j.apgeochem.2014.04.009_b0155) 2008; 23
10.1016/j.apgeochem.2014.04.009_b0265
Bosso (10.1016/j.apgeochem.2014.04.009_b0090) 2008; 30
Lottermoser (10.1016/j.apgeochem.2014.04.009_b0445) 2005; 181
Li (10.1016/j.apgeochem.2014.04.009_b0425) 2009; 97
10.1016/j.apgeochem.2014.04.009_b0270
Roadcap (10.1016/j.apgeochem.2014.04.009_b0650) 1994
Ettler (10.1016/j.apgeochem.2014.04.009_b0235) 2003; 67
Sato (10.1016/j.apgeochem.2014.04.009_b0690) 1977; 10
Shibayama (10.1016/j.apgeochem.2014.04.009_b0740) 2010; 181
Tsakiridis (10.1016/j.apgeochem.2014.04.009_b0815) 2008; 152
Vivenzio (10.1016/j.apgeochem.2014.04.009_b0865) 2005; 37
Seignez (10.1016/j.apgeochem.2014.04.009_b0715) 2008; 23
Hanski (10.1016/j.apgeochem.2014.04.009_b0335) 2009; 73
Chang (10.1016/j.apgeochem.2014.04.009_b0130) 2013; 48
Helgeson (10.1016/j.apgeochem.2014.04.009_b0350) 1968; 32
Bowden (10.1016/j.apgeochem.2014.04.009_b0095) 2009; 43
Chaurand (10.1016/j.apgeochem.2014.04.009_b0145) 2007; B139
10.1016/j.apgeochem.2014.04.009_b0535
10.1016/j.apgeochem.2014.04.009_b0930
10.1016/j.apgeochem.2014.04.009_b0895
Douglas (10.1016/j.apgeochem.2014.04.009_b0200) 2012; 35
Muhmood (10.1016/j.apgeochem.2014.04.009_b0500) 2009; 39
10.1016/j.apgeochem.2014.04.009_b0530
10.1016/j.apgeochem.2014.04.009_b0410
10.1016/j.apgeochem.2014.04.009_b0495
Anderson (10.1016/j.apgeochem.2014.04.009_b0040) 1991; 30
Proctor (10.1016/j.apgeochem.2014.04.009_b0615) 2000; 34
Piatak (10.1016/j.apgeochem.2014.04.009_b0590) 2010; 25
Yildirim (10.1016/j.apgeochem.2014.04.009_b0925) 2011; 2011
Pérez-López (10.1016/j.apgeochem.2014.04.009_b0580) 2008; 23
Rosado (10.1016/j.apgeochem.2014.04.009_b0665) 2008; 72
Vdović (10.1016/j.apgeochem.2014.04.009_b0850) 2006; 141
Singh (10.1016/j.apgeochem.2014.04.009_b0755) 2008; 28
De Andrade Lima (10.1016/j.apgeochem.2014.04.009_b0175) 2011; 189
10.1016/j.apgeochem.2014.04.009_b0805
Ettler (10.1016/j.apgeochem.2014.04.009_b0215) 2000; 331
Gorai (10.1016/j.apgeochem.2014.04.009_b0325) 2003; 39
Ali (10.1016/j.apgeochem.2014.04.009_b0010) 2013; 25
10.1016/j.apgeochem.2014.04.009_b0525
Severin (10.1016/j.apgeochem.2014.04.009_b0720) 2011; 23
10.1016/j.apgeochem.2014.04.009_b0405
Scheinert (10.1016/j.apgeochem.2014.04.009_b0695) 2009; 69
10.1016/j.apgeochem.2014.04.009_b0645
10.1016/j.apgeochem.2014.04.009_b0125
10.1016/j.apgeochem.2014.04.009_b0400
10.1016/j.apgeochem.2014.04.009_b0365
10.1016/j.apgeochem.2014.04.009_b0640
Tatarinov (10.1016/j.apgeochem.2014.04.009_b0800) 2002; 40
10.1016/j.apgeochem.2014.04.009_b0760
Carroll (10.1016/j.apgeochem.2014.04.009_b0115) 1988; 73
10.1016/j.apgeochem.2014.04.009_b0370
Bayless (10.1016/j.apgeochem.2014.04.009_b0065) 2003; 45
Baker (10.1016/j.apgeochem.2014.04.009_b0045) 1998; 32
Ganne (10.1016/j.apgeochem.2014.04.009_b0295) 2006; 356
Sidenko (10.1016/j.apgeochem.2014.04.009_b0745) 2001; 74
Barna (10.1016/j.apgeochem.2014.04.009_b0055) 2004; 24
Sánchez (10.1016/j.apgeochem.2014.04.009_b0685) 2013; 49
Rai (10.1016/j.apgeochem.2014.04.009_b0630) 2002; 16
Ettler (10.1016/j.apgeochem.2014.04.009_b0220) 2001; 39
Vítková (10.1016/j.apgeochem.2014.04.009_b0860) 2011; 197
Anand (10.1016/j.apgeochem.2014.04.009_b0035) 1980; 5
Tack (10.1016/j.apgeochem.2014.04.009_b0795) 1993; 55
Negim (10.1016/j.apgeochem.2014.04.009_b0520) 2010; 19
Wendling (10.1016/j.apgeochem.2014.04.009_b0885) 2013; 32
Shelley (10.1016/j.apgeochem.2014.04.009_b0730) 1975; 84
10.1016/j.apgeochem.2014.04.009_b0910
10.1016/j.apgeochem.2014.04.009_b0875
10.1016/j.apgeochem.2014.04.009_b0475
Hadjsadok (10.1016/j.apgeochem.2014.04.009_b0330) 2012; 34
Twidwell (10.1016/j.apgeochem.2014.04.009_b0830) 1985; 5
Barca (10.1016/j.apgeochem.2014.04.009_b0050) 2012; 46
10.1016/j.apgeochem.2014.04.009_b0120
De Windt (10.1016/j.apgeochem.2014.04.009_b0185) 2011; 31
10.1016/j.apgeochem.2014.04.009_b0480
Navarro (10.1016/j.apgeochem.2014.04.009_b0510) 2008; 23
10.1016/j.apgeochem.2014.04.009_b0085
10.1016/j.apgeochem.2014.04.009_b0360
Ochola (10.1016/j.apgeochem.2014.04.009_b0540) 2004; 38
Qiu (10.1016/j.apgeochem.2014.04.009_b0625) 2012; 22
Yang (10.1016/j.apgeochem.2014.04.009_b0920) 2010; 103
Roadcap (10.1016/j.apgeochem.2014.04.009_b0655) 2005; 43
Levin (10.1016/j.apgeochem.2014.04.009_b0415) 1964
Puziewicz (10.1016/j.apgeochem.2014.04.009_b0620) 2007; 45
Bethke (10.1016/j.apgeochem.2014.04.009_b0080) 2008
Ettler (10.1016/j.apgeochem.2014.04.009_b0250) 2009; 51
West (10.1016/j.apgeochem.2014.04.009_b0890) 1902
References_xml – volume: 156
  start-page: 119
  year: 2008
  end-page: 131
  ident: b0355
  article-title: Nickel enrichment in mantle olivine beneath a volcanic front
  publication-title: Contrib. Miner. Petrol.
– volume: 32
  start-page: 982
  year: 1994
  end-page: 988
  ident: b0555
  article-title: Smelting reduction for vanadium-recovery from LD-slag (I)
  publication-title: Kor. J. Met. Mater.
– start-page: 199
  year: 1993
  end-page: 225
  ident: b0560
  article-title: Geochemical models
  publication-title: Regional Ground-Water Quality
– start-page: 211
  year: 2003
  end-page: 229
  ident: b0790
  article-title: Environmental effects of ferrous slags – comparative analysis and a systems approach in slag impact assessment for terrestrial and aquatic ecosystems
  publication-title: Approach. Handl. Environ. Probl. Min. Metall. Reg.
– volume: 32
  start-page: 1
  year: 1993
  end-page: 12
  ident: b0135
  article-title: Mineralogical characterization of old Harz Mountain slags
  publication-title: Can. Metall. Q.
– volume: 71
  start-page: A379
  year: 2007
  ident: b0340
  article-title: Removal of uranium, arsenic and phosphorus from aqueous solutions using steel slag: Goldschmidt conference abstracts
  publication-title: Geochim. Cosmochim. Acta
– reference: LopezGomez, F.A., Aldecoa, R., Fernandez Prieto, M.A., Rodrigues, J.M., 1999. Preparation of NPK Fertilizers from Ferrous-Metallurgy. Simoes C Eur Commun [Rep] 18616, pp. 1–57.
– volume: 356
  start-page: 69
  year: 2006
  end-page: 85
  ident: b0295
  article-title: Leachablity of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium)
  publication-title: Sci. Total Environ.
– volume: 28
  start-page: 1331
  year: 2008
  end-page: 1337
  ident: b0755
  article-title: Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material
  publication-title: Waste Manage. (Oxford)
– volume: 51
  start-page: 987
  year: 2009
  end-page: 1007
  ident: b0250
  article-title: Mineralogy of medieval slag from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimates of historical smelting conditions
  publication-title: Archaeometry
– start-page: 417
  year: 1997
  end-page: 426
  ident: b0430
  article-title: Physico-chemical and mineralogical properties of EAF and AOD slags: associazione Italiana de
  publication-title: Metallurgia
– reference: Bayless, E.R., Greeman, T.K., Harvey, C.C., 1998, Hydrology and Geochemistry of a Slag-affected Aquifer and Chemical Characteristics of Slag-Affected Ground Water, Northwestern Indiana and Northeastern Illinois: U.S. Geological Survey, Water-Resources Investigations, Report 97-4198, 67p.
– volume: 5
  start-page: 217
  year: 1986
  end-page: 223
  ident: b0915
  article-title: Hazardous waste characterization extraction procedures for the analysis of blast-furnace slag from secondary lead smelters
  publication-title: Environ. Prog.
– reference: Canadian Council of Ministers of the Environment (CCME), 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
– volume: 152
  start-page: 805
  year: 2008
  end-page: 811
  ident: b0815
  article-title: Utilization of steel slag for Portland cement clinker production
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 102
  year: 2009
  end-page: 109
  ident: b0500
  article-title: Cementitious and pozzolanic behavior of electric arc furnace steel slags
  publication-title: Cem. Concr. Res.
– volume: 44
  start-page: 5383
  year: 2010
  end-page: 5388
  ident: b0515
  article-title: Physico-chemical characterization of steel slag
  publication-title: Study of Its Behavior Under Simulated Environmental Conditions: Environmental Science and Technology
– volume: 74
  start-page: 581
  year: 2010
  end-page: 600
  ident: b0855
  article-title: Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia
  publication-title: Mineral. Mag.
– volume: 181
  start-page: 1016
  year: 2010
  end-page: 1023
  ident: b0740
  article-title: Treatment of smelting residues for arsenic removal and recovery of copper using pyro-hydrometallurgical process
  publication-title: J. Hazard. Mater.
– volume: 27
  start-page: 1335
  year: 2007
  end-page: 1344
  ident: b0810
  article-title: Characteristics of steel slag under different cooling conditions
  publication-title: Waste Manage. (Oxford)
– volume: 32
  start-page: 2602
  year: 2013
  end-page: 2610
  ident: b0885
  article-title: Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications
  publication-title: Environ. Toxicol. Chem.
– volume: 39
  start-page: 873
  year: 2001
  end-page: 888
  ident: b0220
  article-title: Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Přίbram, Czech Republic
  publication-title: Can. Mineral.
– volume: 17
  start-page: 105
  year: 2003
  end-page: 112
  ident: b0470
  article-title: Comparison of properties of steel slag and crushed limestone aggregate concretes
  publication-title: Constr. Build. Mater.
– reference: > (accessed 09.09.13).
– reference: Parsons, M.B., 2001. Geochemical and Mineralogical Controls on Trace Element Release from Base-metal Smelter Slags. Unpublished Ph.D. Thesis, Stanford University, Stanford, California, 307p.
– volume: 30
  start-page: 1357
  year: 2009
  end-page: 1361
  ident: b0785
  article-title: Transformation of inorganic nitrogen in slag-wetland during the start-up period
  publication-title: Environ. Sci.
– volume: 56
  start-page: 135
  year: 2007
  end-page: 143
  ident: b0870
  article-title: Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters
  publication-title: Water Sci. Technol.
– volume: 84
  start-page: 1
  year: 1975
  end-page: 4
  ident: b0730
  article-title: Possible methods for recovering copper from waste smelter slags by leaching
  publication-title: Trans. Inst. Min. Metall. Sect. C—Mineral Process. Extract. Metall.
– volume: 181
  start-page: 183
  year: 2005
  end-page: 190
  ident: b0445
  article-title: Evaporative mineral precipitates from the historical smelting slag dump, Río Tinto, Spain
  publication-title: Neues Jahrbuch für Mineralogie-Abhandlungen
– volume: 37
  start-page: 358
  year: 2005
  ident: b0865
  article-title: Tahawus: an insight to the geochemistry of an industrial waste site
  publication-title: Geol. Soc. Am. Program. Abst.
– volume: 128
  start-page: 21
  year: 2008
  end-page: 26
  ident: b0005
  article-title: Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming
  publication-title: Agric. Ecosyst. Environ.
– volume: 23
  start-page: 981
  year: 2011
  end-page: 992
  ident: b0720
  article-title: Early metal smelting in Aksum, Ethiopia: copper or iron?
  publication-title: Eur. J. Mineral.
– volume: 97
  start-page: 185
  year: 2009
  end-page: 193
  ident: b0425
  article-title: High pressure oxidative acid leaching of nickel smelter slag, characterization of feed and residue
  publication-title: Hydrometallurgy
– volume: 40
  start-page: 1547
  year: 2006
  end-page: 1554
  ident: b0210
  article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite
  publication-title: Water Res.
– year: 1964
  ident: b0415
  article-title: Phase Diagrams for Ceramists: The American Ceramic Society
– volume: 69
  start-page: 737
  year: 2005
  end-page: 747
  ident: b0245
  article-title: The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions
  publication-title: Mineral. Mag.
– reference: > (updated 1992) (accessed February 2012).
– volume: 37
  start-page: 815
  year: 2007
  end-page: 822
  ident: b0390
  article-title: Properties and hydration of blended cements with steelmaking slag
  publication-title: Cem. Concr. Res.
– reference: > (assessed September 2013).
– volume: 141
  start-page: 359
  year: 2006
  end-page: 369
  ident: b0850
  article-title: Remobilization of metals from slag and polluted sediments (Case Study: the canal of the Deûle River, northern France)
  publication-title: Environ. Pollut.
– year: 2008
  ident: b0080
  article-title: Geochemical and Biogeochemical Reaction Modeling
– volume: 50
  start-page: 141
  year: 1986
  end-page: 147
  ident: b0700
  article-title: The chemistry and mineralogy of some granulated and pelletized blast furnace slags
  publication-title: Mineral. Magaz.
– volume: 74
  start-page: 109
  year: 2001
  end-page: 125
  ident: b0745
  article-title: Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia)
  publication-title: J. Geochem. Explor.
– reference: European Slag Association (EUROSLAG), 2006. Legal Status of Slags, Position Paper, January 2006, 15p. <
– reference: Ivanov, I.T., 2000. Phase composition of metallurgical slags in Bulgaria. In: Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R.B., Pentinghaus, H. (Eds.), Proceedings of the Sixth International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, July 17–19, 2000.
– volume: 24
  start-page: 181
  year: 2005
  end-page: 197
  ident: b0770
  article-title: Controlling NOx emission from industrial sources
  publication-title: Environ. Prog.
– reference: Jambor, J.L., 2003. Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), Environmental Aspects of Mine Wastes, Short Course Series, Mineralogical Association of Canada, vol. 31, pp. 117–145.
– volume: 32
  start-page: 2308
  year: 1998
  end-page: 2316
  ident: b0045
  article-title: Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 1748
  year: 2013
  end-page: 1756
  ident: b0130
  article-title: Chemical stabilization of cadmium in acidic soil using alkaline argronomic and industrial by-products
  publication-title: J. Environ. Sci. Health, Part A
– reference: Weston Solutions, Inc., 2007. Final Remedial Investigation Report Hegeler Zinc Site, Danville, Vermilion County, Illinois. Document Control No. RFW250-2A-AWOO. Prepared for USEPA. <
– reference: Johnson, E.A., Oden, L.L., Sanker, P.E., 1982. Results of E.P.A. Extraction Procedure Toxicity Test Applied to Copper Reverberatory Slags: U.S. Bureau of Mines Report of Investigation 8648, 16p.
– reference: > (accessed February 2012).
– volume: 23
  start-page: 3699
  year: 2008
  end-page: 3711
  ident: b0715
  article-title: Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions
  publication-title: Appl. Geochem.
– volume: 22
  start-page: 751
  year: 2010
  end-page: 761
  ident: b0345
  article-title: Mineralogical study of precolonial (1650–1850 CE) tin smelting slags from Rooiberg, Limpopo Province, South Africa
  publication-title: Eur. J. Mineral.
– start-page: 253
  year: 1994
  end-page: 262
  ident: b0650
  article-title: Shallow ground-water chemistry in the Lake Calumet Area, Chicago, Illinois
  publication-title: National Symposium on Water Quality
– volume: 39
  start-page: 219
  year: 2012
  end-page: 227
  ident: b0880
  article-title: Productive use of steelmaking by-product in environmental radioactivity
  publication-title: Miner. Eng.
– start-page: 449
  year: 1992
  end-page: 459
  ident: b0020
  article-title: Proposed treatment of neutral Leach residue at Big River Zinc
  publication-title: Residues Effluents: Processing Environmental Considerations
– volume: 73
  start-page: 845
  year: 1988
  end-page: 849
  ident: b0115
  article-title: Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays
  publication-title: Am. Mineral.
– reference: Piatak, N.M., Seal II, R.R., 2012b. Leaching tests to characterize ferrous and nonferrous slag drainage chemistry. In: Price, W.A., Hogan, C., Tremblay, G. (Eds.), Proceedings from the Ninth International Conference on Acid Rock Drainage, Ottawa, Canada, 12p.
– reference: Fällman, A.-M., Hartlén, J., 1994. Leaching of slags and ashes – controlling factors in field experiments versus laboratory tests. In: Goumans, J.J.J.M., van de Sloot, H.A., Aalbers, Th.G. (Eds.), Environmental Aspects of Construction with Waste Materials: Studies in Environmental Science, vol. 60, pp. 39–54.
– volume: 19
  start-page: 174
  year: 2010
  end-page: 187
  ident: b0520
  article-title: Effect of basic slag addition on soil properties, growth and leaf mineral composition of bean sin a Cu-contaminated soil
  publication-title: Soil Sediment Contam.
– volume: 39
  start-page: 299
  year: 2003
  end-page: 313
  ident: b0325
  article-title: Characteristics and utilization of copper slag – a review
  publication-title: Resour. Conserv. Recycl.
– volume: 88
  start-page: 10
  year: 2006
  end-page: 14
  ident: b0140
  article-title: Speciation of Cr and V within BOF steel slag reused in road constructions
  publication-title: J. Geochem. Explor.
– volume: 34
  start-page: 671
  year: 2012
  end-page: 677
  ident: b0330
  article-title: Durability of mortar and concretes containing slag with low hydraulic activity
  publication-title: Cement Concr. Compos.
– volume: 24
  start-page: 945
  year: 2004
  end-page: 955
  ident: b0055
  article-title: Leaching assessment of road materials containing primary lead and zinc slags
  publication-title: Waste Manage. (Oxford)
– volume: 330
  start-page: 179
  year: 2000
  end-page: 184
  ident: b0450
  article-title: Natural weathering of archaeo-metallurgical slags: an analog for present day vitrified wastes
  publication-title: Earth Planet. Sci.
– volume: 69
  start-page: 81
  year: 2009
  end-page: 90
  ident: b0695
  article-title: Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany)
  publication-title: Chem. Erde
– volume: 57
  start-page: 13
  year: 2000
  end-page: 22
  ident: b0305
  article-title: Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag
  publication-title: Hydrometallurgy
– reference: Sloto, R.A., Reif, A.G., 2011. Distribution of Trace Metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania: U.S. Geological Survey Scientific Investigations, Report 2011-5014, 90p.
– reference: U.S. Environmental Protection Agency (USEPA), 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846 third ed. <
– volume: 67
  start-page: 1269
  year: 2003
  end-page: 1283
  ident: b0235
  article-title: Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: experimental approach and long-term assessment
  publication-title: Mineral. Mag.
– year: 2004
  ident: b0670
  article-title: Principles of Extractive Metallurgy
– volume: 173
  start-page: 161
  year: 2002
  end-page: 169
  ident: b0230
  article-title: Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags
  publication-title: Bull. Soc. Geol. Fr.
– volume: 45
  start-page: 252
  year: 2003
  end-page: 261
  ident: b0065
  article-title: Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA
  publication-title: Environ. Geol.
– year: 1995
  ident: b0160
  article-title: An Introduction to Metallurgy
– reference: Shacklette, H.T., Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270, 104p.
– volume: 38
  start-page: 117
  year: 2012
  end-page: 123
  ident: b0180
  article-title: Reuse of slags containing lead and zinc as aggregate in a portland cement matrix
  publication-title: J. Solid Waste Technol. Manage.
– reference: Tetra Tech Inc., 1985. Granulated Slag Pile: Draft Stage 1 Remedial Investigation Report. Anaconda Minerals Company.
– reference: Lewis, D.W., 1982. Properties and Uses of Iron and Steel Slags: National Slag Association (NSA) MF 182-6, Presented at the Symposium on Slag national Institute for Transport and Road Research South Africa, February, 1982. <
– volume: 221–222
  start-page: 298
  year: 2012
  end-page: 302
  ident: b0260
  article-title: Reliability of chemical microanalyses for solid waste materials
  publication-title: J. Hazard. Mater.
– reference: U.S. Environmental Protection Agency (USEPA), 2010. Regional Screening Levels (Formerly PRGs). <
– volume: 47
  start-page: 557
  year: 2009
  end-page: 572
  ident: b0380
  article-title: The mineralogy and weathering of slag produced by the smelting of the lateritic Ni ores, Szklary, Southwestern Poland
  publication-title: Can. Mineral.
– reference: Lagos, G.E., Luraschi, A., 1997. Toxicity Characteristic Leaching Procedure (TCLP) Applied to Chilean Primary Copper Slags: Transactions of the Institution of Mining and Metallurgy Section C—Mineral Processing and Extractive Metallurgy, vol. 106, pp. C95–C97.
– volume: 40
  start-page: 131
  year: 1992
  ident: b0635
  article-title: Flotation of copper from converter slags
  publication-title: J. Mines Met. Fuels
– volume: 25
  start-page: 208
  year: 2013
  end-page: 216
  ident: b0010
  article-title: Potentials of copper slag utilization in the manufacture of ordinary Portland cement
  publication-title: Adv. Cem. Res.
– volume: 43
  start-page: 2476
  year: 2009
  end-page: 2481
  ident: b0095
  article-title: Phosphorus removal from waste waters using basic oxygen steel slag
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 297
  year: 1985
  end-page: 303
  ident: b0830
  article-title: Disposal of arsenic bearing copper smelter flue dust
  publication-title: Nucl. Chem. Waste Manage.
– volume: 16
  start-page: 489
  year: 2002
  end-page: 494
  ident: b0630
  article-title: Metallurgical slag as a component in blended cement
  publication-title: Constr. Build. Mater.
– reference: Kwon, J.-S., Yun, Seong-Taek, Jo, H.-Y., Jung, S.-H., 2008. Geochemical Processes Including Sorption and Incorporation of Heavy Metals and Arsenic by Scoria and Steel Slag: Abstracts of the 18th Annual V. M. Goldschmidt Conference, Geochimica et Cosmochimica Acta, vol. 72, no. 12S, p. A507.
– volume: 23
  start-page: 3452
  year: 2008
  end-page: 3463
  ident: b0580
  article-title: Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt)
  publication-title: Appl. Geochem.
– volume: 38
  start-page: 6161
  year: 2004
  end-page: 6165
  ident: b0540
  article-title: Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag)
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 355
  year: 1980
  end-page: 365
  ident: b0035
  article-title: Recovery of metal values from copper converter and smelter slags by ferric chloride leaching
  publication-title: Hydrometallurgy
– reference: Wilson, L.J., 1994. Literature Review on Slag Leaching: Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories Division Report 94-3 (CR), Ottawa.
– volume: 57
  start-page: 567
  year: 2004
  end-page: 577
  ident: b0240
  article-title: Leaching of lead metallurgical slag in citric solutions: Implications for disposal and weathering in soil environments
  publication-title: Chemosphere
– volume: 94
  start-page: 1417
  year: 2009
  end-page: 1427
  ident: b0030
  article-title: Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags
  publication-title: Am. Mineral.
– volume: 382
  start-page: 30
  year: 2007
  end-page: 42
  ident: b0490
  article-title: Preliminary findings of chemistry and bioaccessibility in base metal smelter slags
  publication-title: Sci. Total Environ.
– reference: Ziemkiewicz, P., Skousen, J., 1999. Steel slag in acid mine drainage treatment and control. In: Proceedings of the Annual National Meeting of the Society for Surface Mining and Reclamation, vol. 16, pp. 651–656.
– volume: 66
  start-page: 475
  year: 2002
  end-page: 490
  ident: b0440
  article-title: Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia
  publication-title: Mineral. Mag.
– volume: 213–214
  start-page: 147
  year: 2012
  end-page: 155
  ident: b0545
  article-title: Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag
  publication-title: J. Hazard. Mater.
– volume: 31
  start-page: 225
  year: 2011
  end-page: 235
  ident: b0185
  article-title: Kinetics of steel slag leaching: batch tests and modeling
  publication-title: Waste Manage. (Oxford)
– volume: 38
  start-page: 1330
  year: 2004
  end-page: 1337
  ident: b0075
  article-title: Use of
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 627
  year: 2003
  end-page: 638
  ident: b0680
  article-title: The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C
  publication-title: Can. Mineral.
– volume: 49
  start-page: 161
  year: 2013
  end-page: 168
  ident: b0685
  article-title: Physiochemical characterization of copper slag and alternatives of friendly environmental management
  publication-title: J. Min. Metall., Sect. B – Metall.
– reference: Crock, J.G., Arbogast, B.F., Lamothe, P.J., 1999. Laboratory methods for the analysis of environmental samples. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology, vol. 6A, pp. 265–287 (Chapter 13).
– volume: 36
  start-page: 4642
  year: 2002
  end-page: 4648
  ident: b0205
  article-title: Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems
  publication-title: Environ. Sci. Technol.
– reference: Mandin, D., van der Sloot, H.A., Gervais, C., Barna, R., Mehu, J., 1997. Valorization of lead–zinc primary smelters slags. In: Goumans, J.J.J., Senden, G.J., van der Sloot, H.A. (Eds.), Waste Materials in Construction: Putting Theory into Practice. Studies in Environmental Science, vol. 71, pp. 617–630.
– volume: 98
  start-page: 7
  year: 1997
  end-page: 13
  ident: b0465
  article-title: The environmental hazard caused by smelter slags from the Sta
  publication-title: Maria de la Paz mining district in Mexico: Environmental Pollution
– reference: CDM Fed Programs Corporation, 1993. Draft Work Plan for Waste Compatibility Evaluation Study – Sharon Steel Tailings Site/Midvale Slag Site. USEPA, Midvale, Utah. Contract No. 68-W9-0021.
– reference: European Slag Association (EUROSLAG), 2003. Granulated Blastfurnace Slag, Technical Leaflet No. 1, 4p. <
– volume: 27
  start-page: 623
  year: 2012
  end-page: 643
  ident: b0595
  article-title: Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA
  publication-title: Appl. Geochem.
– volume: B139
  start-page: 537
  year: 2007
  end-page: 542
  ident: b0145
  article-title: Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 659
  year: 2009
  end-page: 663
  ident: b0675
  article-title: Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation
  publication-title: Cem. Concr. Res.
– reference: Wendling, L., Douglas, G., Coleman, S., Yuan, Z., 2010. Assessment of the Ability of Low-Cost Materials to Remove Metals and Attenuate Acidity in Contaminated Waters: CSIRO – Water for a Healthy Country National Research Flagship, 138p. <
– volume: 331
  start-page: 245
  year: 2000
  end-page: 250
  ident: b0215
  article-title: Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic
  publication-title: Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes
– volume: 124
  start-page: 183
  year: 2013
  end-page: 194
  ident: b0385
  article-title: Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland)
  publication-title: J. Geochem. Explor.
– volume: 189
  start-page: 692
  year: 2011
  end-page: 699
  ident: b0175
  article-title: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 331
  year: 2001
  end-page: 339
  ident: b0550
  article-title: The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy
  publication-title: Can. Mineral.
– volume: 72
  start-page: 489
  year: 2008
  end-page: 494
  ident: b0665
  article-title: Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags
  publication-title: Mineral. Mag.
– volume: 58
  start-page: 249
  year: 1997
  end-page: 257
  ident: b0315
  article-title: Mineralogy and weathering processes in historical smelting slag and their effect on the mobilization of lead
  publication-title: J. Geochem. Explor.
– volume: 103
  start-page: 25
  year: 2010
  end-page: 29
  ident: b0920
  article-title: Selective leaching of base metals from copper smelter slag
  publication-title: Hydrometallurgy
– volume: 36
  start-page: 4001
  year: 2002
  end-page: 4008
  ident: b0190
  article-title: Use of granular slag columns for lead removal
  publication-title: Water Res.
– volume: 19
  start-page: 1039
  year: 2004
  end-page: 1064
  ident: b0610
  article-title: Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites
  publication-title: Appl. Geochem.
– volume: 27
  start-page: 1
  year: 1996
  end-page: 15
  ident: b0395
  article-title: Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium
  publication-title: Environ. Geol.
– reference: May, A., Peterson, J.B., 1991. Assessment of lead slag landfill site and the use of a computational program for chemical species. In: Proceedings of the Symposium on Environmental Management for the 1990’s, Denver, Colorado, February 25–28, pp. 217–223.
– volume: 95
  start-page: 190
  year: 2009
  end-page: 197
  ident: b0290
  article-title: Comparative study on different steel slags as neutralising agent in bioleaching
  publication-title: Hydrometallurgy
– reference: Glynn, P., Brown, J., 1996. Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Reactive Transport in Porous Media: Mineralogical Society of America, Reviews in Mineralogy, vol. 34, pp. 377–438 (Chapter 9).
– reference: > (accessed May 2013).
– volume: 10
  start-page: 113
  year: 1977
  end-page: 120
  ident: b0690
  article-title: Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation
  publication-title: Lithos
– reference: National Slag Association (NSA), 2009. Slag’s Ain’t Slag’s. <
– volume: 70
  start-page: 273
  year: 2010
  end-page: 277
  ident: b0820
  article-title: Effect of cooling rate on base metals recovery from copper matte smelting slags
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 55
  start-page: 103
  year: 1993
  end-page: 117
  ident: b0795
  article-title: Leaching behavior of granulated non-ferrous metal slags
  publication-title: Stud. Environ. Sci.
– volume: 40
  start-page: 1153
  year: 2011
  end-page: 1161
  ident: b0485
  article-title: Environmental impacts of asphalt mixes with electric arc furnace steel slag
  publication-title: J. Environ. Qual.
– volume: 22
  start-page: 544
  year: 2012
  end-page: 553
  ident: b0625
  article-title: Attenuation of metal bioavailabilty in acidic multi-metal contaminated soil treated with fly ash and steel slag
  publication-title: Pedosphere
– reference: Federal Highway Administration (FHWA), U.S. Department of Transportation, 1997.User Guidelines for Waste and Byproduct Materials in Pavement Construction: FHWA-RD-97-148, McLean, VA, USA. <
– volume: 35
  start-page: 49
  year: 2012
  end-page: 56
  ident: b0200
  article-title: Productive use of steelmaking by-product in environmental applications (I): mineralogy and major and trace element geochemistry
  publication-title: Miner. Eng.
– reference: Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory, Livermore, California.
– reference: Matthes, S.A., 1980. Rapid Low-cost Analysis of a Copper Slag for 13 Elements by Flame Atomic Absorption Spectroscopy: U.S. Bureau of Mines Report of Investigations 8484, 8p.
– volume: 23
  start-page: 1241
  year: 2008
  end-page: 1259
  ident: b0155
  article-title: Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy
  publication-title: Appl. Geochem.
– reference: Piatak, N.M., Seal II, R.R., 2014. Challenges of quantifying the partitioning of metals within solid phases: an example of zinc in slag from the Hegeler Zinc smelter, Illinois. In: McLemore, V.T, Smith, K.S., Russell, C.C. (Eds.), Environmental Sampling and Monitoring for the Mine-Life Cycle, Appendix 5—Case Studies of Sampling and Monitoring: Eaglewood, CO, Society for Mining, Metallurgy, and Exploration, Inc.
– volume: 73
  start-page: A492
  year: 2009
  ident: b0335
  article-title: Reduction of aqueous hexavalent chromium by steel slag: abstracts of the 19th annual V. M. Goldschmidt conference
  publication-title: Geochim. Cosmochim. Acta
– reference: European Committee for Standardization, 2002. Final Draft prEN 12457–2. Characterization of Waste Leaching-compliance Test of Leaching of Granular Waste Material and Sludges – Part 2: One-stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials With Particle Size Below 4 mm (With or Without Particle Reduction), Czech Standard Institute, Prague.
– volume: vol. 2
  start-page: 923
  year: 1983
  end-page: 934
  ident: b0660
  article-title: Availability of toxic metals from non-ferrous metallurgical slags using various procedures
  publication-title: Advances in Sulfide Smelting
– volume: 34
  start-page: 1576
  year: 2000
  end-page: 1582
  ident: b0615
  article-title: Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags
  publication-title: Environ. Sci. Technol.
– reference: Van Oss, H.G., 2013. Slag, Iron and Steel: U.S. Geological Survey, 2011 Minerals Yearbook, vol. 1, pp. 69.1–69.9.
– volume: 46
  start-page: 125
  year: 2008
  end-page: 1248
  ident: b0105
  article-title: Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland
  publication-title: Can. Mineral.
– volume: vol. 6A
  start-page: 289
  year: 1999
  end-page: 323
  ident: b0015
  article-title: Geochemical modeling of water–rock interactions in mining environments
  publication-title: The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology
– volume: 25
  start-page: 302
  year: 2010
  end-page: 320
  ident: b0590
  article-title: Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA)
  publication-title: Appl. Geochem.
– reference: Seal II, R.R., Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., Ingersoll, C.G., 2010. Aquatic Assessment of the Ely Copper Mine Superfund Site, Vershire, Vermont: U.S. Geological Survey Scientific Investigation, Report 2010-5084, 150p.
– reference: Wolery, T.J., Daveler, S.A., 1992. EQ6, A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems – Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-IV. Lawrence Livermore National Laboratory, Livermore, California.
– volume: 30
  start-page: 9
  year: 1991
  end-page: 18
  ident: b0040
  article-title: Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane
  publication-title: Nutr. Cycl. Agroecosyst.
– reference: Reuer, M.K., Bower, N.W., Koball, J.H., Hinostroza, E., De la, Torre Marcas, M.E., Hurtado Surichaqui, A.H., Echevarria, S., 2012. Lead, Arsenic, and Cadmium Contamination and Its Impact on Children’s Health in La Oroay, Peru. International Scholarly Research Network, Public Health, vol. 2012, 12p.
– volume: 49
  start-page: 1281
  year: 2011
  end-page: 1296
  ident: b0375
  article-title: Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland
  publication-title: Can. Mineral.
– volume: 37
  start-page: 1656
  year: 2010
  end-page: 1669
  ident: b0150
  article-title: The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE
  publication-title: J. Archaeol. Sci.
– volume: 16
  start-page: 1567
  year: 2001
  end-page: 1593
  ident: b0570
  article-title: Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California
  publication-title: Appl. Geochem.
– volume: 16
  start-page: 662
  year: 1986
  end-page: 670
  ident: b0195
  article-title: Characterization of granulated and pelletized blast furnace slag
  publication-title: Cem. Concr. Res.
– volume: 32
  start-page: 853
  year: 1968
  end-page: 877
  ident: b0350
  article-title: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations
  publication-title: Geochim. Cosmochim. Acta
– volume: 23
  start-page: 895
  year: 2008
  end-page: 913
  ident: b0510
  article-title: Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain)
  publication-title: Appl. Geochem.
– volume: 2011
  start-page: 13
  year: 2011
  ident: b0925
  article-title: Chemical, mineralogical, and morphological properties of steel slag
  publication-title: Adv. Civil Eng.
– reference: Narayan, C., 1995. Report on the Analysis of Iron Slag Samples from Saugus Iron Works, MA Using Rutherford Backscattering Spectroscopy (RBS) and Proton Induced X-ray Emission (PIXE) Techniques. University of Massachusetts Lowell Radiation Laboratory, 15p.
– volume: 149
  start-page: 418
  year: 2007
  end-page: 431
  ident: b0710
  article-title: Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste
  publication-title: J. Hazard. Mater.
– reference: Nelson, T., 1993. Data on Slag Samples Collected from the Midvale Slag Site, Midvale, Utah: Sverdup Corporation Memorandum No. 10865R00(1.1)-91 to M. Strieby, U.S. Environmental Protection Agency Region VIII.
– volume: 45
  start-page: 1189
  year: 2007
  end-page: 1200
  ident: b0620
  article-title: Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland
  publication-title: Can. Mineral.
– reference: Leonard, R.P., Ziegler, R.C., Brown, W.R., Yang, J.Y., Reif, H.C., 1977. Assessment of Industrial Hazardous Waste Practices in the Metal Smelting and Refining Industry, vol. IV, Appendices: U.S. Environmental Protection Agency, EPA/530/SW-145c.4, pp. 31–39.
– volume: 276
  start-page: 29
  year: 2010
  end-page: 40
  ident: b0585
  article-title: Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid–rock interaction and ancient mining pollution
  publication-title: Chem. Geol.
– year: 2009
  ident: b0100
  article-title: Metallurgy Fundamentals
– volume: 40
  start-page: 81
  year: 2001
  end-page: 83
  ident: b0225
  article-title: Metallurgical slag behaviour in extreme conditions: surface leaching and metal mobility
  publication-title: Ecole Nationale Superieure des Mines de Paris Mémoire des Sciences de la Terre
– reference: Rizza, I.L., Farthing, D.J., 2007. Catch the Rainbow: Geochemical Analysis of Colored Slag from Ironville, Adirondack State Park, New York: Geological Society of America, Abstracts with Programs, vol. 39, no. 6, p. 320.
– volume: 9
  start-page: 583
  year: 1994
  end-page: 595
  ident: b0775
  article-title: Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden
  publication-title: Appl. Geochem.
– volume: 13
  start-page: 949
  year: 2001
  end-page: 960
  ident: b0455
  article-title: The copper slags of the Capattoli Valley, Campiglia Marittima, Italy
  publication-title: Eur. J. Mineral.
– volume: 41
  start-page: 439
  year: 1977
  end-page: 493
  ident: b0110
  article-title: Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite
  publication-title: Mineral. Mag.
– volume: 197
  start-page: 417
  year: 2011
  end-page: 423
  ident: b0860
  article-title: Effect of sample preparation on contaminant leaching from copper smelting slag
  publication-title: J. Hazard. Mater.
– reference: Garrels, R.M., Mackenzie, F.T., 1967, Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, Advances in Chemistry Series 67: American Chemical Society, Washington, DC, pp. 222–242 (Chapter 10).
– reference: Cravotta III, C.A., 2005. Assessment of Characteristics and Remedial Alternatives for Abandoned Mine Drainage: Case Study at Staple Bend Tunnel Unit of Allegheny Portage Railroad National Historic Site, Cambria Country, Pennsylvania, 2004: U.S. Geological Survey Open-File, Report 2005-1283, 52p.
– volume: 331
  start-page: 271
  year: 2000
  end-page: 278
  ident: b0765
  article-title: Alteration in soils of slag particles resulting from lead smelting
  publication-title: Earth Planet. Sci.
– volume: 46
  start-page: 2376
  year: 2012
  end-page: 2384
  ident: b0050
  article-title: Phosphate removal from synthetic and real wastewater using steel slags produced in Europe
  publication-title: Water Res.
– reference: Morrison Knudsen Corporation, 1992. Final Report for Lead Slag Pile Remedial Investigation at the California Gulch Site, Leadville, Colorado. Denver & Rio Grande Western Railroad Company.
– volume: 407
  start-page: 5110
  year: 2009
  end-page: 5118
  ident: b0780
  article-title: Reproducing ten years of road ageing – accelerated carbonization and leaching of EAF steel slag
  publication-title: Sci. Total Environ.
– volume: 164
  start-page: 99
  year: 2009
  end-page: 104
  ident: b0735
  article-title: Investigation on the application of steel slag-fly ash–phosphogypsum solidified material as road base material
  publication-title: J. Hazard. Mater.
– reference: Blowes, D.W., Bain, J.G., Smyth, D., McGregor, R., Ludwig, P., Wilkens, J.A., Ptacek, C.J., Spink, L., 2005, Treatment of Arsenic Using Permeable Reactive Barriers: Geological Society of America Annual Meeting Program with Abstracts, vol. 37, no. 7, p. 102.
– volume: 30
  start-page: 219
  year: 2008
  end-page: 229
  ident: b0090
  article-title: Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil
  publication-title: Environ. Geochem. Health
– volume: 24
  start-page: 1
  year: 2009
  end-page: 15
  ident: b0255
  article-title: Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia
  publication-title: Appl. Geochem.
– volume: 8
  start-page: 85
  year: 1983
  end-page: 90
  ident: b0825
  article-title: Safe disposal of arsenic bearing flue dust by dissolution in smelter slags
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 91
  year: 2002
  end-page: 99
  ident: b0750
  article-title: Use of steel slag leach beds for the treatment of acid mine drainage
  publication-title: Mine Water Environ.
– volume: 81
  start-page: 130
  year: 2006
  end-page: 141
  ident: b0310
  article-title: Dissolution behavior of Fe Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide
  publication-title: Hydrometallurgy
– volume: 40
  start-page: 1075
  year: 2002
  end-page: 1082
  ident: b0800
  article-title: Metallurgical slags with spinifex textures
  publication-title: Geochem. Int.
– volume: 55
  start-page: 1797
  year: 2008
  end-page: 1809
  ident: b0025
  article-title: Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization
  publication-title: Environ. Geol.
– volume: 15
  start-page: 55
  year: 1997
  end-page: 71
  ident: b0060
  article-title: Serial batch tests performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modeling
  publication-title: Waste Manage. Res.
– reference: Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, vol. 6A. Society of Economic Geologists, Littleton, CO, pp. 133–160 (Chapter 6).
– reference: Partymiller, K., 1992. Horsehead Resource Development Company, Inc. Flame Reactor Technology: Applications Analysis Report. Environmental Protection Agency, EPA/540/A5-91/005.
– volume: 43
  start-page: 806
  year: 2005
  end-page: 816
  ident: b0655
  article-title: Geochemistry of extremely alkaline (pH
  publication-title: Ground Water
– year: 1902
  ident: b0890
  article-title: Metallurgy of Cast Iron
– volume: 72
  start-page: 489
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0665
  article-title: Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.2008.072.1.489
– volume: 43
  start-page: 806
  issue: 6
  year: 2005
  ident: 10.1016/j.apgeochem.2014.04.009_b0655
  article-title: Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.00060.x
– volume: 69
  start-page: 737
  issue: 5
  year: 2005
  ident: 10.1016/j.apgeochem.2014.04.009_b0245
  article-title: The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions
  publication-title: Mineral. Mag.
  doi: 10.1180/0026461056950284
– ident: 10.1016/j.apgeochem.2014.04.009_b0125
– ident: 10.1016/j.apgeochem.2014.04.009_b0400
– year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0670
– ident: 10.1016/j.apgeochem.2014.04.009_b0640
  doi: 10.5402/2012/231458
– volume: 38
  start-page: 117
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0180
  article-title: Reuse of slags containing lead and zinc as aggregate in a portland cement matrix
  publication-title: J. Solid Waste Technol. Manage.
  doi: 10.5276/JSWTM.2012.17
– ident: 10.1016/j.apgeochem.2014.04.009_b0475
– volume: 24
  start-page: 1
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0255
  article-title: Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.10.003
– year: 1995
  ident: 10.1016/j.apgeochem.2014.04.009_b0160
– volume: 45
  start-page: 252
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0065
  article-title: Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-003-0875-1
– volume: B139
  start-page: 537
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0145
  article-title: Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.02.060
– volume: 37
  start-page: 358
  issue: 7
  year: 2005
  ident: 10.1016/j.apgeochem.2014.04.009_b0865
  article-title: Tahawus: an insight to the geochemistry of an industrial waste site
  publication-title: Geol. Soc. Am. Program. Abst.
– year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0080
– volume: 32
  start-page: 853
  year: 1968
  ident: 10.1016/j.apgeochem.2014.04.009_b0350
  article-title: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(68)90100-2
– volume: vol. 2
  start-page: 923
  year: 1983
  ident: 10.1016/j.apgeochem.2014.04.009_b0660
  article-title: Availability of toxic metals from non-ferrous metallurgical slags using various procedures
– volume: 16
  start-page: 489
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0630
  article-title: Metallurgical slag as a component in blended cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/S0950-0618(02)00046-6
– year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0100
– ident: 10.1016/j.apgeochem.2014.04.009_b0420
– volume: 30
  start-page: 219
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0090
  article-title: Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-007-9110-4
– ident: 10.1016/j.apgeochem.2014.04.009_b0120
– ident: 10.1016/j.apgeochem.2014.04.009_b0575
– year: 1902
  ident: 10.1016/j.apgeochem.2014.04.009_b0890
– volume: 24
  start-page: 181
  issue: 2
  year: 2005
  ident: 10.1016/j.apgeochem.2014.04.009_b0770
  article-title: Controlling NOx emission from industrial sources
  publication-title: Environ. Prog.
  doi: 10.1002/ep.10063
– volume: 5
  start-page: 217
  issue: 1
  year: 1986
  ident: 10.1016/j.apgeochem.2014.04.009_b0915
  article-title: Hazardous waste characterization extraction procedures for the analysis of blast-furnace slag from secondary lead smelters
  publication-title: Environ. Prog.
  doi: 10.1002/ep.670050108
– volume: 382
  start-page: 30
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0490
  article-title: Preliminary findings of chemistry and bioaccessibility in base metal smelter slags
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.03.034
– volume: 32
  start-page: 2308
  year: 1998
  ident: 10.1016/j.apgeochem.2014.04.009_b0045
  article-title: Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970934w
– ident: 10.1016/j.apgeochem.2014.04.009_b0275
– ident: 10.1016/j.apgeochem.2014.04.009_b0725
  doi: 10.3133/pp1270
– ident: 10.1016/j.apgeochem.2014.04.009_b0165
  doi: 10.3133/ofr20051283
– volume: 27
  start-page: 1335
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0810
  article-title: Characteristics of steel slag under different cooling conditions
  publication-title: Waste Manage. (Oxford)
  doi: 10.1016/j.wasman.2006.08.002
– ident: 10.1016/j.apgeochem.2014.04.009_b0435
– volume: 50
  start-page: 141
  issue: 355
  year: 1986
  ident: 10.1016/j.apgeochem.2014.04.009_b0700
  article-title: The chemistry and mineralogy of some granulated and pelletized blast furnace slags
  publication-title: Mineral. Magaz.
  doi: 10.1180/minmag.1986.050.355.19
– volume: 38
  start-page: 6161
  year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0540
  article-title: Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049670l
– volume: 27
  start-page: 1
  year: 1996
  ident: 10.1016/j.apgeochem.2014.04.009_b0395
  article-title: Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium
  publication-title: Environ. Geol.
  doi: 10.1007/BF00770598
– volume: 24
  start-page: 945
  year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0055
  article-title: Leaching assessment of road materials containing primary lead and zinc slags
  publication-title: Waste Manage. (Oxford)
  doi: 10.1016/j.wasman.2004.07.014
– volume: 41
  start-page: 439
  year: 1977
  ident: 10.1016/j.apgeochem.2014.04.009_b0110
  article-title: Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.1977.041.320.11
– volume: 8
  start-page: 85
  year: 1983
  ident: 10.1016/j.apgeochem.2014.04.009_b0825
  article-title: Safe disposal of arsenic bearing flue dust by dissolution in smelter slags
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(83)80039-9
– volume: 35
  start-page: 49
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0200
  article-title: Productive use of steelmaking by-product in environmental applications (I): mineralogy and major and trace element geochemistry
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.04.013
– volume: 39
  start-page: 299
  issue: 4
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0325
  article-title: Characteristics and utilization of copper slag – a review
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/S0921-3449(02)00171-4
– year: 1964
  ident: 10.1016/j.apgeochem.2014.04.009_b0415
– volume: 40
  start-page: 1075
  issue: 11
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0800
  article-title: Metallurgical slags with spinifex textures
  publication-title: Geochem. Int.
– ident: 10.1016/j.apgeochem.2014.04.009_b0760
  doi: 10.3133/sir20115014
– volume: 128
  start-page: 21
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0005
  article-title: Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2008.04.014
– volume: 98
  start-page: 7
  year: 1997
  ident: 10.1016/j.apgeochem.2014.04.009_b0465
  article-title: The environmental hazard caused by smelter slags from the Sta
  publication-title: Maria de la Paz mining district in Mexico: Environmental Pollution
– ident: 10.1016/j.apgeochem.2014.04.009_b0370
– start-page: 253
  year: 1994
  ident: 10.1016/j.apgeochem.2014.04.009_b0650
  article-title: Shallow ground-water chemistry in the Lake Calumet Area, Chicago, Illinois
– volume: 19
  start-page: 174
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0520
  article-title: Effect of basic slag addition on soil properties, growth and leaf mineral composition of bean sin a Cu-contaminated soil
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320380903548508
– volume: 19
  start-page: 1039
  year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0610
  article-title: Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.01.005
– volume: 58
  start-page: 249
  year: 1997
  ident: 10.1016/j.apgeochem.2014.04.009_b0315
  article-title: Mineralogy and weathering processes in historical smelting slag and their effect on the mobilization of lead
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(96)00062-3
– volume: 39
  start-page: 659
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0675
  article-title: Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.05.007
– volume: 57
  start-page: 13
  year: 2000
  ident: 10.1016/j.apgeochem.2014.04.009_b0305
  article-title: Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00090-6
– volume: 15
  start-page: 55
  year: 1997
  ident: 10.1016/j.apgeochem.2014.04.009_b0060
  article-title: Serial batch tests performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modeling
  publication-title: Waste Manage. Res.
  doi: 10.1177/0734242X9701500105
– volume: 13
  start-page: 949
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0455
  article-title: The copper slags of the Capattoli Valley, Campiglia Marittima, Italy
  publication-title: Eur. J. Mineral.
  doi: 10.1127/0935-1221/2001/0013/0949
– ident: 10.1016/j.apgeochem.2014.04.009_b0085
– ident: 10.1016/j.apgeochem.2014.04.009_b0360
– ident: 10.1016/j.apgeochem.2014.04.009_b0600
– volume: 331
  start-page: 271
  year: 2000
  ident: 10.1016/j.apgeochem.2014.04.009_b0765
  article-title: Alteration in soils of slag particles resulting from lead smelting
  publication-title: Earth Planet. Sci.
– volume: 30
  start-page: 1357
  issue: 5
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0785
  article-title: Transformation of inorganic nitrogen in slag-wetland during the start-up period
  publication-title: Environ. Sci.
– volume: 40
  start-page: 1547
  year: 2006
  ident: 10.1016/j.apgeochem.2014.04.009_b0210
  article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.02.001
– volume: 70
  start-page: 273
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0820
  article-title: Effect of cooling rate on base metals recovery from copper matte smelting slags
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 38
  start-page: 1330
  year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0075
  article-title: Use of 87Sr/86Sr and δ11B to identify slag-affected sediment in southern Lake Michigan
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0347843
– volume: 55
  start-page: 103
  year: 1993
  ident: 10.1016/j.apgeochem.2014.04.009_b0795
  article-title: Leaching behavior of granulated non-ferrous metal slags
  publication-title: Stud. Environ. Sci.
  doi: 10.1016/S0166-1116(08)70288-7
– volume: 55
  start-page: 1797
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0025
  article-title: Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-1131-x
– volume: 94
  start-page: 1417
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0030
  article-title: Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags
  publication-title: Am. Mineral.
  doi: 10.2138/am.2009.3171
– volume: 37
  start-page: 815
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0390
  article-title: Properties and hydration of blended cements with steelmaking slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2007.03.008
– volume: 47
  start-page: 557
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0380
  article-title: The mineralogy and weathering of slag produced by the smelting of the lateritic Ni ores, Szklary, Southwestern Poland
  publication-title: Can. Mineral.
  doi: 10.3749/canmin.47.3.557
– volume: 141
  start-page: 359
  year: 2006
  ident: 10.1016/j.apgeochem.2014.04.009_b0850
  article-title: Remobilization of metals from slag and polluted sediments (Case Study: the canal of the Deûle River, northern France)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.08.034
– volume: 9
  start-page: 583
  year: 1994
  ident: 10.1016/j.apgeochem.2014.04.009_b0775
  article-title: Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden
  publication-title: Appl. Geochem.
  doi: 10.1016/0883-2927(94)90020-5
– volume: 16
  start-page: 662
  year: 1986
  ident: 10.1016/j.apgeochem.2014.04.009_b0195
  article-title: Characterization of granulated and pelletized blast furnace slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(86)90039-6
– volume: 16
  start-page: 1567
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0570
  article-title: Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(01)00032-4
– ident: 10.1016/j.apgeochem.2014.04.009_b0705
  doi: 10.3133/sir20105084
– ident: 10.1016/j.apgeochem.2014.04.009_b0170
  doi: 10.5382/Rev.06.13
– ident: 10.1016/j.apgeochem.2014.04.009_b0365
– ident: 10.1016/j.apgeochem.2014.04.009_b0495
– volume: 67
  start-page: 1269
  issue: 6
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0235
  article-title: Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: experimental approach and long-term assessment
  publication-title: Mineral. Mag.
  doi: 10.1180/0026461036760164
– volume: 5
  start-page: 355
  year: 1980
  ident: 10.1016/j.apgeochem.2014.04.009_b0035
  article-title: Recovery of metal values from copper converter and smelter slags by ferric chloride leaching
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(80)90025-0
– volume: 152
  start-page: 805
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0815
  article-title: Utilization of steel slag for Portland cement clinker production
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.093
– ident: 10.1016/j.apgeochem.2014.04.009_b0405
– ident: 10.1016/j.apgeochem.2014.04.009_b0535
– volume: 84
  start-page: 1
  year: 1975
  ident: 10.1016/j.apgeochem.2014.04.009_b0730
  article-title: Possible methods for recovering copper from waste smelter slags by leaching
  publication-title: Trans. Inst. Min. Metall. Sect. C—Mineral Process. Extract. Metall.
– volume: 21
  start-page: 91
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0750
  article-title: Use of steel slag leach beds for the treatment of acid mine drainage
  publication-title: Mine Water Environ.
  doi: 10.1007/s102300200024
– volume: 45
  start-page: 1189
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0620
  article-title: Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.45.5.1189
– volume: 73
  start-page: 845
  year: 1988
  ident: 10.1016/j.apgeochem.2014.04.009_b0115
  article-title: Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays
  publication-title: Am. Mineral.
– volume: 23
  start-page: 1241
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0155
  article-title: Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.01.005
– volume: 28
  start-page: 1331
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0755
  article-title: Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material
  publication-title: Waste Manage. (Oxford)
  doi: 10.1016/j.wasman.2007.09.017
– ident: 10.1016/j.apgeochem.2014.04.009_b0910
  doi: 10.2172/138820
– ident: 10.1016/j.apgeochem.2014.04.009_b0835
– volume: 356
  start-page: 69
  year: 2006
  ident: 10.1016/j.apgeochem.2014.04.009_b0295
  article-title: Leachablity of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.03.022
– volume: 71
  start-page: A379
  issue: 15S
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0340
  article-title: Removal of uranium, arsenic and phosphorus from aqueous solutions using steel slag: Goldschmidt conference abstracts
  publication-title: Geochim. Cosmochim. Acta
– volume: 17
  start-page: 105
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0470
  article-title: Comparison of properties of steel slag and crushed limestone aggregate concretes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/S0950-0618(02)00095-8
– volume: 276
  start-page: 29
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0585
  article-title: Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid–rock interaction and ancient mining pollution
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2010.05.018
– ident: 10.1016/j.apgeochem.2014.04.009_b0565
  doi: 10.1016/S0883-2927(01)00032-4
– volume: 22
  start-page: 544
  issue: 4
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0625
  article-title: Attenuation of metal bioavailabilty in acidic multi-metal contaminated soil treated with fly ash and steel slag
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(12)60039-3
– volume: 213–214
  start-page: 147
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0545
  article-title: Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.074
– volume: 66
  start-page: 475
  issue: 4
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0440
  article-title: Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia
  publication-title: Mineral. Mag.
  doi: 10.1180/0026461026640043
– ident: 10.1016/j.apgeochem.2014.04.009_b0805
– ident: 10.1016/j.apgeochem.2014.04.009_b0320
  doi: 10.1515/9781501509797-012
– volume: 97
  start-page: 185
  issue: 3–4
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0425
  article-title: High pressure oxidative acid leaching of nickel smelter slag, characterization of feed and residue
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.03.007
– volume: 43
  start-page: 2476
  issue: 7
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0095
  article-title: Phosphorus removal from waste waters using basic oxygen steel slag
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801626d
– volume: 40
  start-page: 1153
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0485
  article-title: Environmental impacts of asphalt mixes with electric arc furnace steel slag
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0516
– volume: 32
  start-page: 982
  issue: 8
  year: 1994
  ident: 10.1016/j.apgeochem.2014.04.009_b0555
  article-title: Smelting reduction for vanadium-recovery from LD-slag (I)
  publication-title: Kor. J. Met. Mater.
– volume: 74
  start-page: 109
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0745
  article-title: Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(01)00178-9
– volume: 124
  start-page: 183
  year: 2013
  ident: 10.1016/j.apgeochem.2014.04.009_b0385
  article-title: Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland)
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.09.008
– volume: 164
  start-page: 99
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0735
  article-title: Investigation on the application of steel slag-fly ash–phosphogypsum solidified material as road base material
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.07.125
– volume: 32
  start-page: 2602
  issue: 11
  year: 2013
  ident: 10.1016/j.apgeochem.2014.04.009_b0885
  article-title: Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2342
– volume: 57
  start-page: 567
  year: 2004
  ident: 10.1016/j.apgeochem.2014.04.009_b0240
  article-title: Leaching of lead metallurgical slag in citric solutions: Implications for disposal and weathering in soil environments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.07.022
– volume: 2011
  start-page: 13
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0925
  article-title: Chemical, mineralogical, and morphological properties of steel slag
  publication-title: Adv. Civil Eng.
  doi: 10.1155/2011/463638
– ident: 10.1016/j.apgeochem.2014.04.009_b0645
– ident: 10.1016/j.apgeochem.2014.04.009_b0285
– volume: 30
  start-page: 9
  year: 1991
  ident: 10.1016/j.apgeochem.2014.04.009_b0040
  article-title: Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 51
  start-page: 987
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0250
  article-title: Mineralogy of medieval slag from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimates of historical smelting conditions
  publication-title: Archaeometry
  doi: 10.1111/j.1475-4754.2008.00455.x
– ident: 10.1016/j.apgeochem.2014.04.009_b0895
– volume: 221–222
  start-page: 298
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0260
  article-title: Reliability of chemical microanalyses for solid waste materials
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.04.015
– volume: 189
  start-page: 692
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0175
  article-title: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.02.091
– ident: 10.1016/j.apgeochem.2014.04.009_b0480
– ident: 10.1016/j.apgeochem.2014.04.009_b0875
– ident: 10.1016/j.apgeochem.2014.04.009_b0930
  doi: 10.21000/JASMR99010651
– volume: 25
  start-page: 302
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0590
  article-title: Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.12.001
– ident: 10.1016/j.apgeochem.2014.04.009_b0605
– volume: 331
  start-page: 245
  year: 2000
  ident: 10.1016/j.apgeochem.2014.04.009_b0215
  article-title: Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic
  publication-title: Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes
– volume: 74
  start-page: 581
  issue: 4
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0855
  article-title: Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.2010.074.4.581
– volume: 40
  start-page: 81
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0225
  article-title: Metallurgical slag behaviour in extreme conditions: surface leaching and metal mobility
  publication-title: Ecole Nationale Superieure des Mines de Paris Mémoire des Sciences de la Terre
– volume: 181
  start-page: 1016
  issue: 1–3
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0740
  article-title: Treatment of smelting residues for arsenic removal and recovery of copper using pyro-hydrometallurgical process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.116
– volume: 407
  start-page: 5110
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0780
  article-title: Reproducing ten years of road ageing – accelerated carbonization and leaching of EAF steel slag
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.05.039
– ident: 10.1016/j.apgeochem.2014.04.009_b0265
– volume: 23
  start-page: 981
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0720
  article-title: Early metal smelting in Aksum, Ethiopia: copper or iron?
  publication-title: Eur. J. Mineral.
  doi: 10.1127/0935-1221/2011/0023-2167
– volume: 32
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.apgeochem.2014.04.009_b0135
  article-title: Mineralogical characterization of old Harz Mountain slags
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.1993.32.1.1
– volume: 41
  start-page: 627
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0680
  article-title: The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.41.3.627
– volume: 5
  start-page: 297
  year: 1985
  ident: 10.1016/j.apgeochem.2014.04.009_b0830
  article-title: Disposal of arsenic bearing copper smelter flue dust
  publication-title: Nucl. Chem. Waste Manage.
  doi: 10.1016/0191-815X(85)90005-1
– ident: 10.1016/j.apgeochem.2014.04.009_b0840
– ident: 10.1016/j.apgeochem.2014.04.009_b0900
– ident: 10.1016/j.apgeochem.2014.04.009_b0410
– volume: 23
  start-page: 895
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0510
  article-title: Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2007.07.012
– start-page: 449
  year: 1992
  ident: 10.1016/j.apgeochem.2014.04.009_b0020
  article-title: Proposed treatment of neutral Leach residue at Big River Zinc
– volume: 36
  start-page: 4001
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0190
  article-title: Use of granular slag columns for lead removal
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00120-3
– volume: 173
  start-page: 161
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0230
  article-title: Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags
  publication-title: Bull. Soc. Geol. Fr.
  doi: 10.2113/173.2.161
– ident: 10.1016/j.apgeochem.2014.04.009_b0300
  doi: 10.1021/ba-1967-0067.ch010
– volume: 10
  start-page: 113
  issue: 2
  year: 1977
  ident: 10.1016/j.apgeochem.2014.04.009_b0690
  article-title: Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation
  publication-title: Lithos
  doi: 10.1016/0024-4937(77)90037-8
– ident: 10.1016/j.apgeochem.2014.04.009_b0070
– volume: 27
  start-page: 623
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0595
  article-title: Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.12.011
– volume: 39
  start-page: 102
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0500
  article-title: Cementitious and pozzolanic behavior of electric arc furnace steel slags
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2008.11.002
– ident: 10.1016/j.apgeochem.2014.04.009_b0460
  doi: 10.1016/S0166-1116(97)80245-2
– volume: 46
  start-page: 125
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0105
  article-title: Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland
  publication-title: Can. Mineral.
  doi: 10.3749/canmin.46.5.1235
– volume: 49
  start-page: 1281
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0375
  article-title: Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland
  publication-title: Can. Mineral.
  doi: 10.3749/canmin.49.5.1281
– ident: 10.1016/j.apgeochem.2014.04.009_b0505
– volume: 197
  start-page: 417
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0860
  article-title: Effect of sample preparation on contaminant leaching from copper smelting slag
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.09.102
– volume: 81
  start-page: 130
  year: 2006
  ident: 10.1016/j.apgeochem.2014.04.009_b0310
  article-title: Dissolution behavior of Fe Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.10.007
– volume: 40
  start-page: 131
  issue: 3–4
  year: 1992
  ident: 10.1016/j.apgeochem.2014.04.009_b0635
  article-title: Flotation of copper from converter slags
  publication-title: J. Mines Met. Fuels
– ident: 10.1016/j.apgeochem.2014.04.009_b0845
– ident: 10.1016/j.apgeochem.2014.04.009_b0270
– volume: 156
  start-page: 119
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0355
  article-title: Nickel enrichment in mantle olivine beneath a volcanic front
  publication-title: Contrib. Miner. Petrol.
  doi: 10.1007/s00410-007-0277-6
– volume: 149
  start-page: 418
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0710
  article-title: Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.04.007
– volume: 39
  start-page: 331
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0550
  article-title: The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.39.2.331
– volume: 37
  start-page: 1656
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0150
  article-title: The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2010.01.026
– volume: 73
  start-page: A492
  issue: 13S
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0335
  article-title: Reduction of aqueous hexavalent chromium by steel slag: abstracts of the 19th annual V. M. Goldschmidt conference
  publication-title: Geochim. Cosmochim. Acta
– ident: 10.1016/j.apgeochem.2014.04.009_b0530
  doi: 10.5382/Rev.06.06
– volume: 23
  start-page: 3699
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0715
  article-title: Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.09.009
– volume: 49
  start-page: 161
  issue: 2
  year: 2013
  ident: 10.1016/j.apgeochem.2014.04.009_b0685
  article-title: Physiochemical characterization of copper slag and alternatives of friendly environmental management
  publication-title: J. Min. Metall., Sect. B – Metall.
  doi: 10.2298/JMMB120814011S
– volume: 22
  start-page: 751
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0345
  article-title: Mineralogical study of precolonial (1650–1850 CE) tin smelting slags from Rooiberg, Limpopo Province, South Africa
  publication-title: Eur. J. Mineral.
  doi: 10.1127/0935-1221/2010/0022-2055
– volume: 34
  start-page: 1576
  year: 2000
  ident: 10.1016/j.apgeochem.2014.04.009_b0615
  article-title: Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9906002
– volume: 46
  start-page: 2376
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0050
  article-title: Phosphate removal from synthetic and real wastewater using steel slags produced in Europe
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.012
– volume: 31
  start-page: 225
  year: 2011
  ident: 10.1016/j.apgeochem.2014.04.009_b0185
  article-title: Kinetics of steel slag leaching: batch tests and modeling
  publication-title: Waste Manage. (Oxford)
  doi: 10.1016/j.wasman.2010.05.018
– volume: 23
  start-page: 3452
  year: 2008
  ident: 10.1016/j.apgeochem.2014.04.009_b0580
  article-title: Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.08.005
– volume: 39
  start-page: 219
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0880
  article-title: Productive use of steelmaking by-product in environmental radioactivity
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.07.010
– ident: 10.1016/j.apgeochem.2014.04.009_b0525
– volume: 34
  start-page: 671
  year: 2012
  ident: 10.1016/j.apgeochem.2014.04.009_b0330
  article-title: Durability of mortar and concretes containing slag with low hydraulic activity
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2012.02.011
– volume: 103
  start-page: 25
  issue: 1–4
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0920
  article-title: Selective leaching of base metals from copper smelter slag
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.02.009
– ident: 10.1016/j.apgeochem.2014.04.009_b0905
  doi: 10.2172/138643
– volume: 330
  start-page: 179
  year: 2000
  ident: 10.1016/j.apgeochem.2014.04.009_b0450
  article-title: Natural weathering of archaeo-metallurgical slags: an analog for present day vitrified wastes
  publication-title: Earth Planet. Sci.
– volume: 48
  start-page: 1748
  year: 2013
  ident: 10.1016/j.apgeochem.2014.04.009_b0130
  article-title: Chemical stabilization of cadmium in acidic soil using alkaline argronomic and industrial by-products
  publication-title: J. Environ. Sci. Health, Part A
  doi: 10.1080/10934529.2013.815571
– start-page: 211
  year: 2003
  ident: 10.1016/j.apgeochem.2014.04.009_b0790
  article-title: Environmental effects of ferrous slags – comparative analysis and a systems approach in slag impact assessment for terrestrial and aquatic ecosystems
  publication-title: Approach. Handl. Environ. Probl. Min. Metall. Reg.
– start-page: 199
  year: 1993
  ident: 10.1016/j.apgeochem.2014.04.009_b0560
  article-title: Geochemical models
– volume: 88
  start-page: 10
  year: 2006
  ident: 10.1016/j.apgeochem.2014.04.009_b0140
  article-title: Speciation of Cr and V within BOF steel slag reused in road constructions
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2005.08.006
– volume: 36
  start-page: 4642
  year: 2002
  ident: 10.1016/j.apgeochem.2014.04.009_b0205
  article-title: Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011502v
– start-page: 417
  year: 1997
  ident: 10.1016/j.apgeochem.2014.04.009_b0430
  article-title: Physico-chemical and mineralogical properties of EAF and AOD slags: associazione Italiana de
  publication-title: Metallurgia
– volume: 181
  start-page: 183
  year: 2005
  ident: 10.1016/j.apgeochem.2014.04.009_b0445
  article-title: Evaporative mineral precipitates from the historical smelting slag dump, Río Tinto, Spain
  publication-title: Neues Jahrbuch für Mineralogie-Abhandlungen
  doi: 10.1127/0077-7757/2005/0016
– volume: 69
  start-page: 81
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0695
  article-title: Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany)
  publication-title: Chem. Erde
  doi: 10.1016/j.chemer.2008.03.001
– volume: 56
  start-page: 135
  issue: 3
  year: 2007
  ident: 10.1016/j.apgeochem.2014.04.009_b0870
  article-title: Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2007.513
– volume: 39
  start-page: 873
  year: 2001
  ident: 10.1016/j.apgeochem.2014.04.009_b0220
  article-title: Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Přίbram, Czech Republic
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.39.3.873
– ident: 10.1016/j.apgeochem.2014.04.009_b0280
  doi: 10.1016/S0166-1116(08)71446-8
– volume: 25
  start-page: 208
  issue: 4
  year: 2013
  ident: 10.1016/j.apgeochem.2014.04.009_b0010
  article-title: Potentials of copper slag utilization in the manufacture of ordinary Portland cement
  publication-title: Adv. Cem. Res.
  doi: 10.1680/adcr.12.00004
– volume: 95
  start-page: 190
  year: 2009
  ident: 10.1016/j.apgeochem.2014.04.009_b0290
  article-title: Comparative study on different steel slags as neutralising agent in bioleaching
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.05.042
– volume: vol. 6A
  start-page: 289
  year: 1999
  ident: 10.1016/j.apgeochem.2014.04.009_b0015
  article-title: Geochemical modeling of water–rock interactions in mining environments
– volume: 44
  start-page: 5383
  year: 2010
  ident: 10.1016/j.apgeochem.2014.04.009_b0515
  article-title: Physico-chemical characterization of steel slag
  publication-title: Study of Its Behavior Under Simulated Environmental Conditions: Environmental Science and Technology
SSID ssj0005702
Score 2.618751
SecondaryResourceType review_article
Snippet •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline...
Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms aluminum
calcite
calcium
chemical composition
chromium
construction materials
copper
environmental impact
exposure pathways
furnaces
geochemistry
glass
humans
iron
leaching
lead
magnesium
manganese
nickel
oxidation
pollution
quartz
recycling
remediation
screening
silicates
silicon
silver
slags
soil
steel
sulfides
tin
toxic substances
United States Environmental Protection Agency
weathering
zinc
Title Characteristics and environmental aspects of slag: A review
URI https://dx.doi.org/10.1016/j.apgeochem.2014.04.009
https://www.proquest.com/docview/2000131631
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jIngRP3F-jAhe49omTdd5GsM5FXfRwW4laZIxkW7oPHjxb_e9foxNhB2EXlryaPvy8j6S33uPkCs_1lZJbpiILGci5B5TWmvmeOCMj0e9DrcGnoZyMBIP43BcI70qFwZhlaXuL3R6rq3LJ62Sm635dNp6hvXBgzjAinNoyPIMdhGhlF9_r8A8ohx3iIMZjl7DeKn5xGJjKkxJ90Ve8xSRiX9bqF-6OjdA_T2yW3qOtFt83D6p2eyAbN_lnXm_DslNb730MlWZoStpbECq8rTKDzpzFARh0qFdWmSuHJFR__alN2BlZwSmwH9bMMsd1zK18O8abLRNeRQZqUJtIPrxtOeM07FIwdRI7TsvdRICG2tUgPGLUwE_JvVsltkTQgMuQcWFQazaXLRT3lbGCqFNCpYrhPltEFlxI0nLsuHYveItqfBhr8mSjQmyMfHg8uIG8ZaE86JyxmaSTsXuZE0IEtDvm4kvqwlKYInguYfK7OzzAzttYlUhyf3T_7zgjOzAXVjgxM5JffH-aS_AI1noZi5yTbLVvX8cDH8Ae-7hYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5EKe2l9EntM4Veg0k22Rh7EqnV-rhUwduym90VS4lS9dB_35k8bC0FD4WckgxJZmdndrLffEPIgxtJLRhVth9qavsBdWwhpbQN9YxycavX4K-BwZB1xv7LJJiUSKuohUFYZe77M5-eeuv8TC3XZm0xm9VeYX5QL_KQcQ4DGaRAFWSnCsqk0uz2OsNvpEeYQg_xfhsFtmBeYjHV2JsKq9JdP6U9RXDi30Hql7tOY1D7iBzmi0ermb3fMSnp5ITsPafNeT9PyWNrm33ZEomyflSygahIKyuX1txYYAvThtW0suKVMzJuP41aHTtvjmALWMKtbE0NlSzW8PkSwrSOaRgqJgKpIAFypGOUkZEfQ7Rh0jVObBjkNloJD1MYIzx6TsrJPNEXxPIoAy8XeJGoU78e07pQ2veliiF4BTDEVcIKbfA4Zw7HBhbvvICIvfGNGjmqkTtwOFGVOBvBRUaesVukUaibb9kBBxe_W_i-GCAOswS3PkSi5-slNttEYiFG3cv_POCO7HdGgz7vd4e9K3IAV4IMNnZNyquPtb6BBcpK3uYG-AU7pOQT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+and+environmental+aspects+of+slag%3A+A+review&rft.jtitle=Applied+geochemistry&rft.au=Piatak%2C+Nadine+M&rft.au=Parsons%2C+Michael+B&rft.au=Seal%2C+Robert+R&rft.date=2015-06-01&rft.issn=0883-2927&rft.volume=57+p.236-266&rft.spage=236&rft.epage=266&rft_id=info:doi/10.1016%2Fj.apgeochem.2014.04.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon