Characteristics and environmental aspects of slag: A review
•Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included o...
Saved in:
Published in | Applied geochemistry Vol. 57; pp. 236 - 266 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included own data.
Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.
The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation. |
---|---|
AbstractList | •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline construction, secondary metal recovery, and environmental applications.•Compiled results from over 150 published studies on slag and included own data.
Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.
The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation. Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation. |
Author | Seal, Robert R. Parsons, Michael B. Piatak, Nadine M. |
Author_xml | – sequence: 1 givenname: Nadine M. surname: Piatak fullname: Piatak, Nadine M. email: npiatak@usgs.gov organization: U.S. Geological Survey, 954 National Center, Reston, VA 20176, United States – sequence: 2 givenname: Michael B. surname: Parsons fullname: Parsons, Michael B. organization: Geological Survey of Canada, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada – sequence: 3 givenname: Robert R. surname: Seal fullname: Seal, Robert R. organization: U.S. Geological Survey, 954 National Center, Reston, VA 20176, United States |
BookMark | eNqNkE1LAzEURYNUsK3-BmfpZupLZpqZKC5K8QsKbnQdMpmXNmWa1CSt-O-dUnHhRuHC29xz4Z0RGTjvkJBLChMKlF-vJ2q7RK9XuJkwoOUE-oA4IUNaVywXtCgHZAh1XeRMsOqMjGJcA8C0AjYkt_OVCkonDDYmq2OmXJuh29vg3QZdUl2m4hZ1ipk3WezU8iabZQH3Fj_OyalRXcSL7zsmbw_3r_OnfPHy-DyfLXI1hSrlWJii4RorWjaM1qiLqmq5mjYt5SU0YFrTiFIzIXhDDWjDSyGwVazmjBvFijG5Ou5ug3_fYUxyY6PGrlMO_S5K1n9DC8oL2lerY1UHH2NAI7fBblT4lBTkQZdcyx9d8qBLQh8QPXn3i9Q2qWS9S0HZ7h_87Mhjb6K3E2TUFp3G1oZen2y9_XPjC0Rfjns |
CitedBy_id | crossref_primary_10_1007_s42461_024_01161_5 crossref_primary_10_1016_j_cemconcomp_2017_08_017 crossref_primary_10_1016_j_apgeochem_2015_09_011 crossref_primary_10_1016_j_chemosphere_2024_143562 crossref_primary_10_1016_j_apgeochem_2015_09_019 crossref_primary_10_1007_s10751_022_01797_z crossref_primary_10_1007_s40831_020_00281_8 crossref_primary_10_1016_j_seppur_2015_10_051 crossref_primary_10_3390_min10090728 crossref_primary_10_3390_environments11070143 crossref_primary_10_1016_j_apgeochem_2023_105649 crossref_primary_10_1016_j_fuproc_2022_107361 crossref_primary_10_1111_jace_17431 crossref_primary_10_1007_s11356_023_25241_z crossref_primary_10_1016_j_jmst_2016_09_008 crossref_primary_10_3390_ma15165726 crossref_primary_10_1021_acs_est_9b01265 crossref_primary_10_1007_s10653_019_00378_4 crossref_primary_10_1016_j_jece_2024_112448 crossref_primary_10_1016_j_nucengdes_2025_113895 crossref_primary_10_3390_met13111862 crossref_primary_10_3390_ma16186189 crossref_primary_10_1016_j_jobe_2022_105480 crossref_primary_10_1016_j_jnoncrysol_2019_119675 crossref_primary_10_1111_jace_15354 crossref_primary_10_1016_j_envpol_2018_03_022 crossref_primary_10_1002_tqem_21885 crossref_primary_10_1007_s11104_023_06436_2 crossref_primary_10_1016_S1003_6326_19_65172_1 crossref_primary_10_3390_met9080902 crossref_primary_10_1016_j_mineng_2021_107232 crossref_primary_10_1021_acs_jpclett_4c03568 crossref_primary_10_3390_coatings12020221 crossref_primary_10_1016_j_gexplo_2025_107743 crossref_primary_10_1016_j_jclepro_2015_09_111 crossref_primary_10_3389_fmicb_2019_01320 crossref_primary_10_3390_ijerph17062069 crossref_primary_10_1007_s10853_023_08815_7 crossref_primary_10_1016_j_jas_2020_105204 crossref_primary_10_1016_j_apgeochem_2016_03_006 crossref_primary_10_1088_1755_1315_1108_1_012073 crossref_primary_10_1177_09544097251316710 crossref_primary_10_2139_ssrn_4179205 crossref_primary_10_3390_min12121520 crossref_primary_10_1144_esss2024_010 crossref_primary_10_3390_su15064834 crossref_primary_10_3390_su13168805 crossref_primary_10_1111_jace_19727 crossref_primary_10_1016_j_scitotenv_2022_157296 crossref_primary_10_3390_met14101119 crossref_primary_10_1007_s11244_019_01162_5 crossref_primary_10_1016_j_jenvman_2024_121731 crossref_primary_10_1016_j_jhazmat_2019_120798 crossref_primary_10_1134_S0020168517140175 crossref_primary_10_3390_min14010097 crossref_primary_10_1016_j_jmrt_2023_10_171 crossref_primary_10_1016_j_resenv_2020_100001 crossref_primary_10_1016_j_jhazmat_2023_130784 crossref_primary_10_1016_j_conbuildmat_2025_140575 crossref_primary_10_1080_21650373_2023_2250786 crossref_primary_10_1016_j_jclepro_2019_117736 crossref_primary_10_2355_isijinternational_ISIJINT_2018_338 crossref_primary_10_1016_j_anthro_2024_103343 crossref_primary_10_1016_j_agee_2019_106716 crossref_primary_10_2139_ssrn_3944463 crossref_primary_10_1016_j_jclepro_2024_142250 crossref_primary_10_3390_su14148783 crossref_primary_10_1016_j_agee_2016_01_042 crossref_primary_10_3390_min11010024 crossref_primary_10_1016_j_scitotenv_2022_158322 crossref_primary_10_1016_j_gexplo_2024_107599 crossref_primary_10_1021_acs_est_8b01883 crossref_primary_10_3390_met13071265 crossref_primary_10_1016_j_apgeochem_2023_105670 crossref_primary_10_1016_j_jenvman_2017_09_032 crossref_primary_10_1016_j_resconrec_2020_105366 crossref_primary_10_1007_s11356_021_16438_1 crossref_primary_10_1515_zpch_2019_0001 crossref_primary_10_1002_jrs_4815 crossref_primary_10_3390_ma14195864 crossref_primary_10_1111_jace_14224 crossref_primary_10_3989_revmetalm_083 crossref_primary_10_1016_j_hybadv_2024_100186 crossref_primary_10_1007_s41939_024_00444_0 crossref_primary_10_1051_mattech_2024026 crossref_primary_10_3390_ma14174806 crossref_primary_10_1016_j_psep_2020_03_036 crossref_primary_10_3390_met14070804 crossref_primary_10_3390_min10040313 crossref_primary_10_1016_j_conbuildmat_2020_119400 crossref_primary_10_1016_j_cattod_2019_04_033 crossref_primary_10_1007_s11356_024_33897_4 crossref_primary_10_1016_j_jcou_2024_102984 crossref_primary_10_3390_min9080468 crossref_primary_10_3390_ma15165654 crossref_primary_10_1002_ldr_4438 crossref_primary_10_1007_s11270_023_06463_w crossref_primary_10_1515_eng_2024_0014 crossref_primary_10_1016_j_jclepro_2016_05_106 crossref_primary_10_1007_s12517_023_11721_6 crossref_primary_10_1007_s11356_015_5861_0 crossref_primary_10_3390_min12081047 crossref_primary_10_3390_min9070415 crossref_primary_10_1016_j_mineng_2021_107150 crossref_primary_10_1016_j_conbuildmat_2020_121942 crossref_primary_10_3390_pr12091998 crossref_primary_10_1520_GTJ20230297 crossref_primary_10_1016_j_jobe_2024_111361 crossref_primary_10_1016_j_apgeochem_2024_105997 crossref_primary_10_1007_s40831_024_00812_7 crossref_primary_10_1111_jace_16869 crossref_primary_10_1016_j_scitotenv_2019_03_362 crossref_primary_10_1007_s10163_020_01162_8 crossref_primary_10_1039_D0RA08449B crossref_primary_10_31025_2611_4135_2019_13815 crossref_primary_10_1016_j_jenvman_2018_04_083 crossref_primary_10_1186_s40069_022_00541_9 crossref_primary_10_1180_mgm_2019_51 crossref_primary_10_1016_j_heliyon_2024_e32426 crossref_primary_10_3390_cryst11121504 crossref_primary_10_1016_j_jhazmat_2022_128493 crossref_primary_10_1016_j_psep_2023_12_057 crossref_primary_10_1016_j_gexplo_2022_106987 crossref_primary_10_1016_j_ceramint_2018_07_180 crossref_primary_10_1016_j_jenvman_2023_118876 crossref_primary_10_1016_j_apgeochem_2024_106061 crossref_primary_10_37208_tgn28123 crossref_primary_10_1016_j_reffit_2016_05_001 crossref_primary_10_1016_j_hydromet_2016_08_014 crossref_primary_10_1016_j_jclepro_2017_07_212 crossref_primary_10_1007_s12649_024_02686_y crossref_primary_10_3390_min5010082 crossref_primary_10_1016_j_scitotenv_2022_157433 crossref_primary_10_1016_j_agee_2024_108924 crossref_primary_10_1016_j_apgeochem_2018_09_009 crossref_primary_10_1016_j_apgeochem_2024_106068 crossref_primary_10_5004_dwt_2020_24868 crossref_primary_10_1016_j_jcou_2023_102418 crossref_primary_10_30657_pea_2022_28_31 crossref_primary_10_3390_min10111006 crossref_primary_10_5937_podrad2037033K crossref_primary_10_1016_j_cscee_2021_100147 crossref_primary_10_1016_j_conbuildmat_2022_128630 crossref_primary_10_1016_j_scitotenv_2017_01_053 crossref_primary_10_1002_aesr_202400338 crossref_primary_10_1016_j_cej_2024_151486 crossref_primary_10_1007_s40831_021_00445_0 crossref_primary_10_1016_j_mineng_2022_107474 crossref_primary_10_1080_10643389_2015_1046769 crossref_primary_10_1016_j_conbuildmat_2023_134480 crossref_primary_10_1002_wer_1208 crossref_primary_10_1016_j_jclepro_2024_142678 crossref_primary_10_1016_j_jobe_2024_110862 crossref_primary_10_1016_j_conbuildmat_2016_11_074 crossref_primary_10_15407_ufm_23_01_108 crossref_primary_10_7717_peerj_10825 crossref_primary_10_1364_AO_56_007789 crossref_primary_10_1016_j_resconrec_2021_106098 crossref_primary_10_1109_ACCESS_2025_3529280 crossref_primary_10_1016_j_jobe_2024_109349 crossref_primary_10_1515_georec_2017_0003 crossref_primary_10_1016_j_resconrec_2018_04_023 crossref_primary_10_1007_s41062_024_01736_7 crossref_primary_10_1134_S1062739120016564 crossref_primary_10_1016_j_jenvman_2018_10_028 crossref_primary_10_3390_min11030262 crossref_primary_10_1080_14680629_2023_2268723 crossref_primary_10_1016_j_chemosphere_2022_136319 crossref_primary_10_3390_su12052118 crossref_primary_10_1016_j_scitotenv_2020_138300 crossref_primary_10_1007_s10661_023_11561_7 crossref_primary_10_1007_s11356_018_2486_0 crossref_primary_10_1007_s12520_022_01704_1 crossref_primary_10_1016_j_conbuildmat_2022_127357 crossref_primary_10_1016_S1003_6326_24_66635_5 crossref_primary_10_1007_s11356_022_23569_6 crossref_primary_10_1016_j_geoforum_2017_03_021 crossref_primary_10_1016_j_jes_2024_09_030 crossref_primary_10_3390_met13081467 crossref_primary_10_3390_app11094028 crossref_primary_10_1007_s10973_018_7439_9 crossref_primary_10_1002_apj_2150 crossref_primary_10_3389_fenrg_2021_771603 crossref_primary_10_1016_j_eti_2021_101467 crossref_primary_10_1016_j_energy_2022_123962 crossref_primary_10_1016_j_jwpe_2020_101369 crossref_primary_10_1002_gea_21726 crossref_primary_10_3989_mc_2019_06018 crossref_primary_10_1016_j_jenvman_2018_05_071 crossref_primary_10_1016_j_jece_2022_107338 crossref_primary_10_1016_j_ancene_2019_100229 crossref_primary_10_1016_j_apt_2020_07_010 crossref_primary_10_1016_j_chemosphere_2024_143662 crossref_primary_10_1016_j_cscm_2025_e04336 crossref_primary_10_1016_j_scitotenv_2021_150961 crossref_primary_10_1016_j_jclepro_2020_125584 crossref_primary_10_3390_min10121097 crossref_primary_10_1016_j_jhazmat_2018_08_046 crossref_primary_10_1007_s42947_024_00494_0 crossref_primary_10_3390_buildings14041091 crossref_primary_10_1016_j_wasman_2018_06_012 crossref_primary_10_1016_j_apgeochem_2018_08_027 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000612 crossref_primary_10_1002_adsu_202300559 crossref_primary_10_1007_s11663_022_02609_z crossref_primary_10_1016_j_ufug_2017_01_015 crossref_primary_10_1016_j_jenvman_2018_05_056 crossref_primary_10_3390_min10080705 crossref_primary_10_1061__ASCE_GT_1943_5606_0001980 crossref_primary_10_1007_s10653_014_9672_x crossref_primary_10_1021_acs_est_7b00874 crossref_primary_10_3390_geosciences11040167 crossref_primary_10_1016_j_gexplo_2017_12_001 crossref_primary_10_1016_j_jenvman_2020_110191 crossref_primary_10_1007_s40831_015_0028_2 crossref_primary_10_1002_srin_202300854 crossref_primary_10_1038_s41598_020_63783_1 crossref_primary_10_3390_molecules29071502 crossref_primary_10_1016_j_jece_2022_107671 crossref_primary_10_1016_j_jece_2022_107792 crossref_primary_10_1134_S0003683819010058 crossref_primary_10_1016_j_trgeo_2020_100485 crossref_primary_10_1016_j_jclepro_2022_134421 crossref_primary_10_1016_j_jece_2020_103833 crossref_primary_10_1016_j_mtla_2024_102159 crossref_primary_10_1080_09593330_2024_2381645 crossref_primary_10_1016_j_mineng_2020_106407 crossref_primary_10_1021_acs_est_7b02844 crossref_primary_10_1080_19392699_2024_2400574 crossref_primary_10_1016_j_jclepro_2021_129804 crossref_primary_10_2166_wst_2017_294 crossref_primary_10_3389_fmats_2021_803106 crossref_primary_10_1007_s11104_023_06398_5 crossref_primary_10_1016_j_ijggc_2019_05_021 crossref_primary_10_1002_ep_12591 crossref_primary_10_1016_j_cej_2023_144171 crossref_primary_10_1007_s12665_021_09594_7 crossref_primary_10_1016_j_cemconres_2024_107756 crossref_primary_10_1080_10584587_2017_1352401 crossref_primary_10_1016_j_conbuildmat_2023_130606 crossref_primary_10_3390_min9090542 crossref_primary_10_1088_1755_1315_1130_1_012002 crossref_primary_10_1007_s11368_017_1892_0 crossref_primary_10_3390_buildings14051323 crossref_primary_10_1016_j_mineng_2019_106068 crossref_primary_10_3390_app13095716 crossref_primary_10_1016_j_heliyon_2024_e26004 crossref_primary_10_1007_s11771_024_5604_9 crossref_primary_10_32434_0321_4095_2021_135_2_95_103 crossref_primary_10_1007_s12598_024_02853_z crossref_primary_10_1088_1748_9326_abc217 crossref_primary_10_1016_j_apgeochem_2014_12_014 crossref_primary_10_1007_s11663_016_0693_y crossref_primary_10_1016_j_jhazmat_2019_120936 crossref_primary_10_1021_acs_energyfuels_3c05108 crossref_primary_10_1016_j_ijhydene_2022_04_209 crossref_primary_10_1016_j_conbuildmat_2022_128473 crossref_primary_10_1080_00084433_2021_2016345 crossref_primary_10_1080_00084433_2021_2016346 crossref_primary_10_1016_j_envpol_2019_01_060 crossref_primary_10_3390_min10020149 crossref_primary_10_1016_j_proche_2016_03_111 crossref_primary_10_3390_su16125244 crossref_primary_10_3389_fenvs_2024_1290969 crossref_primary_10_1002_srin_201600322 crossref_primary_10_2174_1877946810666200128152729 crossref_primary_10_1016_j_jenvman_2016_05_052 crossref_primary_10_1007_s10967_023_08909_1 crossref_primary_10_1007_s10230_016_0388_2 crossref_primary_10_1016_j_conbuildmat_2021_123432 crossref_primary_10_1016_j_jenvman_2018_08_045 crossref_primary_10_3390_min14090852 crossref_primary_10_1007_s11595_021_2396_8 crossref_primary_10_1021_acsestengg_1c00343 crossref_primary_10_2355_isijinternational_ISIJINT_2022_247 crossref_primary_10_1016_j_psep_2023_05_036 crossref_primary_10_22201_fa_2007252Xp_2023_27_85764 crossref_primary_10_1016_j_jas_2022_105639 crossref_primary_10_1080_03067319_2022_2079082 crossref_primary_10_1016_j_gexplo_2016_03_015 crossref_primary_10_2139_ssrn_3963864 crossref_primary_10_1016_j_mineng_2016_08_029 crossref_primary_10_1007_s11356_018_1260_7 crossref_primary_10_1016_j_jobe_2023_108375 crossref_primary_10_3390_ma12040621 crossref_primary_10_1016_j_cemconres_2023_107155 crossref_primary_10_1016_j_chemosphere_2019_124824 crossref_primary_10_1016_j_jece_2022_109242 crossref_primary_10_1007_s11837_022_05597_2 crossref_primary_10_1016_j_jclepro_2019_118144 crossref_primary_10_3390_min12111442 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000472 crossref_primary_10_1080_08827508_2023_2282702 crossref_primary_10_1017_S0885715617000999 crossref_primary_10_1016_j_jnoncrysol_2023_122397 crossref_primary_10_1016_j_cogsc_2020_100377 crossref_primary_10_1016_j_jmrt_2021_03_090 crossref_primary_10_1016_j_cemconcomp_2020_103875 crossref_primary_10_1016_j_apgeochem_2018_11_017 crossref_primary_10_2208_jscejge_72_179 crossref_primary_10_3390_min14121204 crossref_primary_10_1007_s42247_024_00847_2 crossref_primary_10_1016_j_jclepro_2017_10_130 crossref_primary_10_1016_j_scp_2024_101898 crossref_primary_10_3390_min10010033 crossref_primary_10_1016_j_conbuildmat_2020_120275 crossref_primary_10_1016_j_jclepro_2016_02_013 crossref_primary_10_1002_cben_202300024 crossref_primary_10_1021_acsami_2c08778 crossref_primary_10_3390_ma16237295 crossref_primary_10_1007_s11356_023_27898_y crossref_primary_10_1016_j_resconrec_2019_104627 crossref_primary_10_1088_2058_6272_ad0c25 crossref_primary_10_1016_j_gexplo_2022_107109 crossref_primary_10_1016_j_ultsonch_2021_105503 crossref_primary_10_1007_s11356_022_24230_y crossref_primary_10_3389_fenrg_2021_760312 crossref_primary_10_3390_min10080654 crossref_primary_10_1016_j_resconrec_2019_03_036 crossref_primary_10_1007_s13762_017_1514_9 crossref_primary_10_1080_10643389_2020_1853458 crossref_primary_10_1016_j_jhazmat_2020_124201 crossref_primary_10_1016_S1003_6326_20_65352_3 crossref_primary_10_1017_S0885715623000179 crossref_primary_10_3390_buildings13051193 crossref_primary_10_1088_1757_899X_969_1_012042 crossref_primary_10_1007_s10653_019_00419_y crossref_primary_10_1021_acsomega_2c04302 crossref_primary_10_1016_j_scitotenv_2016_12_132 crossref_primary_10_1016_j_wasman_2019_06_018 crossref_primary_10_1080_02670836_2022_2062812 crossref_primary_10_1002_jrs_6453 crossref_primary_10_1155_2016_9535940 crossref_primary_10_1007_s40831_023_00683_4 crossref_primary_10_1016_j_apradiso_2021_109851 crossref_primary_10_1016_j_scitotenv_2015_01_072 crossref_primary_10_1016_j_gexplo_2019_106364 crossref_primary_10_1016_j_matpr_2021_03_617 crossref_primary_10_1016_j_gexplo_2020_106631 crossref_primary_10_3390_min12091153 crossref_primary_10_1016_j_conbuildmat_2015_12_043 crossref_primary_10_1016_j_conbuildmat_2021_125663 crossref_primary_10_1016_j_gexplo_2020_106630 crossref_primary_10_1016_j_mineng_2015_01_012 crossref_primary_10_1016_j_gexplo_2022_107044 crossref_primary_10_1016_S1002_0160_20_60058_3 crossref_primary_10_1016_j_conbuildmat_2024_139435 crossref_primary_10_1021_acs_est_1c02505 crossref_primary_10_1016_j_jas_2020_105142 crossref_primary_10_1016_j_jenvman_2016_11_037 crossref_primary_10_1016_j_cemconcomp_2021_104087 crossref_primary_10_1016_j_envpol_2015_11_030 crossref_primary_10_1016_j_matpr_2023_04_042 crossref_primary_10_1016_j_conbuildmat_2019_117630 crossref_primary_10_1021_acsestengg_2c00035 crossref_primary_10_1007_s13762_018_1952_z crossref_primary_10_1016_j_conbuildmat_2015_12_153 crossref_primary_10_1016_j_jhazmat_2020_124225 crossref_primary_10_1016_j_gexplo_2021_106808 crossref_primary_10_1016_j_gexplo_2020_106629 crossref_primary_10_3389_feart_2017_00086 crossref_primary_10_1007_s11356_023_31527_z crossref_primary_10_1016_j_wasman_2019_11_040 crossref_primary_10_1016_j_jwpe_2023_103723 crossref_primary_10_1016_j_cemconres_2021_106655 crossref_primary_10_1016_j_ceramint_2023_11_059 crossref_primary_10_1002_cben_202000021 crossref_primary_10_1016_j_envpol_2019_04_077 crossref_primary_10_1016_j_cemconres_2022_106834 crossref_primary_10_1016_j_scitotenv_2017_06_237 crossref_primary_10_1021_acssuschemeng_0c06355 crossref_primary_10_1016_j_chemosphere_2017_03_015 crossref_primary_10_1016_j_jclepro_2022_133095 crossref_primary_10_1016_j_cemconres_2020_106287 crossref_primary_10_1016_j_coesh_2021_100253 crossref_primary_10_1016_j_mineng_2024_109066 crossref_primary_10_1016_j_chemosphere_2019_124885 crossref_primary_10_1016_j_jhazmat_2018_04_023 crossref_primary_10_1007_s11663_015_0394_y crossref_primary_10_1016_j_jece_2020_104450 crossref_primary_10_3390_polym16101306 crossref_primary_10_3390_app15010010 crossref_primary_10_1007_s42243_021_00713_z crossref_primary_10_1016_j_mineng_2020_106238 crossref_primary_10_3389_fenrg_2017_00029 crossref_primary_10_1016_j_chemosphere_2021_130337 crossref_primary_10_3390_min12020184 crossref_primary_10_1016_j_mineng_2020_106234 crossref_primary_10_1134_S1087659618030070 crossref_primary_10_3390_min8110513 crossref_primary_10_1016_j_conbuildmat_2019_116694 crossref_primary_10_1016_j_jclepro_2020_121203 crossref_primary_10_1016_j_hydromet_2015_10_032 crossref_primary_10_1016_j_jece_2023_111320 crossref_primary_10_1016_j_jclepro_2016_05_073 crossref_primary_10_1016_j_jnoncrysol_2019_119771 crossref_primary_10_1016_j_conbuildmat_2018_05_056 crossref_primary_10_1016_j_hydromet_2022_105899 crossref_primary_10_1016_j_jenvman_2019_02_032 crossref_primary_10_1080_10584587_2016_1171178 crossref_primary_10_1016_j_scitotenv_2022_159121 crossref_primary_10_1016_j_csite_2021_101003 crossref_primary_10_1016_j_wasman_2017_09_037 crossref_primary_10_1016_j_wasman_2019_05_031 crossref_primary_10_1016_j_cemconres_2021_106466 crossref_primary_10_1016_j_cemconres_2022_106984 crossref_primary_10_1016_j_envint_2023_108067 crossref_primary_10_3390_met10101347 crossref_primary_10_3390_su151310496 crossref_primary_10_1016_j_asej_2024_102790 crossref_primary_10_1016_j_jenvman_2022_116676 crossref_primary_10_1016_j_chemosphere_2022_135902 crossref_primary_10_1051_metal_2021020 crossref_primary_10_1080_14680629_2016_1197143 crossref_primary_10_2355_isijinternational_ISIJINT_2017_478 crossref_primary_10_3390_cryst11040348 crossref_primary_10_1016_j_gexplo_2019_04_009 crossref_primary_10_1111_ijac_14993 crossref_primary_10_1002_cjce_25046 crossref_primary_10_1016_j_scitotenv_2017_11_026 crossref_primary_10_1080_10643389_2015_1131560 crossref_primary_10_1016_j_jhazmat_2017_01_050 crossref_primary_10_1016_j_matpr_2020_11_648 crossref_primary_10_36790_epistemus_v16i32_190 crossref_primary_10_1016_j_envpol_2020_115118 crossref_primary_10_1016_j_apgeochem_2019_104473 crossref_primary_10_1016_j_conbuildmat_2019_116799 crossref_primary_10_21809_rilemtechlett_2022_157 crossref_primary_10_1016_j_cemconcomp_2023_105427 crossref_primary_10_1016_j_rineng_2023_100987 crossref_primary_10_1016_j_chemosphere_2025_144155 crossref_primary_10_1016_j_apenergy_2019_05_064 crossref_primary_10_1016_j_jenvrad_2017_03_004 crossref_primary_10_1080_01490400_2019_1627963 crossref_primary_10_1016_j_conbuildmat_2023_131572 crossref_primary_10_1016_j_scitotenv_2021_145929 crossref_primary_10_3390_app10010035 crossref_primary_10_3390_app142411734 crossref_primary_10_1016_j_jenvman_2024_123782 crossref_primary_10_1007_s41024_023_00264_8 crossref_primary_10_1016_j_jobe_2021_103813 crossref_primary_10_1080_00084433_2024_2399462 crossref_primary_10_1016_j_mineng_2024_109154 crossref_primary_10_1016_j_matpr_2020_05_422 crossref_primary_10_1016_j_gerr_2023_100012 crossref_primary_10_1016_j_scitotenv_2023_161405 crossref_primary_10_1016_j_conbuildmat_2018_02_102 crossref_primary_10_1016_j_scitotenv_2022_161351 crossref_primary_10_1016_j_jnoncrysol_2024_122843 crossref_primary_10_3390_min12060767 crossref_primary_10_1021_acs_energyfuels_9b03274 crossref_primary_10_1016_j_jclepro_2023_138649 crossref_primary_10_1016_j_chemosphere_2018_06_038 crossref_primary_10_1007_s11837_022_05614_4 crossref_primary_10_1016_j_jenvman_2020_110506 crossref_primary_10_1016_j_jnoncrysol_2023_122541 |
Cites_doi | 10.1180/minmag.2008.072.1.489 10.1111/j.1745-6584.2005.00060.x 10.1180/0026461056950284 10.5402/2012/231458 10.5276/JSWTM.2012.17 10.1016/j.apgeochem.2008.10.003 10.1007/s00254-003-0875-1 10.1016/j.jhazmat.2006.02.060 10.1016/0016-7037(68)90100-2 10.1016/S0950-0618(02)00046-6 10.1007/s10653-007-9110-4 10.1002/ep.10063 10.1002/ep.670050108 10.1016/j.scitotenv.2007.03.034 10.1021/es970934w 10.3133/pp1270 10.3133/ofr20051283 10.1016/j.wasman.2006.08.002 10.1180/minmag.1986.050.355.19 10.1021/es049670l 10.1007/BF00770598 10.1016/j.wasman.2004.07.014 10.1180/minmag.1977.041.320.11 10.1016/0304-3894(83)80039-9 10.1016/j.mineng.2012.04.013 10.1016/S0921-3449(02)00171-4 10.3133/sir20115014 10.1016/j.agee.2008.04.014 10.1080/15320380903548508 10.1016/j.apgeochem.2004.01.005 10.1016/S0375-6742(96)00062-3 10.1016/j.cemconres.2009.05.007 10.1016/S0304-386X(00)00090-6 10.1177/0734242X9701500105 10.1127/0935-1221/2001/0013/0949 10.1016/j.watres.2006.02.001 10.1021/es0347843 10.1016/S0166-1116(08)70288-7 10.1007/s00254-007-1131-x 10.2138/am.2009.3171 10.1016/j.cemconres.2007.03.008 10.3749/canmin.47.3.557 10.1016/j.envpol.2005.08.034 10.1016/0883-2927(94)90020-5 10.1016/0008-8846(86)90039-6 10.1016/S0883-2927(01)00032-4 10.3133/sir20105084 10.5382/Rev.06.13 10.1180/0026461036760164 10.1016/0304-386X(80)90025-0 10.1016/j.jhazmat.2007.07.093 10.1007/s102300200024 10.2113/gscanmin.45.5.1189 10.1016/j.apgeochem.2008.01.005 10.1016/j.wasman.2007.09.017 10.2172/138820 10.1016/j.scitotenv.2005.03.022 10.1016/S0950-0618(02)00095-8 10.1016/j.chemgeo.2010.05.018 10.1016/S1002-0160(12)60039-3 10.1016/j.jhazmat.2012.01.074 10.1180/0026461026640043 10.1515/9781501509797-012 10.1016/j.hydromet.2009.03.007 10.1021/es801626d 10.2134/jeq2010.0516 10.1016/S0375-6742(01)00178-9 10.1016/j.gexplo.2012.09.008 10.1016/j.jhazmat.2008.07.125 10.1002/etc.2342 10.1016/j.chemosphere.2004.07.022 10.1155/2011/463638 10.1111/j.1475-4754.2008.00455.x 10.1016/j.jhazmat.2012.04.015 10.1016/j.jhazmat.2011.02.091 10.21000/JASMR99010651 10.1016/j.apgeochem.2009.12.001 10.1180/minmag.2010.074.4.581 10.1016/j.jhazmat.2010.05.116 10.1016/j.scitotenv.2009.05.039 10.1127/0935-1221/2011/0023-2167 10.1179/cmq.1993.32.1.1 10.2113/gscanmin.41.3.627 10.1016/0191-815X(85)90005-1 10.1016/j.apgeochem.2007.07.012 10.1016/S0043-1354(02)00120-3 10.2113/173.2.161 10.1021/ba-1967-0067.ch010 10.1016/0024-4937(77)90037-8 10.1016/j.apgeochem.2011.12.011 10.1016/j.cemconres.2008.11.002 10.1016/S0166-1116(97)80245-2 10.3749/canmin.46.5.1235 10.3749/canmin.49.5.1281 10.1016/j.jhazmat.2011.09.102 10.1016/j.hydromet.2005.10.007 10.1007/s00410-007-0277-6 10.1016/j.jhazmat.2007.04.007 10.2113/gscanmin.39.2.331 10.1016/j.jas.2010.01.026 10.5382/Rev.06.06 10.1016/j.apgeochem.2008.09.009 10.2298/JMMB120814011S 10.1127/0935-1221/2010/0022-2055 10.1021/es9906002 10.1016/j.watres.2012.02.012 10.1016/j.wasman.2010.05.018 10.1016/j.apgeochem.2008.08.005 10.1016/j.mineng.2012.07.010 10.1016/j.cemconcomp.2012.02.011 10.1016/j.hydromet.2010.02.009 10.2172/138643 10.1080/10934529.2013.815571 10.1016/j.gexplo.2005.08.006 10.1021/es011502v 10.1127/0077-7757/2005/0016 10.1016/j.chemer.2008.03.001 10.2166/wst.2007.513 10.2113/gscanmin.39.3.873 10.1016/S0166-1116(08)71446-8 10.1680/adcr.12.00004 10.1016/j.hydromet.2008.05.042 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2014.04.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
EndPage | 266 |
ExternalDocumentID | 10_1016_j_apgeochem_2014_04_009 S0883292714000821 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a507t-e3f3b6ce714b218ec377d6a5bd1640b0fdfb94c2996b1f0cf6499eda28626fa23 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Thu Aug 07 14:39:03 EDT 2025 Tue Jul 01 01:59:31 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Fri Feb 23 02:30:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a507t-e3f3b6ce714b218ec377d6a5bd1640b0fdfb94c2996b1f0cf6499eda28626fa23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000131631 |
PQPubID | 24069 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2000131631 crossref_primary_10_1016_j_apgeochem_2014_04_009 crossref_citationtrail_10_1016_j_apgeochem_2014_04_009 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2014_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dimitrova (b0190) 2002; 36 De Windt, Chaurand, Rose (b0185) 2011; 31 Ivanov, I.T., 2000. Phase composition of metallurgical slags in Bulgaria. In: Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R.B., Pentinghaus, H. (Eds.), Proceedings of the Sixth International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, July 17–19, 2000. Johnson, E.A., Oden, L.L., Sanker, P.E., 1982. Results of E.P.A. Extraction Procedure Toxicity Test Applied to Copper Reverberatory Slags: U.S. Bureau of Mines Report of Investigation 8648, 16p. Suer, Lindqvist, Arm, Frogner-Kockum (b0780) 2009; 407 Ettler, Johan, Vítkova, Skála, Kotrlý, Habler, Klementová (b0260) 2012; 221–222 Vdović, Billon, Gabelle, Potdevin (b0850) 2006; 141 Bril, Zainoun, Puziewicz, Courtin-Nomade, Vanaecker, Bollinger (b0105) 2008; 46 Matthes, S.A., 1980. Rapid Low-cost Analysis of a Copper Slag for 13 Elements by Flame Atomic Absorption Spectroscopy: U.S. Bureau of Mines Report of Investigations 8484, 8p. Milačič, Zuliani, Oblak, Mladenovič, Ščančar (b0485) 2011; 40 U.S. Environmental Protection Agency (USEPA), 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846 third ed. Ettler, Komárková, Jehlička, Coufal, Hradil, Machovič, Delorme (b0240) 2004; 57 Álvarez-Valero, Pérez-López, Matos, Capitán, Nieto, Sáez, Delgado, Caraballo (b0025) 2008; 55 Lopez, Lopez-Delgado, Belcazar (b0430) 1997 Roadcap, Kelly (b0650) 1994 Gee, Ramsey, Maskall, Thornton (b0315) 1997; 58 De Andrade Lima, Bernardez (b0175) 2011; 189 Chang, His, Hseu, Jheng (b0130) 2013; 48 Shen, Zhou, Ma, Hu, Cai (b0735) 2009; 164 CDM Fed Programs Corporation, 1993. Draft Work Plan for Waste Compatibility Evaluation Study – Sharon Steel Tailings Site/Midvale Slag Site. USEPA, Midvale, Utah. Contract No. 68-W9-0021. Alpers, Nordstrom (b0015) 1999; vol. 6A Chaudhuri, Newesely (b0135) 1993; 32 Leonard, R.P., Ziegler, R.C., Brown, W.R., Yang, J.Y., Reif, H.C., 1977. Assessment of Industrial Hazardous Waste Practices in the Metal Smelting and Refining Industry, vol. IV, Appendices: U.S. Environmental Protection Agency, EPA/530/SW-145c.4, pp. 31–39. Partymiller, K., 1992. Horsehead Resource Development Company, Inc. Flame Reactor Technology: Applications Analysis Report. Environmental Protection Agency, EPA/540/A5-91/005. Barna, Moszkowicz, Gervais (b0055) 2004; 24 Kourounis, Tsivilis, Tsakiridis, Papadimitriou, Tsibouki (b0390) 2007; 37 Simmons, Ziemkiewicz, Black (b0750) 2002; 21 Drizo, Forget, Chapuis, Comeau (b0210) 2006; 40 Piatak, N.M., Seal II, R.R., 2012b. Leaching tests to characterize ferrous and nonferrous slag drainage chemistry. In: Price, W.A., Hogan, C., Tremblay, G. (Eds.), Proceedings from the Ninth International Conference on Acid Rock Drainage, Ottawa, Canada, 12p. Scott, Critchley, Wilkinson (b0700) 1986; 50 Tshiongo, Mbaya, Maweja, Tshabalala (b0820) 2010; 70 Yang, Rui-lin, Wang-dong, Hui (b0920) 2010; 103 Maslehuddin, Sharif, Shameem, Ibrahim, Barry (b0470) 2003; 17 Barca, Gérente, Meyer, Chazarenc, Andrès (b0050) 2012; 46 Carroll, Rutherford (b0115) 1988; 73 Muhmood, Vitta, Venkateswaran (b0500) 2009; 39 Canadian Council of Ministers of the Environment (CCME), 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. Wilson, L.J., 1994. Literature Review on Slag Leaching: Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories Division Report 94-3 (CR), Ottawa. Weston Solutions, Inc., 2007. Final Remedial Investigation Report Hegeler Zinc Site, Danville, Vermilion County, Illinois. Document Control No. RFW250-2A-AWOO. Prepared for USEPA. Helgeson (b0350) 1968; 32 Shibayama, Takasaki, William, Yamatodani, Higuchi, Sunagawa, Ono (b0740) 2010; 181 Anderson (b0040) 1991; 30 Levin, Robbins, McMurdie (b0415) 1964 Rosenqvist (b0670) 2004 Seal II, R.R., Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., Ingersoll, C.G., 2010. Aquatic Assessment of the Ely Copper Mine Superfund Site, Vershire, Vermont: U.S. Geological Survey Scientific Investigation, Report 2010-5084, 150p. Ettler, Jehlička, Mašek, Hruška (b0245) 2005; 69 Brandt, Warner (b0100) 2009 Paris, Giuli, Carroll, Davoli (b0550) 2001; 39 Oh, Rhee, Oh, Park (b0545) 2012; 213–214 Blowes, D.W., Bain, J.G., Smyth, D., McGregor, R., Ludwig, P., Wilkens, J.A., Ptacek, C.J., Spink, L., 2005, Treatment of Arsenic Using Permeable Reactive Barriers: Geological Society of America Annual Meeting Program with Abstracts, vol. 37, no. 7, p. 102. Gorai, Jana, Premchand (b0325) 2003; 39 Seignez, Gauthier, Bulteel, Damidot, Potdevin (b0715) 2008; 23 Srivastava, Neuffer, Grano, Khan, Staudt, Jozewicz (b0770) 2005; 24 U.S. Environmental Protection Agency (USEPA), 2010. Regional Screening Levels (Formerly PRGs). Parsons, M.B., 2001. Geochemical and Mineralogical Controls on Trace Element Release from Base-metal Smelter Slags. Unpublished Ph.D. Thesis, Stanford University, Stanford, California, 307p. Tatarinov (b0800) 2002; 40 Twidwell (b0825) 1983; 8 Twidwell, Mehta (b0830) 1985; 5 Vítková, Ettler, Johan, Kříbek, Šebek, Mihaljevič (b0855) 2010; 74 Anand, Rao, Jena (b0035) 1980; 5 Mandin, D., van der Sloot, H.A., Gervais, C., Barna, R., Mehu, J., 1997. Valorization of lead–zinc primary smelters slags. In: Goumans, J.J.J., Senden, G.J., van der Sloot, H.A. (Eds.), Waste Materials in Construction: Putting Theory into Practice. Studies in Environmental Science, vol. 71, pp. 617–630. Pérez-López, Álvarez-Valero, Nieto, Sáez, Matos (b0580) 2008; 23 Negim, Eloifi, Mench, Bes, Gaste, Montelica-Heino, Le Coustumer (b0520) 2010; 19 Chirikure, Heimann, Killick (b0150) 2010; 37 Crock, J.G., Arbogast, B.F., Lamothe, P.J., 1999. Laboratory methods for the analysis of environmental samples. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology, vol. 6A, pp. 265–287 (Chapter 13). (accessed 09.09.13). Costagliola, Benvenuti, Chiarantini, Bianchi, Di Benedetto, Paolieri, Rossato (b0155) 2008; 23 Proctor, Fehling, Shay, Wittenborn, Green, Avent, Bigham, Connolly, Lee, Shepker, Zak (b0615) 2000; 34 Bowden, Jarvis, Younger, Johnson (b0095) 2009; 43 Lottermoser (b0440) 2002; 66 Puziewicz, Zainoun, Bril (b0620) 2007; 45 Sáez, Nocete, Nieto, Capitán, Rovira (b0680) 2003; 41 Wendling, Douglas, Coleman (b0880) 2012; 39 Douglas, Zerbino (b0195) 1986; 16 Rizza, I.L., Farthing, D.J., 2007. Catch the Rainbow: Geochemical Analysis of Colored Slag from Ironville, Adirondack State Park, New York: Geological Society of America, Abstracts with Programs, vol. 39, no. 6, p. 320. Shacklette, H.T., Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270, 104p. (assessed September 2013). Roadcap, Kelly, Bethke (b0655) 2005; 43 Glynn, P., Brown, J., 1996. Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Reactive Transport in Porous Media: Mineralogical Society of America, Reviews in Mineralogy, vol. 34, pp. 377–438 (Chapter 9). Morrison, Gulson (b0490) 2007; 382 Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, vol. 6A. Society of Economic Geologists, Littleton, CO, pp. 133–160 (Chapter 6). Kierczak, Potysz, Pietranik, Tyszka, Modelska, Néel, Ettler, Mihaljevič (b0385) 2013; 124 Robbins, Bundy, Stanga (b0660) 1983; vol. 2 Seignez, Gauthier, Bulteel, Buatier, Recourt, Damidot, Potdevin (b0710) 2007; 149 Van Oss, H.G., 2013. Slag, Iron and Steel: U.S. Geological Survey, 2011 Minerals Yearbook, vol. 1, pp. 69.1–69.9. Woodley, Walters (b0915) 1986; 5 Tetra Tech Inc., 1985. Granulated Slag Pile: Draft Stage 1 Remedial Investigation Report. Anaconda Minerals Company. European Committee for Standardization, 2002. Final Draft prEN 12457–2. Characterization of Waste Leaching-compliance Test of Leaching of Granular Waste Material and Sludges – Part 2: One-stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials With Particle Size Below 4 mm (With or Without Particle Reduction), Czech Standard Institute, Prague. Ali, Agarwal, Pahuja (b0010) 2013; 25 Bethke (b0080) 2008 Navarro, Cardellach, Mendoza, Corbella, Domènech (b0510) 2008; 23 Gbor, Ahmed, Jia (b0305) 2000; 57 National Slag Association (NSA), 2009. Slag’s Ain’t Slag’s. Ochola, Moo-Young (b0540) 2004; 38 Federal Highway Administration (FHWA), U.S. Department of Transportation, 1997.User Guidelines for Waste and Byproduct Materials in Pavement Construction: FHWA-RD-97-148, McLean, VA, USA. Bayless, Bullen, Fitzpatrick (b0075) 2004; 38 Ettler, Mihaljevič, Touray, Piantone (b0230) 2002; 173 Ettler, Johan, Kříbek, Šebek, Mihaljevič (b0255) 2009; 24 Gbor, Hoque, Jia (b0310) 2006; 81 Baker, Blowes, Ptacek (b0045) 1998; 32 Navarro, Díaz, Villa-García (b0515) 2010; 44 Vivenzio, Farthing (b0865) 2005; 37 Lottermoser (b0445) 2005; 181 Tack, Masscheleyn, Verloo (b0795) 1993; 55 Ali, Oh, Kim (b0005) 2008; 128 Chaurand, Rose, Briois, Olivi, Hazemann, Proux, Domas, Bottero (b0145) 2007; B139 Sato (b0690) 1977; 10 Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory, Livermore, California. Cottrell (b0160) 1995 Garrels, R.M., Mackenzie, F.T., 1967, Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, Advances in Chemistry Series 67: American Chemical Society, Washington, DC, pp. 2 10.1016/j.apgeochem.2014.04.009_b0905 Tshiongo (10.1016/j.apgeochem.2014.04.009_b0820) 2010; 70 Brandt (10.1016/j.apgeochem.2014.04.009_b0100) 2009 10.1016/j.apgeochem.2014.04.009_b0505 Rao (10.1016/j.apgeochem.2014.04.009_b0635) 1992; 40 Ettler (10.1016/j.apgeochem.2014.04.009_b0245) 2005; 69 Piatak (10.1016/j.apgeochem.2014.04.009_b0610) 2004; 19 10.1016/j.apgeochem.2014.04.009_b0900 Gbor (10.1016/j.apgeochem.2014.04.009_b0305) 2000; 57 Chaurand (10.1016/j.apgeochem.2014.04.009_b0140) 2006; 88 Ishimaru (10.1016/j.apgeochem.2014.04.009_b0355) 2008; 156 Drizo (10.1016/j.apgeochem.2014.04.009_b0205) 2002; 36 Navarro (10.1016/j.apgeochem.2014.04.009_b0515) 2010; 44 Vítková (10.1016/j.apgeochem.2014.04.009_b0855) 2010; 74 10.1016/j.apgeochem.2014.04.009_b0070 Álvarez-Valero (10.1016/j.apgeochem.2014.04.009_b0025) 2008; 55 Ettler (10.1016/j.apgeochem.2014.04.009_b0255) 2009; 24 De Angelis (10.1016/j.apgeochem.2014.04.009_b0180) 2012; 38 Heimann (10.1016/j.apgeochem.2014.04.009_b0345) 2010; 22 Rosenqvist (10.1016/j.apgeochem.2014.04.009_b0670) 2004 Piatak (10.1016/j.apgeochem.2014.04.009_b0595) 2012; 27 Paris (10.1016/j.apgeochem.2014.04.009_b0550) 2001; 39 Ettler (10.1016/j.apgeochem.2014.04.009_b0240) 2004; 57 Wendling (10.1016/j.apgeochem.2014.04.009_b0880) 2012; 39 Roy (10.1016/j.apgeochem.2014.04.009_b0675) 2009; 39 Hanski (10.1016/j.apgeochem.2014.04.009_b0340) 2007; 71 Chaudhuri (10.1016/j.apgeochem.2014.04.009_b0135) 1993; 32 Morrison (10.1016/j.apgeochem.2014.04.009_b0490) 2007; 382 Altepeter (10.1016/j.apgeochem.2014.04.009_b0020) 1992 10.1016/j.apgeochem.2014.04.009_b0575 Suer (10.1016/j.apgeochem.2014.04.009_b0780) 2009; 407 10.1016/j.apgeochem.2014.04.009_b0460 Tossavainen (10.1016/j.apgeochem.2014.04.009_b0810) 2007; 27 Álvarez-Valero (10.1016/j.apgeochem.2014.04.009_b0030) 2009; 94 Chirikure (10.1016/j.apgeochem.2014.04.009_b0150) 2010; 37 Pérez-López (10.1016/j.apgeochem.2014.04.009_b0585) 2010; 276 Manasse (10.1016/j.apgeochem.2014.04.009_b0455) 2001; 13 Scott (10.1016/j.apgeochem.2014.04.009_b0700) 1986; 50 Lopez (10.1016/j.apgeochem.2014.04.009_b0430) 1997 Oh (10.1016/j.apgeochem.2014.04.009_b0545) 2012; 213–214 10.1016/j.apgeochem.2014.04.009_b0725 10.1016/j.apgeochem.2014.04.009_b0605 Sun (10.1016/j.apgeochem.2014.04.009_b0785) 2009; 30 10.1016/j.apgeochem.2014.04.009_b0845 Dimitrova (10.1016/j.apgeochem.2014.04.009_b0190) 2002; 36 10.1016/j.apgeochem.2014.04.009_b0600 Park (10.1016/j.apgeochem.2014.04.009_b0555) 1994; 32 10.1016/j.apgeochem.2014.04.009_b0565 10.1016/j.apgeochem.2014.04.009_b0840 Kucha (10.1016/j.apgeochem.2014.04.009_b0395) 1996; 27 10.1016/j.apgeochem.2014.04.009_b0165 10.1016/j.apgeochem.2014.04.009_b0320 Robbins (10.1016/j.apgeochem.2014.04.009_b0660) 1983; vol. 2 Ettler (10.1016/j.apgeochem.2014.04.009_b0230) 2002; 173 Gahan (10.1016/j.apgeochem.2014.04.009_b0290) 2009; 95 Kierczak (10.1016/j.apgeochem.2014.04.009_b0375) 2011; 49 Bayless (10.1016/j.apgeochem.2014.04.009_b0075) 2004; 38 10.1016/j.apgeochem.2014.04.009_b0170 Twidwell (10.1016/j.apgeochem.2014.04.009_b0825) 1983; 8 Kourounis (10.1016/j.apgeochem.2014.04.009_b0390) 2007; 37 Simmons (10.1016/j.apgeochem.2014.04.009_b0750) 2002; 21 Mahé-Le Carlier (10.1016/j.apgeochem.2014.04.009_b0450) 2000; 330 Cottrell (10.1016/j.apgeochem.2014.04.009_b0160) 1995 Kierczak (10.1016/j.apgeochem.2014.04.009_b0380) 2009; 47 Parkhurst (10.1016/j.apgeochem.2014.04.009_b0560) 1993 Svirenko (10.1016/j.apgeochem.2014.04.009_b0790) 2003 Alpers (10.1016/j.apgeochem.2014.04.009_b0015) 1999; vol. 6A Butler (10.1016/j.apgeochem.2014.04.009_b0110) 1977; 41 Milačič (10.1016/j.apgeochem.2014.04.009_b0485) 2011; 40 Sobanska (10.1016/j.apgeochem.2014.04.009_b0765) 2000; 331 Weber (10.1016/j.apgeochem.2014.04.009_b0870) 2007; 56 10.1016/j.apgeochem.2014.04.009_b0835 Woodley (10.1016/j.apgeochem.2014.04.009_b0915) 1986; 5 10.1016/j.apgeochem.2014.04.009_b0435 Lottermoser (10.1016/j.apgeochem.2014.04.009_b0440) 2002; 66 Srivastava (10.1016/j.apgeochem.2014.04.009_b0770) 2005; 24 10.1016/j.apgeochem.2014.04.009_b0275 Ettler (10.1016/j.apgeochem.2014.04.009_b0225) 2001; 40 10.1016/j.apgeochem.2014.04.009_b0285 10.1016/j.apgeochem.2014.04.009_b0280 Douglas (10.1016/j.apgeochem.2014.04.009_b0195) 1986; 16 Strömberg (10.1016/j.apgeochem.2014.04.009_b0775) 1994; 9 Sáez (10.1016/j.apgeochem.2014.04.009_b0680) 2003; 41 Manz (10.1016/j.apgeochem.2014.04.009_b0465) 1997; 98 Maslehuddin (10.1016/j.apgeochem.2014.04.009_b0470) 2003; 17 Ali (10.1016/j.apgeochem.2014.04.009_b0005) 2008; 128 Ettler (10.1016/j.apgeochem.2014.04.009_b0260) 2012; 221–222 Bäverman (10.1016/j.apgeochem.2014.04.009_b0060) 1997; 15 Drizo (10.1016/j.apgeochem.2014.04.009_b0210) 2006; 40 Gbor (10.1016/j.apgeochem.2014.04.009_b0310) 2006; 81 10.1016/j.apgeochem.2014.04.009_b0705 Bril (10.1016/j.apgeochem.2014.04.009_b0105) 2008; 46 Seignez (10.1016/j.apgeochem.2014.04.009_b0710) 2007; 149 Parsons (10.1016/j.apgeochem.2014.04.009_b0570) 2001; 16 Shen (10.1016/j.apgeochem.2014.04.009_b0735) 2009; 164 Gee (10.1016/j.apgeochem.2014.04.009_b0315) 1997; 58 Kierczak (10.1016/j.apgeochem.2014.04.009_b0385) 2013; 124 10.1016/j.apgeochem.2014.04.009_b0420 10.1016/j.apgeochem.2014.04.009_b0300 Costagliola (10.1016/j.apgeochem.2014.04.009_b0155) 2008; 23 10.1016/j.apgeochem.2014.04.009_b0265 Bosso (10.1016/j.apgeochem.2014.04.009_b0090) 2008; 30 Lottermoser (10.1016/j.apgeochem.2014.04.009_b0445) 2005; 181 Li (10.1016/j.apgeochem.2014.04.009_b0425) 2009; 97 10.1016/j.apgeochem.2014.04.009_b0270 Roadcap (10.1016/j.apgeochem.2014.04.009_b0650) 1994 Ettler (10.1016/j.apgeochem.2014.04.009_b0235) 2003; 67 Sato (10.1016/j.apgeochem.2014.04.009_b0690) 1977; 10 Shibayama (10.1016/j.apgeochem.2014.04.009_b0740) 2010; 181 Tsakiridis (10.1016/j.apgeochem.2014.04.009_b0815) 2008; 152 Vivenzio (10.1016/j.apgeochem.2014.04.009_b0865) 2005; 37 Seignez (10.1016/j.apgeochem.2014.04.009_b0715) 2008; 23 Hanski (10.1016/j.apgeochem.2014.04.009_b0335) 2009; 73 Chang (10.1016/j.apgeochem.2014.04.009_b0130) 2013; 48 Helgeson (10.1016/j.apgeochem.2014.04.009_b0350) 1968; 32 Bowden (10.1016/j.apgeochem.2014.04.009_b0095) 2009; 43 Chaurand (10.1016/j.apgeochem.2014.04.009_b0145) 2007; B139 10.1016/j.apgeochem.2014.04.009_b0535 10.1016/j.apgeochem.2014.04.009_b0930 10.1016/j.apgeochem.2014.04.009_b0895 Douglas (10.1016/j.apgeochem.2014.04.009_b0200) 2012; 35 Muhmood (10.1016/j.apgeochem.2014.04.009_b0500) 2009; 39 10.1016/j.apgeochem.2014.04.009_b0530 10.1016/j.apgeochem.2014.04.009_b0410 10.1016/j.apgeochem.2014.04.009_b0495 Anderson (10.1016/j.apgeochem.2014.04.009_b0040) 1991; 30 Proctor (10.1016/j.apgeochem.2014.04.009_b0615) 2000; 34 Piatak (10.1016/j.apgeochem.2014.04.009_b0590) 2010; 25 Yildirim (10.1016/j.apgeochem.2014.04.009_b0925) 2011; 2011 Pérez-López (10.1016/j.apgeochem.2014.04.009_b0580) 2008; 23 Rosado (10.1016/j.apgeochem.2014.04.009_b0665) 2008; 72 Vdović (10.1016/j.apgeochem.2014.04.009_b0850) 2006; 141 Singh (10.1016/j.apgeochem.2014.04.009_b0755) 2008; 28 De Andrade Lima (10.1016/j.apgeochem.2014.04.009_b0175) 2011; 189 10.1016/j.apgeochem.2014.04.009_b0805 Ettler (10.1016/j.apgeochem.2014.04.009_b0215) 2000; 331 Gorai (10.1016/j.apgeochem.2014.04.009_b0325) 2003; 39 Ali (10.1016/j.apgeochem.2014.04.009_b0010) 2013; 25 10.1016/j.apgeochem.2014.04.009_b0525 Severin (10.1016/j.apgeochem.2014.04.009_b0720) 2011; 23 10.1016/j.apgeochem.2014.04.009_b0405 Scheinert (10.1016/j.apgeochem.2014.04.009_b0695) 2009; 69 10.1016/j.apgeochem.2014.04.009_b0645 10.1016/j.apgeochem.2014.04.009_b0125 10.1016/j.apgeochem.2014.04.009_b0400 10.1016/j.apgeochem.2014.04.009_b0365 10.1016/j.apgeochem.2014.04.009_b0640 Tatarinov (10.1016/j.apgeochem.2014.04.009_b0800) 2002; 40 10.1016/j.apgeochem.2014.04.009_b0760 Carroll (10.1016/j.apgeochem.2014.04.009_b0115) 1988; 73 10.1016/j.apgeochem.2014.04.009_b0370 Bayless (10.1016/j.apgeochem.2014.04.009_b0065) 2003; 45 Baker (10.1016/j.apgeochem.2014.04.009_b0045) 1998; 32 Ganne (10.1016/j.apgeochem.2014.04.009_b0295) 2006; 356 Sidenko (10.1016/j.apgeochem.2014.04.009_b0745) 2001; 74 Barna (10.1016/j.apgeochem.2014.04.009_b0055) 2004; 24 Sánchez (10.1016/j.apgeochem.2014.04.009_b0685) 2013; 49 Rai (10.1016/j.apgeochem.2014.04.009_b0630) 2002; 16 Ettler (10.1016/j.apgeochem.2014.04.009_b0220) 2001; 39 Vítková (10.1016/j.apgeochem.2014.04.009_b0860) 2011; 197 Anand (10.1016/j.apgeochem.2014.04.009_b0035) 1980; 5 Tack (10.1016/j.apgeochem.2014.04.009_b0795) 1993; 55 Negim (10.1016/j.apgeochem.2014.04.009_b0520) 2010; 19 Wendling (10.1016/j.apgeochem.2014.04.009_b0885) 2013; 32 Shelley (10.1016/j.apgeochem.2014.04.009_b0730) 1975; 84 10.1016/j.apgeochem.2014.04.009_b0910 10.1016/j.apgeochem.2014.04.009_b0875 10.1016/j.apgeochem.2014.04.009_b0475 Hadjsadok (10.1016/j.apgeochem.2014.04.009_b0330) 2012; 34 Twidwell (10.1016/j.apgeochem.2014.04.009_b0830) 1985; 5 Barca (10.1016/j.apgeochem.2014.04.009_b0050) 2012; 46 10.1016/j.apgeochem.2014.04.009_b0120 De Windt (10.1016/j.apgeochem.2014.04.009_b0185) 2011; 31 10.1016/j.apgeochem.2014.04.009_b0480 Navarro (10.1016/j.apgeochem.2014.04.009_b0510) 2008; 23 10.1016/j.apgeochem.2014.04.009_b0085 10.1016/j.apgeochem.2014.04.009_b0360 Ochola (10.1016/j.apgeochem.2014.04.009_b0540) 2004; 38 Qiu (10.1016/j.apgeochem.2014.04.009_b0625) 2012; 22 Yang (10.1016/j.apgeochem.2014.04.009_b0920) 2010; 103 Roadcap (10.1016/j.apgeochem.2014.04.009_b0655) 2005; 43 Levin (10.1016/j.apgeochem.2014.04.009_b0415) 1964 Puziewicz (10.1016/j.apgeochem.2014.04.009_b0620) 2007; 45 Bethke (10.1016/j.apgeochem.2014.04.009_b0080) 2008 Ettler (10.1016/j.apgeochem.2014.04.009_b0250) 2009; 51 West (10.1016/j.apgeochem.2014.04.009_b0890) 1902 |
References_xml | – volume: 156 start-page: 119 year: 2008 end-page: 131 ident: b0355 article-title: Nickel enrichment in mantle olivine beneath a volcanic front publication-title: Contrib. Miner. Petrol. – volume: 32 start-page: 982 year: 1994 end-page: 988 ident: b0555 article-title: Smelting reduction for vanadium-recovery from LD-slag (I) publication-title: Kor. J. Met. Mater. – start-page: 199 year: 1993 end-page: 225 ident: b0560 article-title: Geochemical models publication-title: Regional Ground-Water Quality – start-page: 211 year: 2003 end-page: 229 ident: b0790 article-title: Environmental effects of ferrous slags – comparative analysis and a systems approach in slag impact assessment for terrestrial and aquatic ecosystems publication-title: Approach. Handl. Environ. Probl. Min. Metall. Reg. – volume: 32 start-page: 1 year: 1993 end-page: 12 ident: b0135 article-title: Mineralogical characterization of old Harz Mountain slags publication-title: Can. Metall. Q. – volume: 71 start-page: A379 year: 2007 ident: b0340 article-title: Removal of uranium, arsenic and phosphorus from aqueous solutions using steel slag: Goldschmidt conference abstracts publication-title: Geochim. Cosmochim. Acta – reference: LopezGomez, F.A., Aldecoa, R., Fernandez Prieto, M.A., Rodrigues, J.M., 1999. Preparation of NPK Fertilizers from Ferrous-Metallurgy. Simoes C Eur Commun [Rep] 18616, pp. 1–57. – volume: 356 start-page: 69 year: 2006 end-page: 85 ident: b0295 article-title: Leachablity of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium) publication-title: Sci. Total Environ. – volume: 28 start-page: 1331 year: 2008 end-page: 1337 ident: b0755 article-title: Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material publication-title: Waste Manage. (Oxford) – volume: 51 start-page: 987 year: 2009 end-page: 1007 ident: b0250 article-title: Mineralogy of medieval slag from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimates of historical smelting conditions publication-title: Archaeometry – start-page: 417 year: 1997 end-page: 426 ident: b0430 article-title: Physico-chemical and mineralogical properties of EAF and AOD slags: associazione Italiana de publication-title: Metallurgia – reference: Bayless, E.R., Greeman, T.K., Harvey, C.C., 1998, Hydrology and Geochemistry of a Slag-affected Aquifer and Chemical Characteristics of Slag-Affected Ground Water, Northwestern Indiana and Northeastern Illinois: U.S. Geological Survey, Water-Resources Investigations, Report 97-4198, 67p. – volume: 5 start-page: 217 year: 1986 end-page: 223 ident: b0915 article-title: Hazardous waste characterization extraction procedures for the analysis of blast-furnace slag from secondary lead smelters publication-title: Environ. Prog. – reference: Canadian Council of Ministers of the Environment (CCME), 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. – volume: 152 start-page: 805 year: 2008 end-page: 811 ident: b0815 article-title: Utilization of steel slag for Portland cement clinker production publication-title: J. Hazard. Mater. – volume: 39 start-page: 102 year: 2009 end-page: 109 ident: b0500 article-title: Cementitious and pozzolanic behavior of electric arc furnace steel slags publication-title: Cem. Concr. Res. – volume: 44 start-page: 5383 year: 2010 end-page: 5388 ident: b0515 article-title: Physico-chemical characterization of steel slag publication-title: Study of Its Behavior Under Simulated Environmental Conditions: Environmental Science and Technology – volume: 74 start-page: 581 year: 2010 end-page: 600 ident: b0855 article-title: Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia publication-title: Mineral. Mag. – volume: 181 start-page: 1016 year: 2010 end-page: 1023 ident: b0740 article-title: Treatment of smelting residues for arsenic removal and recovery of copper using pyro-hydrometallurgical process publication-title: J. Hazard. Mater. – volume: 27 start-page: 1335 year: 2007 end-page: 1344 ident: b0810 article-title: Characteristics of steel slag under different cooling conditions publication-title: Waste Manage. (Oxford) – volume: 32 start-page: 2602 year: 2013 end-page: 2610 ident: b0885 article-title: Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications publication-title: Environ. Toxicol. Chem. – volume: 39 start-page: 873 year: 2001 end-page: 888 ident: b0220 article-title: Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Přίbram, Czech Republic publication-title: Can. Mineral. – volume: 17 start-page: 105 year: 2003 end-page: 112 ident: b0470 article-title: Comparison of properties of steel slag and crushed limestone aggregate concretes publication-title: Constr. Build. Mater. – reference: > (accessed 09.09.13). – reference: Parsons, M.B., 2001. Geochemical and Mineralogical Controls on Trace Element Release from Base-metal Smelter Slags. Unpublished Ph.D. Thesis, Stanford University, Stanford, California, 307p. – volume: 30 start-page: 1357 year: 2009 end-page: 1361 ident: b0785 article-title: Transformation of inorganic nitrogen in slag-wetland during the start-up period publication-title: Environ. Sci. – volume: 56 start-page: 135 year: 2007 end-page: 143 ident: b0870 article-title: Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters publication-title: Water Sci. Technol. – volume: 84 start-page: 1 year: 1975 end-page: 4 ident: b0730 article-title: Possible methods for recovering copper from waste smelter slags by leaching publication-title: Trans. Inst. Min. Metall. Sect. C—Mineral Process. Extract. Metall. – volume: 181 start-page: 183 year: 2005 end-page: 190 ident: b0445 article-title: Evaporative mineral precipitates from the historical smelting slag dump, Río Tinto, Spain publication-title: Neues Jahrbuch für Mineralogie-Abhandlungen – volume: 37 start-page: 358 year: 2005 ident: b0865 article-title: Tahawus: an insight to the geochemistry of an industrial waste site publication-title: Geol. Soc. Am. Program. Abst. – volume: 128 start-page: 21 year: 2008 end-page: 26 ident: b0005 article-title: Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming publication-title: Agric. Ecosyst. Environ. – volume: 23 start-page: 981 year: 2011 end-page: 992 ident: b0720 article-title: Early metal smelting in Aksum, Ethiopia: copper or iron? publication-title: Eur. J. Mineral. – volume: 97 start-page: 185 year: 2009 end-page: 193 ident: b0425 article-title: High pressure oxidative acid leaching of nickel smelter slag, characterization of feed and residue publication-title: Hydrometallurgy – volume: 40 start-page: 1547 year: 2006 end-page: 1554 ident: b0210 article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite publication-title: Water Res. – year: 1964 ident: b0415 article-title: Phase Diagrams for Ceramists: The American Ceramic Society – volume: 69 start-page: 737 year: 2005 end-page: 747 ident: b0245 article-title: The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions publication-title: Mineral. Mag. – reference: > (updated 1992) (accessed February 2012). – volume: 37 start-page: 815 year: 2007 end-page: 822 ident: b0390 article-title: Properties and hydration of blended cements with steelmaking slag publication-title: Cem. Concr. Res. – reference: > (assessed September 2013). – volume: 141 start-page: 359 year: 2006 end-page: 369 ident: b0850 article-title: Remobilization of metals from slag and polluted sediments (Case Study: the canal of the Deûle River, northern France) publication-title: Environ. Pollut. – year: 2008 ident: b0080 article-title: Geochemical and Biogeochemical Reaction Modeling – volume: 50 start-page: 141 year: 1986 end-page: 147 ident: b0700 article-title: The chemistry and mineralogy of some granulated and pelletized blast furnace slags publication-title: Mineral. Magaz. – volume: 74 start-page: 109 year: 2001 end-page: 125 ident: b0745 article-title: Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia) publication-title: J. Geochem. Explor. – reference: European Slag Association (EUROSLAG), 2006. Legal Status of Slags, Position Paper, January 2006, 15p. < – reference: Ivanov, I.T., 2000. Phase composition of metallurgical slags in Bulgaria. In: Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R.B., Pentinghaus, H. (Eds.), Proceedings of the Sixth International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, July 17–19, 2000. – volume: 24 start-page: 181 year: 2005 end-page: 197 ident: b0770 article-title: Controlling NOx emission from industrial sources publication-title: Environ. Prog. – reference: Jambor, J.L., 2003. Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), Environmental Aspects of Mine Wastes, Short Course Series, Mineralogical Association of Canada, vol. 31, pp. 117–145. – volume: 32 start-page: 2308 year: 1998 end-page: 2316 ident: b0045 article-title: Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems publication-title: Environ. Sci. Technol. – volume: 48 start-page: 1748 year: 2013 end-page: 1756 ident: b0130 article-title: Chemical stabilization of cadmium in acidic soil using alkaline argronomic and industrial by-products publication-title: J. Environ. Sci. Health, Part A – reference: Weston Solutions, Inc., 2007. Final Remedial Investigation Report Hegeler Zinc Site, Danville, Vermilion County, Illinois. Document Control No. RFW250-2A-AWOO. Prepared for USEPA. < – reference: Johnson, E.A., Oden, L.L., Sanker, P.E., 1982. Results of E.P.A. Extraction Procedure Toxicity Test Applied to Copper Reverberatory Slags: U.S. Bureau of Mines Report of Investigation 8648, 16p. – reference: > (accessed February 2012). – volume: 23 start-page: 3699 year: 2008 end-page: 3711 ident: b0715 article-title: Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions publication-title: Appl. Geochem. – volume: 22 start-page: 751 year: 2010 end-page: 761 ident: b0345 article-title: Mineralogical study of precolonial (1650–1850 CE) tin smelting slags from Rooiberg, Limpopo Province, South Africa publication-title: Eur. J. Mineral. – start-page: 253 year: 1994 end-page: 262 ident: b0650 article-title: Shallow ground-water chemistry in the Lake Calumet Area, Chicago, Illinois publication-title: National Symposium on Water Quality – volume: 39 start-page: 219 year: 2012 end-page: 227 ident: b0880 article-title: Productive use of steelmaking by-product in environmental radioactivity publication-title: Miner. Eng. – start-page: 449 year: 1992 end-page: 459 ident: b0020 article-title: Proposed treatment of neutral Leach residue at Big River Zinc publication-title: Residues Effluents: Processing Environmental Considerations – volume: 73 start-page: 845 year: 1988 end-page: 849 ident: b0115 article-title: Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays publication-title: Am. Mineral. – reference: Piatak, N.M., Seal II, R.R., 2012b. Leaching tests to characterize ferrous and nonferrous slag drainage chemistry. In: Price, W.A., Hogan, C., Tremblay, G. (Eds.), Proceedings from the Ninth International Conference on Acid Rock Drainage, Ottawa, Canada, 12p. – reference: Fällman, A.-M., Hartlén, J., 1994. Leaching of slags and ashes – controlling factors in field experiments versus laboratory tests. In: Goumans, J.J.J.M., van de Sloot, H.A., Aalbers, Th.G. (Eds.), Environmental Aspects of Construction with Waste Materials: Studies in Environmental Science, vol. 60, pp. 39–54. – volume: 19 start-page: 174 year: 2010 end-page: 187 ident: b0520 article-title: Effect of basic slag addition on soil properties, growth and leaf mineral composition of bean sin a Cu-contaminated soil publication-title: Soil Sediment Contam. – volume: 39 start-page: 299 year: 2003 end-page: 313 ident: b0325 article-title: Characteristics and utilization of copper slag – a review publication-title: Resour. Conserv. Recycl. – volume: 88 start-page: 10 year: 2006 end-page: 14 ident: b0140 article-title: Speciation of Cr and V within BOF steel slag reused in road constructions publication-title: J. Geochem. Explor. – volume: 34 start-page: 671 year: 2012 end-page: 677 ident: b0330 article-title: Durability of mortar and concretes containing slag with low hydraulic activity publication-title: Cement Concr. Compos. – volume: 24 start-page: 945 year: 2004 end-page: 955 ident: b0055 article-title: Leaching assessment of road materials containing primary lead and zinc slags publication-title: Waste Manage. (Oxford) – volume: 330 start-page: 179 year: 2000 end-page: 184 ident: b0450 article-title: Natural weathering of archaeo-metallurgical slags: an analog for present day vitrified wastes publication-title: Earth Planet. Sci. – volume: 69 start-page: 81 year: 2009 end-page: 90 ident: b0695 article-title: Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany) publication-title: Chem. Erde – volume: 57 start-page: 13 year: 2000 end-page: 22 ident: b0305 article-title: Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag publication-title: Hydrometallurgy – reference: Sloto, R.A., Reif, A.G., 2011. Distribution of Trace Metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania: U.S. Geological Survey Scientific Investigations, Report 2011-5014, 90p. – reference: U.S. Environmental Protection Agency (USEPA), 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846 third ed. < – volume: 67 start-page: 1269 year: 2003 end-page: 1283 ident: b0235 article-title: Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: experimental approach and long-term assessment publication-title: Mineral. Mag. – year: 2004 ident: b0670 article-title: Principles of Extractive Metallurgy – volume: 173 start-page: 161 year: 2002 end-page: 169 ident: b0230 article-title: Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags publication-title: Bull. Soc. Geol. Fr. – volume: 45 start-page: 252 year: 2003 end-page: 261 ident: b0065 article-title: Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA publication-title: Environ. Geol. – year: 1995 ident: b0160 article-title: An Introduction to Metallurgy – reference: Shacklette, H.T., Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270, 104p. – volume: 38 start-page: 117 year: 2012 end-page: 123 ident: b0180 article-title: Reuse of slags containing lead and zinc as aggregate in a portland cement matrix publication-title: J. Solid Waste Technol. Manage. – reference: Tetra Tech Inc., 1985. Granulated Slag Pile: Draft Stage 1 Remedial Investigation Report. Anaconda Minerals Company. – reference: Lewis, D.W., 1982. Properties and Uses of Iron and Steel Slags: National Slag Association (NSA) MF 182-6, Presented at the Symposium on Slag national Institute for Transport and Road Research South Africa, February, 1982. < – volume: 221–222 start-page: 298 year: 2012 end-page: 302 ident: b0260 article-title: Reliability of chemical microanalyses for solid waste materials publication-title: J. Hazard. Mater. – reference: U.S. Environmental Protection Agency (USEPA), 2010. Regional Screening Levels (Formerly PRGs). < – volume: 47 start-page: 557 year: 2009 end-page: 572 ident: b0380 article-title: The mineralogy and weathering of slag produced by the smelting of the lateritic Ni ores, Szklary, Southwestern Poland publication-title: Can. Mineral. – reference: Lagos, G.E., Luraschi, A., 1997. Toxicity Characteristic Leaching Procedure (TCLP) Applied to Chilean Primary Copper Slags: Transactions of the Institution of Mining and Metallurgy Section C—Mineral Processing and Extractive Metallurgy, vol. 106, pp. C95–C97. – volume: 40 start-page: 131 year: 1992 ident: b0635 article-title: Flotation of copper from converter slags publication-title: J. Mines Met. Fuels – volume: 25 start-page: 208 year: 2013 end-page: 216 ident: b0010 article-title: Potentials of copper slag utilization in the manufacture of ordinary Portland cement publication-title: Adv. Cem. Res. – volume: 43 start-page: 2476 year: 2009 end-page: 2481 ident: b0095 article-title: Phosphorus removal from waste waters using basic oxygen steel slag publication-title: Environ. Sci. Technol. – volume: 5 start-page: 297 year: 1985 end-page: 303 ident: b0830 article-title: Disposal of arsenic bearing copper smelter flue dust publication-title: Nucl. Chem. Waste Manage. – volume: 16 start-page: 489 year: 2002 end-page: 494 ident: b0630 article-title: Metallurgical slag as a component in blended cement publication-title: Constr. Build. Mater. – reference: Kwon, J.-S., Yun, Seong-Taek, Jo, H.-Y., Jung, S.-H., 2008. Geochemical Processes Including Sorption and Incorporation of Heavy Metals and Arsenic by Scoria and Steel Slag: Abstracts of the 18th Annual V. M. Goldschmidt Conference, Geochimica et Cosmochimica Acta, vol. 72, no. 12S, p. A507. – volume: 23 start-page: 3452 year: 2008 end-page: 3463 ident: b0580 article-title: Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt) publication-title: Appl. Geochem. – volume: 38 start-page: 6161 year: 2004 end-page: 6165 ident: b0540 article-title: Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag) publication-title: Environ. Sci. Technol. – volume: 5 start-page: 355 year: 1980 end-page: 365 ident: b0035 article-title: Recovery of metal values from copper converter and smelter slags by ferric chloride leaching publication-title: Hydrometallurgy – reference: Wilson, L.J., 1994. Literature Review on Slag Leaching: Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories Division Report 94-3 (CR), Ottawa. – volume: 57 start-page: 567 year: 2004 end-page: 577 ident: b0240 article-title: Leaching of lead metallurgical slag in citric solutions: Implications for disposal and weathering in soil environments publication-title: Chemosphere – volume: 94 start-page: 1417 year: 2009 end-page: 1427 ident: b0030 article-title: Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags publication-title: Am. Mineral. – volume: 382 start-page: 30 year: 2007 end-page: 42 ident: b0490 article-title: Preliminary findings of chemistry and bioaccessibility in base metal smelter slags publication-title: Sci. Total Environ. – reference: Ziemkiewicz, P., Skousen, J., 1999. Steel slag in acid mine drainage treatment and control. In: Proceedings of the Annual National Meeting of the Society for Surface Mining and Reclamation, vol. 16, pp. 651–656. – volume: 66 start-page: 475 year: 2002 end-page: 490 ident: b0440 article-title: Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia publication-title: Mineral. Mag. – volume: 213–214 start-page: 147 year: 2012 end-page: 155 ident: b0545 article-title: Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag publication-title: J. Hazard. Mater. – volume: 31 start-page: 225 year: 2011 end-page: 235 ident: b0185 article-title: Kinetics of steel slag leaching: batch tests and modeling publication-title: Waste Manage. (Oxford) – volume: 38 start-page: 1330 year: 2004 end-page: 1337 ident: b0075 article-title: Use of publication-title: Environ. Sci. Technol. – volume: 41 start-page: 627 year: 2003 end-page: 638 ident: b0680 article-title: The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C publication-title: Can. Mineral. – volume: 49 start-page: 161 year: 2013 end-page: 168 ident: b0685 article-title: Physiochemical characterization of copper slag and alternatives of friendly environmental management publication-title: J. Min. Metall., Sect. B – Metall. – reference: Crock, J.G., Arbogast, B.F., Lamothe, P.J., 1999. Laboratory methods for the analysis of environmental samples. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology, vol. 6A, pp. 265–287 (Chapter 13). – volume: 36 start-page: 4642 year: 2002 end-page: 4648 ident: b0205 article-title: Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems publication-title: Environ. Sci. Technol. – reference: Mandin, D., van der Sloot, H.A., Gervais, C., Barna, R., Mehu, J., 1997. Valorization of lead–zinc primary smelters slags. In: Goumans, J.J.J., Senden, G.J., van der Sloot, H.A. (Eds.), Waste Materials in Construction: Putting Theory into Practice. Studies in Environmental Science, vol. 71, pp. 617–630. – volume: 98 start-page: 7 year: 1997 end-page: 13 ident: b0465 article-title: The environmental hazard caused by smelter slags from the Sta publication-title: Maria de la Paz mining district in Mexico: Environmental Pollution – reference: CDM Fed Programs Corporation, 1993. Draft Work Plan for Waste Compatibility Evaluation Study – Sharon Steel Tailings Site/Midvale Slag Site. USEPA, Midvale, Utah. Contract No. 68-W9-0021. – reference: European Slag Association (EUROSLAG), 2003. Granulated Blastfurnace Slag, Technical Leaflet No. 1, 4p. < – volume: 27 start-page: 623 year: 2012 end-page: 643 ident: b0595 article-title: Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA publication-title: Appl. Geochem. – volume: B139 start-page: 537 year: 2007 end-page: 542 ident: b0145 article-title: Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach publication-title: J. Hazard. Mater. – volume: 39 start-page: 659 year: 2009 end-page: 663 ident: b0675 article-title: Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation publication-title: Cem. Concr. Res. – reference: Wendling, L., Douglas, G., Coleman, S., Yuan, Z., 2010. Assessment of the Ability of Low-Cost Materials to Remove Metals and Attenuate Acidity in Contaminated Waters: CSIRO – Water for a Healthy Country National Research Flagship, 138p. < – volume: 331 start-page: 245 year: 2000 end-page: 250 ident: b0215 article-title: Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic publication-title: Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes – volume: 124 start-page: 183 year: 2013 end-page: 194 ident: b0385 article-title: Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland) publication-title: J. Geochem. Explor. – volume: 189 start-page: 692 year: 2011 end-page: 699 ident: b0175 article-title: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil publication-title: J. Hazard. Mater. – volume: 39 start-page: 331 year: 2001 end-page: 339 ident: b0550 article-title: The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy publication-title: Can. Mineral. – volume: 72 start-page: 489 year: 2008 end-page: 494 ident: b0665 article-title: Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags publication-title: Mineral. Mag. – volume: 58 start-page: 249 year: 1997 end-page: 257 ident: b0315 article-title: Mineralogy and weathering processes in historical smelting slag and their effect on the mobilization of lead publication-title: J. Geochem. Explor. – volume: 103 start-page: 25 year: 2010 end-page: 29 ident: b0920 article-title: Selective leaching of base metals from copper smelter slag publication-title: Hydrometallurgy – volume: 36 start-page: 4001 year: 2002 end-page: 4008 ident: b0190 article-title: Use of granular slag columns for lead removal publication-title: Water Res. – volume: 19 start-page: 1039 year: 2004 end-page: 1064 ident: b0610 article-title: Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites publication-title: Appl. Geochem. – volume: 27 start-page: 1 year: 1996 end-page: 15 ident: b0395 article-title: Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium publication-title: Environ. Geol. – reference: May, A., Peterson, J.B., 1991. Assessment of lead slag landfill site and the use of a computational program for chemical species. In: Proceedings of the Symposium on Environmental Management for the 1990’s, Denver, Colorado, February 25–28, pp. 217–223. – volume: 95 start-page: 190 year: 2009 end-page: 197 ident: b0290 article-title: Comparative study on different steel slags as neutralising agent in bioleaching publication-title: Hydrometallurgy – reference: Glynn, P., Brown, J., 1996. Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Reactive Transport in Porous Media: Mineralogical Society of America, Reviews in Mineralogy, vol. 34, pp. 377–438 (Chapter 9). – reference: > (accessed May 2013). – volume: 10 start-page: 113 year: 1977 end-page: 120 ident: b0690 article-title: Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation publication-title: Lithos – reference: National Slag Association (NSA), 2009. Slag’s Ain’t Slag’s. < – volume: 70 start-page: 273 year: 2010 end-page: 277 ident: b0820 article-title: Effect of cooling rate on base metals recovery from copper matte smelting slags publication-title: World Acad. Sci. Eng. Technol. – volume: 55 start-page: 103 year: 1993 end-page: 117 ident: b0795 article-title: Leaching behavior of granulated non-ferrous metal slags publication-title: Stud. Environ. Sci. – volume: 40 start-page: 1153 year: 2011 end-page: 1161 ident: b0485 article-title: Environmental impacts of asphalt mixes with electric arc furnace steel slag publication-title: J. Environ. Qual. – volume: 22 start-page: 544 year: 2012 end-page: 553 ident: b0625 article-title: Attenuation of metal bioavailabilty in acidic multi-metal contaminated soil treated with fly ash and steel slag publication-title: Pedosphere – reference: Federal Highway Administration (FHWA), U.S. Department of Transportation, 1997.User Guidelines for Waste and Byproduct Materials in Pavement Construction: FHWA-RD-97-148, McLean, VA, USA. < – volume: 35 start-page: 49 year: 2012 end-page: 56 ident: b0200 article-title: Productive use of steelmaking by-product in environmental applications (I): mineralogy and major and trace element geochemistry publication-title: Miner. Eng. – reference: Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory, Livermore, California. – reference: Matthes, S.A., 1980. Rapid Low-cost Analysis of a Copper Slag for 13 Elements by Flame Atomic Absorption Spectroscopy: U.S. Bureau of Mines Report of Investigations 8484, 8p. – volume: 23 start-page: 1241 year: 2008 end-page: 1259 ident: b0155 article-title: Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy publication-title: Appl. Geochem. – reference: Piatak, N.M., Seal II, R.R., 2014. Challenges of quantifying the partitioning of metals within solid phases: an example of zinc in slag from the Hegeler Zinc smelter, Illinois. In: McLemore, V.T, Smith, K.S., Russell, C.C. (Eds.), Environmental Sampling and Monitoring for the Mine-Life Cycle, Appendix 5—Case Studies of Sampling and Monitoring: Eaglewood, CO, Society for Mining, Metallurgy, and Exploration, Inc. – volume: 73 start-page: A492 year: 2009 ident: b0335 article-title: Reduction of aqueous hexavalent chromium by steel slag: abstracts of the 19th annual V. M. Goldschmidt conference publication-title: Geochim. Cosmochim. Acta – reference: European Committee for Standardization, 2002. Final Draft prEN 12457–2. Characterization of Waste Leaching-compliance Test of Leaching of Granular Waste Material and Sludges – Part 2: One-stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials With Particle Size Below 4 mm (With or Without Particle Reduction), Czech Standard Institute, Prague. – volume: vol. 2 start-page: 923 year: 1983 end-page: 934 ident: b0660 article-title: Availability of toxic metals from non-ferrous metallurgical slags using various procedures publication-title: Advances in Sulfide Smelting – volume: 34 start-page: 1576 year: 2000 end-page: 1582 ident: b0615 article-title: Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags publication-title: Environ. Sci. Technol. – reference: Van Oss, H.G., 2013. Slag, Iron and Steel: U.S. Geological Survey, 2011 Minerals Yearbook, vol. 1, pp. 69.1–69.9. – volume: 46 start-page: 125 year: 2008 end-page: 1248 ident: b0105 article-title: Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland publication-title: Can. Mineral. – volume: vol. 6A start-page: 289 year: 1999 end-page: 323 ident: b0015 article-title: Geochemical modeling of water–rock interactions in mining environments publication-title: The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology – volume: 25 start-page: 302 year: 2010 end-page: 320 ident: b0590 article-title: Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA) publication-title: Appl. Geochem. – reference: Seal II, R.R., Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., Ingersoll, C.G., 2010. Aquatic Assessment of the Ely Copper Mine Superfund Site, Vershire, Vermont: U.S. Geological Survey Scientific Investigation, Report 2010-5084, 150p. – reference: Wolery, T.J., Daveler, S.A., 1992. EQ6, A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems – Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-IV. Lawrence Livermore National Laboratory, Livermore, California. – volume: 30 start-page: 9 year: 1991 end-page: 18 ident: b0040 article-title: Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane publication-title: Nutr. Cycl. Agroecosyst. – reference: Reuer, M.K., Bower, N.W., Koball, J.H., Hinostroza, E., De la, Torre Marcas, M.E., Hurtado Surichaqui, A.H., Echevarria, S., 2012. Lead, Arsenic, and Cadmium Contamination and Its Impact on Children’s Health in La Oroay, Peru. International Scholarly Research Network, Public Health, vol. 2012, 12p. – volume: 49 start-page: 1281 year: 2011 end-page: 1296 ident: b0375 article-title: Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland publication-title: Can. Mineral. – volume: 37 start-page: 1656 year: 2010 end-page: 1669 ident: b0150 article-title: The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE publication-title: J. Archaeol. Sci. – volume: 16 start-page: 1567 year: 2001 end-page: 1593 ident: b0570 article-title: Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California publication-title: Appl. Geochem. – volume: 16 start-page: 662 year: 1986 end-page: 670 ident: b0195 article-title: Characterization of granulated and pelletized blast furnace slag publication-title: Cem. Concr. Res. – volume: 32 start-page: 853 year: 1968 end-page: 877 ident: b0350 article-title: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations publication-title: Geochim. Cosmochim. Acta – volume: 23 start-page: 895 year: 2008 end-page: 913 ident: b0510 article-title: Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain) publication-title: Appl. Geochem. – volume: 2011 start-page: 13 year: 2011 ident: b0925 article-title: Chemical, mineralogical, and morphological properties of steel slag publication-title: Adv. Civil Eng. – reference: Narayan, C., 1995. Report on the Analysis of Iron Slag Samples from Saugus Iron Works, MA Using Rutherford Backscattering Spectroscopy (RBS) and Proton Induced X-ray Emission (PIXE) Techniques. University of Massachusetts Lowell Radiation Laboratory, 15p. – volume: 149 start-page: 418 year: 2007 end-page: 431 ident: b0710 article-title: Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste publication-title: J. Hazard. Mater. – reference: Nelson, T., 1993. Data on Slag Samples Collected from the Midvale Slag Site, Midvale, Utah: Sverdup Corporation Memorandum No. 10865R00(1.1)-91 to M. Strieby, U.S. Environmental Protection Agency Region VIII. – volume: 45 start-page: 1189 year: 2007 end-page: 1200 ident: b0620 article-title: Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland publication-title: Can. Mineral. – reference: Leonard, R.P., Ziegler, R.C., Brown, W.R., Yang, J.Y., Reif, H.C., 1977. Assessment of Industrial Hazardous Waste Practices in the Metal Smelting and Refining Industry, vol. IV, Appendices: U.S. Environmental Protection Agency, EPA/530/SW-145c.4, pp. 31–39. – volume: 276 start-page: 29 year: 2010 end-page: 40 ident: b0585 article-title: Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid–rock interaction and ancient mining pollution publication-title: Chem. Geol. – year: 2009 ident: b0100 article-title: Metallurgy Fundamentals – volume: 40 start-page: 81 year: 2001 end-page: 83 ident: b0225 article-title: Metallurgical slag behaviour in extreme conditions: surface leaching and metal mobility publication-title: Ecole Nationale Superieure des Mines de Paris Mémoire des Sciences de la Terre – reference: Rizza, I.L., Farthing, D.J., 2007. Catch the Rainbow: Geochemical Analysis of Colored Slag from Ironville, Adirondack State Park, New York: Geological Society of America, Abstracts with Programs, vol. 39, no. 6, p. 320. – volume: 9 start-page: 583 year: 1994 end-page: 595 ident: b0775 article-title: Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden publication-title: Appl. Geochem. – volume: 13 start-page: 949 year: 2001 end-page: 960 ident: b0455 article-title: The copper slags of the Capattoli Valley, Campiglia Marittima, Italy publication-title: Eur. J. Mineral. – volume: 41 start-page: 439 year: 1977 end-page: 493 ident: b0110 article-title: Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite publication-title: Mineral. Mag. – volume: 197 start-page: 417 year: 2011 end-page: 423 ident: b0860 article-title: Effect of sample preparation on contaminant leaching from copper smelting slag publication-title: J. Hazard. Mater. – reference: Garrels, R.M., Mackenzie, F.T., 1967, Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, Advances in Chemistry Series 67: American Chemical Society, Washington, DC, pp. 222–242 (Chapter 10). – reference: Cravotta III, C.A., 2005. Assessment of Characteristics and Remedial Alternatives for Abandoned Mine Drainage: Case Study at Staple Bend Tunnel Unit of Allegheny Portage Railroad National Historic Site, Cambria Country, Pennsylvania, 2004: U.S. Geological Survey Open-File, Report 2005-1283, 52p. – volume: 331 start-page: 271 year: 2000 end-page: 278 ident: b0765 article-title: Alteration in soils of slag particles resulting from lead smelting publication-title: Earth Planet. Sci. – volume: 46 start-page: 2376 year: 2012 end-page: 2384 ident: b0050 article-title: Phosphate removal from synthetic and real wastewater using steel slags produced in Europe publication-title: Water Res. – reference: Morrison Knudsen Corporation, 1992. Final Report for Lead Slag Pile Remedial Investigation at the California Gulch Site, Leadville, Colorado. Denver & Rio Grande Western Railroad Company. – volume: 407 start-page: 5110 year: 2009 end-page: 5118 ident: b0780 article-title: Reproducing ten years of road ageing – accelerated carbonization and leaching of EAF steel slag publication-title: Sci. Total Environ. – volume: 164 start-page: 99 year: 2009 end-page: 104 ident: b0735 article-title: Investigation on the application of steel slag-fly ash–phosphogypsum solidified material as road base material publication-title: J. Hazard. Mater. – reference: Blowes, D.W., Bain, J.G., Smyth, D., McGregor, R., Ludwig, P., Wilkens, J.A., Ptacek, C.J., Spink, L., 2005, Treatment of Arsenic Using Permeable Reactive Barriers: Geological Society of America Annual Meeting Program with Abstracts, vol. 37, no. 7, p. 102. – volume: 30 start-page: 219 year: 2008 end-page: 229 ident: b0090 article-title: Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil publication-title: Environ. Geochem. Health – volume: 24 start-page: 1 year: 2009 end-page: 15 ident: b0255 article-title: Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia publication-title: Appl. Geochem. – volume: 8 start-page: 85 year: 1983 end-page: 90 ident: b0825 article-title: Safe disposal of arsenic bearing flue dust by dissolution in smelter slags publication-title: J. Hazard. Mater. – volume: 21 start-page: 91 year: 2002 end-page: 99 ident: b0750 article-title: Use of steel slag leach beds for the treatment of acid mine drainage publication-title: Mine Water Environ. – volume: 81 start-page: 130 year: 2006 end-page: 141 ident: b0310 article-title: Dissolution behavior of Fe Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide publication-title: Hydrometallurgy – volume: 40 start-page: 1075 year: 2002 end-page: 1082 ident: b0800 article-title: Metallurgical slags with spinifex textures publication-title: Geochem. Int. – volume: 55 start-page: 1797 year: 2008 end-page: 1809 ident: b0025 article-title: Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization publication-title: Environ. Geol. – volume: 15 start-page: 55 year: 1997 end-page: 71 ident: b0060 article-title: Serial batch tests performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modeling publication-title: Waste Manage. Res. – reference: Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, vol. 6A. Society of Economic Geologists, Littleton, CO, pp. 133–160 (Chapter 6). – reference: Partymiller, K., 1992. Horsehead Resource Development Company, Inc. Flame Reactor Technology: Applications Analysis Report. Environmental Protection Agency, EPA/540/A5-91/005. – volume: 43 start-page: 806 year: 2005 end-page: 816 ident: b0655 article-title: Geochemistry of extremely alkaline (pH publication-title: Ground Water – year: 1902 ident: b0890 article-title: Metallurgy of Cast Iron – volume: 72 start-page: 489 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0665 article-title: Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags publication-title: Mineral. Mag. doi: 10.1180/minmag.2008.072.1.489 – volume: 43 start-page: 806 issue: 6 year: 2005 ident: 10.1016/j.apgeochem.2014.04.009_b0655 article-title: Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.00060.x – volume: 69 start-page: 737 issue: 5 year: 2005 ident: 10.1016/j.apgeochem.2014.04.009_b0245 article-title: The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions publication-title: Mineral. Mag. doi: 10.1180/0026461056950284 – ident: 10.1016/j.apgeochem.2014.04.009_b0125 – ident: 10.1016/j.apgeochem.2014.04.009_b0400 – year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0670 – ident: 10.1016/j.apgeochem.2014.04.009_b0640 doi: 10.5402/2012/231458 – volume: 38 start-page: 117 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0180 article-title: Reuse of slags containing lead and zinc as aggregate in a portland cement matrix publication-title: J. Solid Waste Technol. Manage. doi: 10.5276/JSWTM.2012.17 – ident: 10.1016/j.apgeochem.2014.04.009_b0475 – volume: 24 start-page: 1 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0255 article-title: Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.10.003 – year: 1995 ident: 10.1016/j.apgeochem.2014.04.009_b0160 – volume: 45 start-page: 252 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0065 article-title: Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA publication-title: Environ. Geol. doi: 10.1007/s00254-003-0875-1 – volume: B139 start-page: 537 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0145 article-title: Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.02.060 – volume: 37 start-page: 358 issue: 7 year: 2005 ident: 10.1016/j.apgeochem.2014.04.009_b0865 article-title: Tahawus: an insight to the geochemistry of an industrial waste site publication-title: Geol. Soc. Am. Program. Abst. – year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0080 – volume: 32 start-page: 853 year: 1968 ident: 10.1016/j.apgeochem.2014.04.009_b0350 article-title: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(68)90100-2 – volume: vol. 2 start-page: 923 year: 1983 ident: 10.1016/j.apgeochem.2014.04.009_b0660 article-title: Availability of toxic metals from non-ferrous metallurgical slags using various procedures – volume: 16 start-page: 489 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0630 article-title: Metallurgical slag as a component in blended cement publication-title: Constr. Build. Mater. doi: 10.1016/S0950-0618(02)00046-6 – year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0100 – ident: 10.1016/j.apgeochem.2014.04.009_b0420 – volume: 30 start-page: 219 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0090 article-title: Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil publication-title: Environ. Geochem. Health doi: 10.1007/s10653-007-9110-4 – ident: 10.1016/j.apgeochem.2014.04.009_b0120 – ident: 10.1016/j.apgeochem.2014.04.009_b0575 – year: 1902 ident: 10.1016/j.apgeochem.2014.04.009_b0890 – volume: 24 start-page: 181 issue: 2 year: 2005 ident: 10.1016/j.apgeochem.2014.04.009_b0770 article-title: Controlling NOx emission from industrial sources publication-title: Environ. Prog. doi: 10.1002/ep.10063 – volume: 5 start-page: 217 issue: 1 year: 1986 ident: 10.1016/j.apgeochem.2014.04.009_b0915 article-title: Hazardous waste characterization extraction procedures for the analysis of blast-furnace slag from secondary lead smelters publication-title: Environ. Prog. doi: 10.1002/ep.670050108 – volume: 382 start-page: 30 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0490 article-title: Preliminary findings of chemistry and bioaccessibility in base metal smelter slags publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.03.034 – volume: 32 start-page: 2308 year: 1998 ident: 10.1016/j.apgeochem.2014.04.009_b0045 article-title: Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems publication-title: Environ. Sci. Technol. doi: 10.1021/es970934w – ident: 10.1016/j.apgeochem.2014.04.009_b0275 – ident: 10.1016/j.apgeochem.2014.04.009_b0725 doi: 10.3133/pp1270 – ident: 10.1016/j.apgeochem.2014.04.009_b0165 doi: 10.3133/ofr20051283 – volume: 27 start-page: 1335 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0810 article-title: Characteristics of steel slag under different cooling conditions publication-title: Waste Manage. (Oxford) doi: 10.1016/j.wasman.2006.08.002 – ident: 10.1016/j.apgeochem.2014.04.009_b0435 – volume: 50 start-page: 141 issue: 355 year: 1986 ident: 10.1016/j.apgeochem.2014.04.009_b0700 article-title: The chemistry and mineralogy of some granulated and pelletized blast furnace slags publication-title: Mineral. Magaz. doi: 10.1180/minmag.1986.050.355.19 – volume: 38 start-page: 6161 year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0540 article-title: Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag) publication-title: Environ. Sci. Technol. doi: 10.1021/es049670l – volume: 27 start-page: 1 year: 1996 ident: 10.1016/j.apgeochem.2014.04.009_b0395 article-title: Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium publication-title: Environ. Geol. doi: 10.1007/BF00770598 – volume: 24 start-page: 945 year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0055 article-title: Leaching assessment of road materials containing primary lead and zinc slags publication-title: Waste Manage. (Oxford) doi: 10.1016/j.wasman.2004.07.014 – volume: 41 start-page: 439 year: 1977 ident: 10.1016/j.apgeochem.2014.04.009_b0110 article-title: Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite publication-title: Mineral. Mag. doi: 10.1180/minmag.1977.041.320.11 – volume: 8 start-page: 85 year: 1983 ident: 10.1016/j.apgeochem.2014.04.009_b0825 article-title: Safe disposal of arsenic bearing flue dust by dissolution in smelter slags publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(83)80039-9 – volume: 35 start-page: 49 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0200 article-title: Productive use of steelmaking by-product in environmental applications (I): mineralogy and major and trace element geochemistry publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.04.013 – volume: 39 start-page: 299 issue: 4 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0325 article-title: Characteristics and utilization of copper slag – a review publication-title: Resour. Conserv. Recycl. doi: 10.1016/S0921-3449(02)00171-4 – year: 1964 ident: 10.1016/j.apgeochem.2014.04.009_b0415 – volume: 40 start-page: 1075 issue: 11 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0800 article-title: Metallurgical slags with spinifex textures publication-title: Geochem. Int. – ident: 10.1016/j.apgeochem.2014.04.009_b0760 doi: 10.3133/sir20115014 – volume: 128 start-page: 21 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0005 article-title: Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2008.04.014 – volume: 98 start-page: 7 year: 1997 ident: 10.1016/j.apgeochem.2014.04.009_b0465 article-title: The environmental hazard caused by smelter slags from the Sta publication-title: Maria de la Paz mining district in Mexico: Environmental Pollution – ident: 10.1016/j.apgeochem.2014.04.009_b0370 – start-page: 253 year: 1994 ident: 10.1016/j.apgeochem.2014.04.009_b0650 article-title: Shallow ground-water chemistry in the Lake Calumet Area, Chicago, Illinois – volume: 19 start-page: 174 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0520 article-title: Effect of basic slag addition on soil properties, growth and leaf mineral composition of bean sin a Cu-contaminated soil publication-title: Soil Sediment Contam. doi: 10.1080/15320380903548508 – volume: 19 start-page: 1039 year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0610 article-title: Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.01.005 – volume: 58 start-page: 249 year: 1997 ident: 10.1016/j.apgeochem.2014.04.009_b0315 article-title: Mineralogy and weathering processes in historical smelting slag and their effect on the mobilization of lead publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(96)00062-3 – volume: 39 start-page: 659 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0675 article-title: Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.05.007 – volume: 57 start-page: 13 year: 2000 ident: 10.1016/j.apgeochem.2014.04.009_b0305 article-title: Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00090-6 – volume: 15 start-page: 55 year: 1997 ident: 10.1016/j.apgeochem.2014.04.009_b0060 article-title: Serial batch tests performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modeling publication-title: Waste Manage. Res. doi: 10.1177/0734242X9701500105 – volume: 13 start-page: 949 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0455 article-title: The copper slags of the Capattoli Valley, Campiglia Marittima, Italy publication-title: Eur. J. Mineral. doi: 10.1127/0935-1221/2001/0013/0949 – ident: 10.1016/j.apgeochem.2014.04.009_b0085 – ident: 10.1016/j.apgeochem.2014.04.009_b0360 – ident: 10.1016/j.apgeochem.2014.04.009_b0600 – volume: 331 start-page: 271 year: 2000 ident: 10.1016/j.apgeochem.2014.04.009_b0765 article-title: Alteration in soils of slag particles resulting from lead smelting publication-title: Earth Planet. Sci. – volume: 30 start-page: 1357 issue: 5 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0785 article-title: Transformation of inorganic nitrogen in slag-wetland during the start-up period publication-title: Environ. Sci. – volume: 40 start-page: 1547 year: 2006 ident: 10.1016/j.apgeochem.2014.04.009_b0210 article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite publication-title: Water Res. doi: 10.1016/j.watres.2006.02.001 – volume: 70 start-page: 273 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0820 article-title: Effect of cooling rate on base metals recovery from copper matte smelting slags publication-title: World Acad. Sci. Eng. Technol. – volume: 38 start-page: 1330 year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0075 article-title: Use of 87Sr/86Sr and δ11B to identify slag-affected sediment in southern Lake Michigan publication-title: Environ. Sci. Technol. doi: 10.1021/es0347843 – volume: 55 start-page: 103 year: 1993 ident: 10.1016/j.apgeochem.2014.04.009_b0795 article-title: Leaching behavior of granulated non-ferrous metal slags publication-title: Stud. Environ. Sci. doi: 10.1016/S0166-1116(08)70288-7 – volume: 55 start-page: 1797 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0025 article-title: Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization publication-title: Environ. Geol. doi: 10.1007/s00254-007-1131-x – volume: 94 start-page: 1417 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0030 article-title: Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags publication-title: Am. Mineral. doi: 10.2138/am.2009.3171 – volume: 37 start-page: 815 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0390 article-title: Properties and hydration of blended cements with steelmaking slag publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2007.03.008 – volume: 47 start-page: 557 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0380 article-title: The mineralogy and weathering of slag produced by the smelting of the lateritic Ni ores, Szklary, Southwestern Poland publication-title: Can. Mineral. doi: 10.3749/canmin.47.3.557 – volume: 141 start-page: 359 year: 2006 ident: 10.1016/j.apgeochem.2014.04.009_b0850 article-title: Remobilization of metals from slag and polluted sediments (Case Study: the canal of the Deûle River, northern France) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.08.034 – volume: 9 start-page: 583 year: 1994 ident: 10.1016/j.apgeochem.2014.04.009_b0775 article-title: Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden publication-title: Appl. Geochem. doi: 10.1016/0883-2927(94)90020-5 – volume: 16 start-page: 662 year: 1986 ident: 10.1016/j.apgeochem.2014.04.009_b0195 article-title: Characterization of granulated and pelletized blast furnace slag publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(86)90039-6 – volume: 16 start-page: 1567 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0570 article-title: Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(01)00032-4 – ident: 10.1016/j.apgeochem.2014.04.009_b0705 doi: 10.3133/sir20105084 – ident: 10.1016/j.apgeochem.2014.04.009_b0170 doi: 10.5382/Rev.06.13 – ident: 10.1016/j.apgeochem.2014.04.009_b0365 – ident: 10.1016/j.apgeochem.2014.04.009_b0495 – volume: 67 start-page: 1269 issue: 6 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0235 article-title: Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: experimental approach and long-term assessment publication-title: Mineral. Mag. doi: 10.1180/0026461036760164 – volume: 5 start-page: 355 year: 1980 ident: 10.1016/j.apgeochem.2014.04.009_b0035 article-title: Recovery of metal values from copper converter and smelter slags by ferric chloride leaching publication-title: Hydrometallurgy doi: 10.1016/0304-386X(80)90025-0 – volume: 152 start-page: 805 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0815 article-title: Utilization of steel slag for Portland cement clinker production publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.07.093 – ident: 10.1016/j.apgeochem.2014.04.009_b0405 – ident: 10.1016/j.apgeochem.2014.04.009_b0535 – volume: 84 start-page: 1 year: 1975 ident: 10.1016/j.apgeochem.2014.04.009_b0730 article-title: Possible methods for recovering copper from waste smelter slags by leaching publication-title: Trans. Inst. Min. Metall. Sect. C—Mineral Process. Extract. Metall. – volume: 21 start-page: 91 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0750 article-title: Use of steel slag leach beds for the treatment of acid mine drainage publication-title: Mine Water Environ. doi: 10.1007/s102300200024 – volume: 45 start-page: 1189 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0620 article-title: Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland publication-title: Can. Mineral. doi: 10.2113/gscanmin.45.5.1189 – volume: 73 start-page: 845 year: 1988 ident: 10.1016/j.apgeochem.2014.04.009_b0115 article-title: Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays publication-title: Am. Mineral. – volume: 23 start-page: 1241 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0155 article-title: Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.01.005 – volume: 28 start-page: 1331 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0755 article-title: Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material publication-title: Waste Manage. (Oxford) doi: 10.1016/j.wasman.2007.09.017 – ident: 10.1016/j.apgeochem.2014.04.009_b0910 doi: 10.2172/138820 – ident: 10.1016/j.apgeochem.2014.04.009_b0835 – volume: 356 start-page: 69 year: 2006 ident: 10.1016/j.apgeochem.2014.04.009_b0295 article-title: Leachablity of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.03.022 – volume: 71 start-page: A379 issue: 15S year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0340 article-title: Removal of uranium, arsenic and phosphorus from aqueous solutions using steel slag: Goldschmidt conference abstracts publication-title: Geochim. Cosmochim. Acta – volume: 17 start-page: 105 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0470 article-title: Comparison of properties of steel slag and crushed limestone aggregate concretes publication-title: Constr. Build. Mater. doi: 10.1016/S0950-0618(02)00095-8 – volume: 276 start-page: 29 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0585 article-title: Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid–rock interaction and ancient mining pollution publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2010.05.018 – ident: 10.1016/j.apgeochem.2014.04.009_b0565 doi: 10.1016/S0883-2927(01)00032-4 – volume: 22 start-page: 544 issue: 4 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0625 article-title: Attenuation of metal bioavailabilty in acidic multi-metal contaminated soil treated with fly ash and steel slag publication-title: Pedosphere doi: 10.1016/S1002-0160(12)60039-3 – volume: 213–214 start-page: 147 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0545 article-title: Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.01.074 – volume: 66 start-page: 475 issue: 4 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0440 article-title: Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia publication-title: Mineral. Mag. doi: 10.1180/0026461026640043 – ident: 10.1016/j.apgeochem.2014.04.009_b0805 – ident: 10.1016/j.apgeochem.2014.04.009_b0320 doi: 10.1515/9781501509797-012 – volume: 97 start-page: 185 issue: 3–4 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0425 article-title: High pressure oxidative acid leaching of nickel smelter slag, characterization of feed and residue publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.03.007 – volume: 43 start-page: 2476 issue: 7 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0095 article-title: Phosphorus removal from waste waters using basic oxygen steel slag publication-title: Environ. Sci. Technol. doi: 10.1021/es801626d – volume: 40 start-page: 1153 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0485 article-title: Environmental impacts of asphalt mixes with electric arc furnace steel slag publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0516 – volume: 32 start-page: 982 issue: 8 year: 1994 ident: 10.1016/j.apgeochem.2014.04.009_b0555 article-title: Smelting reduction for vanadium-recovery from LD-slag (I) publication-title: Kor. J. Met. Mater. – volume: 74 start-page: 109 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0745 article-title: Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia) publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(01)00178-9 – volume: 124 start-page: 183 year: 2013 ident: 10.1016/j.apgeochem.2014.04.009_b0385 article-title: Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland) publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.09.008 – volume: 164 start-page: 99 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0735 article-title: Investigation on the application of steel slag-fly ash–phosphogypsum solidified material as road base material publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.07.125 – volume: 32 start-page: 2602 issue: 11 year: 2013 ident: 10.1016/j.apgeochem.2014.04.009_b0885 article-title: Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2342 – volume: 57 start-page: 567 year: 2004 ident: 10.1016/j.apgeochem.2014.04.009_b0240 article-title: Leaching of lead metallurgical slag in citric solutions: Implications for disposal and weathering in soil environments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.07.022 – volume: 2011 start-page: 13 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0925 article-title: Chemical, mineralogical, and morphological properties of steel slag publication-title: Adv. Civil Eng. doi: 10.1155/2011/463638 – ident: 10.1016/j.apgeochem.2014.04.009_b0645 – ident: 10.1016/j.apgeochem.2014.04.009_b0285 – volume: 30 start-page: 9 year: 1991 ident: 10.1016/j.apgeochem.2014.04.009_b0040 article-title: Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane publication-title: Nutr. Cycl. Agroecosyst. – volume: 51 start-page: 987 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0250 article-title: Mineralogy of medieval slag from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimates of historical smelting conditions publication-title: Archaeometry doi: 10.1111/j.1475-4754.2008.00455.x – ident: 10.1016/j.apgeochem.2014.04.009_b0895 – volume: 221–222 start-page: 298 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0260 article-title: Reliability of chemical microanalyses for solid waste materials publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.015 – volume: 189 start-page: 692 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0175 article-title: Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.02.091 – ident: 10.1016/j.apgeochem.2014.04.009_b0480 – ident: 10.1016/j.apgeochem.2014.04.009_b0875 – ident: 10.1016/j.apgeochem.2014.04.009_b0930 doi: 10.21000/JASMR99010651 – volume: 25 start-page: 302 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0590 article-title: Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.12.001 – ident: 10.1016/j.apgeochem.2014.04.009_b0605 – volume: 331 start-page: 245 year: 2000 ident: 10.1016/j.apgeochem.2014.04.009_b0215 article-title: Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic publication-title: Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes – volume: 74 start-page: 581 issue: 4 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0855 article-title: Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia publication-title: Mineral. Mag. doi: 10.1180/minmag.2010.074.4.581 – volume: 40 start-page: 81 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0225 article-title: Metallurgical slag behaviour in extreme conditions: surface leaching and metal mobility publication-title: Ecole Nationale Superieure des Mines de Paris Mémoire des Sciences de la Terre – volume: 181 start-page: 1016 issue: 1–3 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0740 article-title: Treatment of smelting residues for arsenic removal and recovery of copper using pyro-hydrometallurgical process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.116 – volume: 407 start-page: 5110 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0780 article-title: Reproducing ten years of road ageing – accelerated carbonization and leaching of EAF steel slag publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.05.039 – ident: 10.1016/j.apgeochem.2014.04.009_b0265 – volume: 23 start-page: 981 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0720 article-title: Early metal smelting in Aksum, Ethiopia: copper or iron? publication-title: Eur. J. Mineral. doi: 10.1127/0935-1221/2011/0023-2167 – volume: 32 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.apgeochem.2014.04.009_b0135 article-title: Mineralogical characterization of old Harz Mountain slags publication-title: Can. Metall. Q. doi: 10.1179/cmq.1993.32.1.1 – volume: 41 start-page: 627 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0680 article-title: The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C publication-title: Can. Mineral. doi: 10.2113/gscanmin.41.3.627 – volume: 5 start-page: 297 year: 1985 ident: 10.1016/j.apgeochem.2014.04.009_b0830 article-title: Disposal of arsenic bearing copper smelter flue dust publication-title: Nucl. Chem. Waste Manage. doi: 10.1016/0191-815X(85)90005-1 – ident: 10.1016/j.apgeochem.2014.04.009_b0840 – ident: 10.1016/j.apgeochem.2014.04.009_b0900 – ident: 10.1016/j.apgeochem.2014.04.009_b0410 – volume: 23 start-page: 895 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0510 article-title: Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2007.07.012 – start-page: 449 year: 1992 ident: 10.1016/j.apgeochem.2014.04.009_b0020 article-title: Proposed treatment of neutral Leach residue at Big River Zinc – volume: 36 start-page: 4001 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0190 article-title: Use of granular slag columns for lead removal publication-title: Water Res. doi: 10.1016/S0043-1354(02)00120-3 – volume: 173 start-page: 161 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0230 article-title: Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags publication-title: Bull. Soc. Geol. Fr. doi: 10.2113/173.2.161 – ident: 10.1016/j.apgeochem.2014.04.009_b0300 doi: 10.1021/ba-1967-0067.ch010 – volume: 10 start-page: 113 issue: 2 year: 1977 ident: 10.1016/j.apgeochem.2014.04.009_b0690 article-title: Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation publication-title: Lithos doi: 10.1016/0024-4937(77)90037-8 – ident: 10.1016/j.apgeochem.2014.04.009_b0070 – volume: 27 start-page: 623 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0595 article-title: Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.12.011 – volume: 39 start-page: 102 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0500 article-title: Cementitious and pozzolanic behavior of electric arc furnace steel slags publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2008.11.002 – ident: 10.1016/j.apgeochem.2014.04.009_b0460 doi: 10.1016/S0166-1116(97)80245-2 – volume: 46 start-page: 125 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0105 article-title: Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland publication-title: Can. Mineral. doi: 10.3749/canmin.46.5.1235 – volume: 49 start-page: 1281 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0375 article-title: Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland publication-title: Can. Mineral. doi: 10.3749/canmin.49.5.1281 – ident: 10.1016/j.apgeochem.2014.04.009_b0505 – volume: 197 start-page: 417 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0860 article-title: Effect of sample preparation on contaminant leaching from copper smelting slag publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.09.102 – volume: 81 start-page: 130 year: 2006 ident: 10.1016/j.apgeochem.2014.04.009_b0310 article-title: Dissolution behavior of Fe Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.10.007 – volume: 40 start-page: 131 issue: 3–4 year: 1992 ident: 10.1016/j.apgeochem.2014.04.009_b0635 article-title: Flotation of copper from converter slags publication-title: J. Mines Met. Fuels – ident: 10.1016/j.apgeochem.2014.04.009_b0845 – ident: 10.1016/j.apgeochem.2014.04.009_b0270 – volume: 156 start-page: 119 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0355 article-title: Nickel enrichment in mantle olivine beneath a volcanic front publication-title: Contrib. Miner. Petrol. doi: 10.1007/s00410-007-0277-6 – volume: 149 start-page: 418 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0710 article-title: Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.04.007 – volume: 39 start-page: 331 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0550 article-title: The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy publication-title: Can. Mineral. doi: 10.2113/gscanmin.39.2.331 – volume: 37 start-page: 1656 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0150 article-title: The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2010.01.026 – volume: 73 start-page: A492 issue: 13S year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0335 article-title: Reduction of aqueous hexavalent chromium by steel slag: abstracts of the 19th annual V. M. Goldschmidt conference publication-title: Geochim. Cosmochim. Acta – ident: 10.1016/j.apgeochem.2014.04.009_b0530 doi: 10.5382/Rev.06.06 – volume: 23 start-page: 3699 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0715 article-title: Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.09.009 – volume: 49 start-page: 161 issue: 2 year: 2013 ident: 10.1016/j.apgeochem.2014.04.009_b0685 article-title: Physiochemical characterization of copper slag and alternatives of friendly environmental management publication-title: J. Min. Metall., Sect. B – Metall. doi: 10.2298/JMMB120814011S – volume: 22 start-page: 751 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0345 article-title: Mineralogical study of precolonial (1650–1850 CE) tin smelting slags from Rooiberg, Limpopo Province, South Africa publication-title: Eur. J. Mineral. doi: 10.1127/0935-1221/2010/0022-2055 – volume: 34 start-page: 1576 year: 2000 ident: 10.1016/j.apgeochem.2014.04.009_b0615 article-title: Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags publication-title: Environ. Sci. Technol. doi: 10.1021/es9906002 – volume: 46 start-page: 2376 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0050 article-title: Phosphate removal from synthetic and real wastewater using steel slags produced in Europe publication-title: Water Res. doi: 10.1016/j.watres.2012.02.012 – volume: 31 start-page: 225 year: 2011 ident: 10.1016/j.apgeochem.2014.04.009_b0185 article-title: Kinetics of steel slag leaching: batch tests and modeling publication-title: Waste Manage. (Oxford) doi: 10.1016/j.wasman.2010.05.018 – volume: 23 start-page: 3452 year: 2008 ident: 10.1016/j.apgeochem.2014.04.009_b0580 article-title: Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.08.005 – volume: 39 start-page: 219 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0880 article-title: Productive use of steelmaking by-product in environmental radioactivity publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.07.010 – ident: 10.1016/j.apgeochem.2014.04.009_b0525 – volume: 34 start-page: 671 year: 2012 ident: 10.1016/j.apgeochem.2014.04.009_b0330 article-title: Durability of mortar and concretes containing slag with low hydraulic activity publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2012.02.011 – volume: 103 start-page: 25 issue: 1–4 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0920 article-title: Selective leaching of base metals from copper smelter slag publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.02.009 – ident: 10.1016/j.apgeochem.2014.04.009_b0905 doi: 10.2172/138643 – volume: 330 start-page: 179 year: 2000 ident: 10.1016/j.apgeochem.2014.04.009_b0450 article-title: Natural weathering of archaeo-metallurgical slags: an analog for present day vitrified wastes publication-title: Earth Planet. Sci. – volume: 48 start-page: 1748 year: 2013 ident: 10.1016/j.apgeochem.2014.04.009_b0130 article-title: Chemical stabilization of cadmium in acidic soil using alkaline argronomic and industrial by-products publication-title: J. Environ. Sci. Health, Part A doi: 10.1080/10934529.2013.815571 – start-page: 211 year: 2003 ident: 10.1016/j.apgeochem.2014.04.009_b0790 article-title: Environmental effects of ferrous slags – comparative analysis and a systems approach in slag impact assessment for terrestrial and aquatic ecosystems publication-title: Approach. Handl. Environ. Probl. Min. Metall. Reg. – start-page: 199 year: 1993 ident: 10.1016/j.apgeochem.2014.04.009_b0560 article-title: Geochemical models – volume: 88 start-page: 10 year: 2006 ident: 10.1016/j.apgeochem.2014.04.009_b0140 article-title: Speciation of Cr and V within BOF steel slag reused in road constructions publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2005.08.006 – volume: 36 start-page: 4642 year: 2002 ident: 10.1016/j.apgeochem.2014.04.009_b0205 article-title: Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems publication-title: Environ. Sci. Technol. doi: 10.1021/es011502v – start-page: 417 year: 1997 ident: 10.1016/j.apgeochem.2014.04.009_b0430 article-title: Physico-chemical and mineralogical properties of EAF and AOD slags: associazione Italiana de publication-title: Metallurgia – volume: 181 start-page: 183 year: 2005 ident: 10.1016/j.apgeochem.2014.04.009_b0445 article-title: Evaporative mineral precipitates from the historical smelting slag dump, Río Tinto, Spain publication-title: Neues Jahrbuch für Mineralogie-Abhandlungen doi: 10.1127/0077-7757/2005/0016 – volume: 69 start-page: 81 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0695 article-title: Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany) publication-title: Chem. Erde doi: 10.1016/j.chemer.2008.03.001 – volume: 56 start-page: 135 issue: 3 year: 2007 ident: 10.1016/j.apgeochem.2014.04.009_b0870 article-title: Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters publication-title: Water Sci. Technol. doi: 10.2166/wst.2007.513 – volume: 39 start-page: 873 year: 2001 ident: 10.1016/j.apgeochem.2014.04.009_b0220 article-title: Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Přίbram, Czech Republic publication-title: Can. Mineral. doi: 10.2113/gscanmin.39.3.873 – ident: 10.1016/j.apgeochem.2014.04.009_b0280 doi: 10.1016/S0166-1116(08)71446-8 – volume: 25 start-page: 208 issue: 4 year: 2013 ident: 10.1016/j.apgeochem.2014.04.009_b0010 article-title: Potentials of copper slag utilization in the manufacture of ordinary Portland cement publication-title: Adv. Cem. Res. doi: 10.1680/adcr.12.00004 – volume: 95 start-page: 190 year: 2009 ident: 10.1016/j.apgeochem.2014.04.009_b0290 article-title: Comparative study on different steel slags as neutralising agent in bioleaching publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.05.042 – volume: vol. 6A start-page: 289 year: 1999 ident: 10.1016/j.apgeochem.2014.04.009_b0015 article-title: Geochemical modeling of water–rock interactions in mining environments – volume: 44 start-page: 5383 year: 2010 ident: 10.1016/j.apgeochem.2014.04.009_b0515 article-title: Physico-chemical characterization of steel slag publication-title: Study of Its Behavior Under Simulated Environmental Conditions: Environmental Science and Technology |
SSID | ssj0005702 |
Score | 2.618751 |
SecondaryResourceType | review_article |
Snippet | •Summarize mineralogy and geochemistry of ferrous and non-ferrous slags.•Discuss potential environmental issues related to weathering of slag dumps.•Outline... Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 236 |
SubjectTerms | aluminum calcite calcium chemical composition chromium construction materials copper environmental impact exposure pathways furnaces geochemistry glass humans iron leaching lead magnesium manganese nickel oxidation pollution quartz recycling remediation screening silicates silicon silver slags soil steel sulfides tin toxic substances United States Environmental Protection Agency weathering zinc |
Title | Characteristics and environmental aspects of slag: A review |
URI | https://dx.doi.org/10.1016/j.apgeochem.2014.04.009 https://www.proquest.com/docview/2000131631 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jIngRP3F-jAhe49omTdd5GsM5FXfRwW4laZIxkW7oPHjxb_e9foxNhB2EXlryaPvy8j6S33uPkCs_1lZJbpiILGci5B5TWmvmeOCMj0e9DrcGnoZyMBIP43BcI70qFwZhlaXuL3R6rq3LJ62Sm635dNp6hvXBgzjAinNoyPIMdhGhlF9_r8A8ohx3iIMZjl7DeKn5xGJjKkxJ90Ve8xSRiX9bqF-6OjdA_T2yW3qOtFt83D6p2eyAbN_lnXm_DslNb730MlWZoStpbECq8rTKDzpzFARh0qFdWmSuHJFR__alN2BlZwSmwH9bMMsd1zK18O8abLRNeRQZqUJtIPrxtOeM07FIwdRI7TsvdRICG2tUgPGLUwE_JvVsltkTQgMuQcWFQazaXLRT3lbGCqFNCpYrhPltEFlxI0nLsuHYveItqfBhr8mSjQmyMfHg8uIG8ZaE86JyxmaSTsXuZE0IEtDvm4kvqwlKYInguYfK7OzzAzttYlUhyf3T_7zgjOzAXVjgxM5JffH-aS_AI1noZi5yTbLVvX8cDH8Ae-7hYg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5EKe2l9EntM4Veg0k22Rh7EqnV-rhUwduym90VS4lS9dB_35k8bC0FD4WckgxJZmdndrLffEPIgxtJLRhVth9qavsBdWwhpbQN9YxycavX4K-BwZB1xv7LJJiUSKuohUFYZe77M5-eeuv8TC3XZm0xm9VeYX5QL_KQcQ4DGaRAFWSnCsqk0uz2OsNvpEeYQg_xfhsFtmBeYjHV2JsKq9JdP6U9RXDi30Hql7tOY1D7iBzmi0ermb3fMSnp5ITsPafNeT9PyWNrm33ZEomyflSygahIKyuX1txYYAvThtW0suKVMzJuP41aHTtvjmALWMKtbE0NlSzW8PkSwrSOaRgqJgKpIAFypGOUkZEfQ7Rh0jVObBjkNloJD1MYIzx6TsrJPNEXxPIoAy8XeJGoU78e07pQ2veliiF4BTDEVcIKbfA4Zw7HBhbvvICIvfGNGjmqkTtwOFGVOBvBRUaesVukUaibb9kBBxe_W_i-GCAOswS3PkSi5-slNttEYiFG3cv_POCO7HdGgz7vd4e9K3IAV4IMNnZNyquPtb6BBcpK3uYG-AU7pOQT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+and+environmental+aspects+of+slag%3A+A+review&rft.jtitle=Applied+geochemistry&rft.au=Piatak%2C+Nadine+M&rft.au=Parsons%2C+Michael+B&rft.au=Seal%2C+Robert+R&rft.date=2015-06-01&rft.issn=0883-2927&rft.volume=57+p.236-266&rft.spage=236&rft.epage=266&rft_id=info:doi/10.1016%2Fj.apgeochem.2014.04.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |