Advances in Catalytic Asymmetric Dearomatization
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The dir...
Saved in:
Published in | ACS central science Vol. 7; no. 3; pp. 432 - 444 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects. |
---|---|
AbstractList | Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects. Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects. Recent advances in catalytic asymmetric dearomatization provide diverse polycyclic molecular scaffolds, novel mechanistic insights, and unprecedented disconnection strategies for total synthesis. Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects. |
Author | Zheng, Chao You, Shu-Li |
AuthorAffiliation | State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis |
AuthorAffiliation_xml | – name: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-7349-262X surname: Zheng fullname: Zheng, Chao – sequence: 2 givenname: Shu-Li orcidid: 0000-0003-4586-8359 surname: You fullname: You, Shu-Li email: slyou@sioc.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33791426$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOAyEUJabG-voBF6ZLN628BpiNSVNfTZq40TVhgFGaGagwNalfL7W1PhYuCDfce87hnnMEej54C8AZgiMEMbpUOmnru6TdCGqIWIH2wCEmnA55WaDerqakD05TmkMIEWWswPwA9AnhJaKYHQI4Nm_Ka5sGzg8mqlPNqnN6ME6rtrVdzOW1VTG0qnPv-QR_AvZr1SR7ur2PwdPtzePkfjh7uJtOxrOhKiDvhgYxbmpMMGO2JqooDUaFqctaFJpgQwUxVak5pRU3JRSwsEJTXuWGNRSyihyD6YbXBDWXi-haFVcyKCc_H0J8lirmrzZWZhGKWEWpyetWuhSUkRpbJAzGSAmeua42XItl1Vqz9i2q5hfp7453L_I5vEkBIUOcZoKLLUEMr0ubOtm6bH_TKG_DMkmcd-a4ZHQ9ev5TayfyZXkeEJsBHUNK0dZSu-7T2iztGomgXAcsvwOW24AzFP-BfrH_CxptQLkn52EZfY7tP8AHJie7bg |
CitedBy_id | crossref_primary_10_1039_D2QO01054B crossref_primary_10_1002_chir_23455 crossref_primary_10_1021_acs_orglett_1c03318 crossref_primary_10_1021_jacs_1c10743 crossref_primary_10_1002_adsc_202400700 crossref_primary_10_1021_acs_orglett_3c02092 crossref_primary_10_1002_ejoc_202400248 crossref_primary_10_6023_cjoc202207046 crossref_primary_10_1039_D1GC02713A crossref_primary_10_1002_ange_202403461 crossref_primary_10_1039_D2QO01936A crossref_primary_10_1039_D4QO02111H crossref_primary_10_1016_j_cclet_2022_06_070 crossref_primary_10_1021_acs_orglett_4c00557 crossref_primary_10_1021_acs_joc_1c01857 crossref_primary_10_1039_D4SC06334A crossref_primary_10_1002_adsc_202201220 crossref_primary_10_1002_anie_202116171 crossref_primary_10_1038_s41467_024_46647_4 crossref_primary_10_1055_s_0041_1737413 crossref_primary_10_1126_sciadv_adg4648 crossref_primary_10_1002_marc_202100904 crossref_primary_10_1021_acs_orglett_2c01594 crossref_primary_10_1021_acscatal_5c00136 crossref_primary_10_1021_jacs_1c02550 crossref_primary_10_1021_jacs_3c12894 crossref_primary_10_1039_D2CC07101K crossref_primary_10_1038_s41586_024_08472_z crossref_primary_10_1021_acscatal_1c05008 crossref_primary_10_1002_ange_202412979 crossref_primary_10_1002_adsc_202101189 crossref_primary_10_1039_D2CC01435A crossref_primary_10_1021_acs_accounts_5c00035 crossref_primary_10_1039_D4SC03530E crossref_primary_10_1039_D3OB00212H crossref_primary_10_1002_adsc_202201110 crossref_primary_10_1021_acscatal_4c05763 crossref_primary_10_1039_D3CC02848H crossref_primary_10_1002_ange_202402819 crossref_primary_10_1039_D1QO01757H crossref_primary_10_1039_D4NJ03285C crossref_primary_10_1021_jacs_1c09975 crossref_primary_10_1039_D4DT01550A crossref_primary_10_1021_acs_joc_2c02817 crossref_primary_10_1039_D2SC04509E crossref_primary_10_1021_jacs_4c02979 crossref_primary_10_1021_acs_orglett_5c00510 crossref_primary_10_1016_j_ccr_2024_216136 crossref_primary_10_1039_D3CC01940C crossref_primary_10_1016_j_xcrp_2023_101645 crossref_primary_10_1021_acs_orglett_3c03035 crossref_primary_10_1002_cctc_202200099 crossref_primary_10_1021_acs_orglett_4c03489 crossref_primary_10_1021_acs_orglett_4c00775 crossref_primary_10_1021_acs_orglett_4c03921 crossref_primary_10_1002_anie_202303876 crossref_primary_10_1016_j_gresc_2022_05_010 crossref_primary_10_1002_adsc_202400281 crossref_primary_10_1021_acs_orglett_2c01927 crossref_primary_10_1039_D2CC00294A crossref_primary_10_1021_jacs_4c12303 crossref_primary_10_1002_adsc_202400718 crossref_primary_10_1021_acs_orglett_2c03679 crossref_primary_10_1002_ange_202314517 crossref_primary_10_1002_anie_202113464 crossref_primary_10_1002_ejoc_202101269 crossref_primary_10_1021_jacs_1c10279 crossref_primary_10_1021_acscatal_2c00400 crossref_primary_10_1002_chem_202301973 crossref_primary_10_1021_jacs_4c09814 crossref_primary_10_1039_D1SC02838C crossref_primary_10_1002_adsc_202400274 crossref_primary_10_1002_anie_202211785 crossref_primary_10_1002_ange_202303876 crossref_primary_10_1002_ange_202107767 crossref_primary_10_1021_jacs_4c06780 crossref_primary_10_1002_ange_202108853 crossref_primary_10_1021_jacs_2c01674 crossref_primary_10_1039_D3CC00512G crossref_primary_10_1038_s41929_022_00784_5 crossref_primary_10_1039_D2GC03000D crossref_primary_10_1055_a_1986_7969 crossref_primary_10_1021_acs_joc_2c01869 crossref_primary_10_1002_chem_202300776 crossref_primary_10_1039_D2CC03161B crossref_primary_10_1016_j_cclet_2023_108441 crossref_primary_10_1021_acs_orglett_1c03510 crossref_primary_10_1021_acs_orglett_5c00215 crossref_primary_10_1002_anie_202107767 crossref_primary_10_1039_D2QO00312K crossref_primary_10_1002_anie_202108853 crossref_primary_10_6023_cjoc202105050 crossref_primary_10_1002_anie_202402819 crossref_primary_10_1016_j_scib_2022_07_019 crossref_primary_10_1021_acs_orglett_4c01441 crossref_primary_10_1039_D1OB01405F crossref_primary_10_3390_molecules28062765 crossref_primary_10_1021_jacs_4c08290 crossref_primary_10_1021_jacs_3c02773 crossref_primary_10_1002_slct_202405224 crossref_primary_10_1039_D4CC02998D crossref_primary_10_1021_acscatal_4c01756 crossref_primary_10_1039_D3SC05952A crossref_primary_10_1007_s11030_024_10861_5 crossref_primary_10_1021_acs_orglett_1c04036 crossref_primary_10_1002_ange_202205814 crossref_primary_10_1002_anie_202312980 crossref_primary_10_1002_anie_202403461 crossref_primary_10_1039_D1OB01377G crossref_primary_10_1021_acs_orglett_3c01106 crossref_primary_10_1021_acs_orglett_4c04164 crossref_primary_10_1039_D4CC00944D crossref_primary_10_1002_ange_202116171 crossref_primary_10_1055_s_0042_1751351 crossref_primary_10_1021_acs_joc_3c01041 crossref_primary_10_1021_acs_joc_3c01162 crossref_primary_10_1002_cctc_202301757 crossref_primary_10_1002_ejoc_202400826 crossref_primary_10_1021_jacs_3c04983 crossref_primary_10_1002_ange_202309256 crossref_primary_10_1002_anie_202207518 crossref_primary_10_1039_D3QO01014G crossref_primary_10_1002_anie_202116024 crossref_primary_10_1021_acs_orglett_2c02536 crossref_primary_10_1039_D4OB01792G crossref_primary_10_1021_acsomega_3c01279 crossref_primary_10_1002_ange_202406195 crossref_primary_10_6023_cjoc202200030 crossref_primary_10_1039_D3GC03222A crossref_primary_10_1002_anie_202407056 crossref_primary_10_1055_s_0043_1773519 crossref_primary_10_1021_acs_joc_3c02945 crossref_primary_10_1039_D4CC02231A crossref_primary_10_1002_ange_202303264 crossref_primary_10_1039_D1CC03514B crossref_primary_10_1039_D4CS00137K crossref_primary_10_1021_jacs_2c01106 crossref_primary_10_1021_acs_orglett_4c03045 crossref_primary_10_1002_ange_202403917 crossref_primary_10_1039_D3OB02084C crossref_primary_10_1021_acs_orglett_2c00129 crossref_primary_10_1002_ange_202116024 crossref_primary_10_1002_adsc_202100516 crossref_primary_10_1055_a_2007_9342 crossref_primary_10_1021_acs_orglett_3c00917 crossref_primary_10_1021_jacs_3c02314 crossref_primary_10_1021_jacs_3c02556 crossref_primary_10_1002_anie_202412979 crossref_primary_10_1002_ange_202407056 crossref_primary_10_1002_anie_202406195 crossref_primary_10_1021_acs_joc_4c01168 crossref_primary_10_1021_jacs_4c14754 crossref_primary_10_1007_s11426_023_1782_9 crossref_primary_10_1002_ange_202313074 crossref_primary_10_1002_ajoc_202400005 crossref_primary_10_12677_JOCR_2024_121001 crossref_primary_10_1021_acscatal_2c01529 crossref_primary_10_1002_anie_202403917 crossref_primary_10_1021_acs_accounts_4c00709 crossref_primary_10_1002_anie_202217328 crossref_primary_10_1002_anie_202303264 crossref_primary_10_1016_j_ccr_2024_215668 crossref_primary_10_1038_s41467_022_33807_7 crossref_primary_10_1039_D1CC05609C crossref_primary_10_1021_acs_orglett_2c00530 crossref_primary_10_1039_D3QO01262J crossref_primary_10_1021_acscatal_1c04549 crossref_primary_10_1021_acscatal_2c00397 crossref_primary_10_1021_acs_orglett_4c00719 crossref_primary_10_1021_acs_joc_5c00171 crossref_primary_10_1002_adsc_202400307 crossref_primary_10_1002_anie_202313074 crossref_primary_10_1016_j_gresc_2022_06_006 crossref_primary_10_1038_s41557_024_01608_8 crossref_primary_10_1002_ajoc_202400374 crossref_primary_10_1021_acs_orglett_4c01003 crossref_primary_10_1039_D2QO00275B crossref_primary_10_1021_acs_orglett_3c03692 crossref_primary_10_6023_cjoc202405030 crossref_primary_10_1002_ange_202421608 crossref_primary_10_1016_j_tchem_2023_100055 crossref_primary_10_1002_anie_202309256 crossref_primary_10_1002_ange_202217328 crossref_primary_10_1002_ange_202207518 crossref_primary_10_1021_acs_orglett_2c00427 crossref_primary_10_1021_acs_orglett_2c01630 crossref_primary_10_1039_D1GC04686A crossref_primary_10_1039_D2OB02303B crossref_primary_10_1021_acs_orglett_4c00166 crossref_primary_10_1002_ange_202113464 crossref_primary_10_1021_acscatal_4c01563 crossref_primary_10_1039_D4SC07681H crossref_primary_10_1002_ejoc_202300253 crossref_primary_10_1021_acs_joc_1c02438 crossref_primary_10_1021_acs_joc_2c03037 crossref_primary_10_1002_chem_202404640 crossref_primary_10_1021_acscatal_3c02546 crossref_primary_10_1021_jacs_2c01852 crossref_primary_10_1002_anie_202205814 crossref_primary_10_1021_acs_orglett_2c04119 crossref_primary_10_1021_jacs_4c05288 crossref_primary_10_1021_acs_orglett_3c04096 crossref_primary_10_1039_D4SC05541A crossref_primary_10_1021_acs_orglett_1c02881 crossref_primary_10_1038_s41467_022_29464_5 crossref_primary_10_1039_D4RA03231D crossref_primary_10_1002_ange_202312980 crossref_primary_10_1002_chem_202301567 crossref_primary_10_1021_acs_orglett_2c03262 crossref_primary_10_1021_jacs_2c00734 crossref_primary_10_1002_ange_202107139 crossref_primary_10_1021_acs_oprd_2c00108 crossref_primary_10_1021_jacs_1c11092 crossref_primary_10_1021_acs_orglett_3c00966 crossref_primary_10_1038_s41467_024_53605_7 crossref_primary_10_3762_bjoc_20_232 crossref_primary_10_6023_A23100472 crossref_primary_10_1021_acs_joc_4c01085 crossref_primary_10_1039_D3QO00506B crossref_primary_10_1039_D4CC01215A crossref_primary_10_1002_chem_202402247 crossref_primary_10_6023_A22070308 crossref_primary_10_6023_cjoc202210026 crossref_primary_10_3390_molecules26164992 crossref_primary_10_1021_acscatal_4c06557 crossref_primary_10_1021_acscatal_2c00911 crossref_primary_10_3390_molecules29112481 crossref_primary_10_1039_D2CC04778K crossref_primary_10_1021_acs_accounts_2c00412 crossref_primary_10_1002_ange_202310066 crossref_primary_10_1021_acs_orglett_5c00051 crossref_primary_10_1002_anie_202314517 crossref_primary_10_1021_jacs_4c08459 crossref_primary_10_1021_acs_orglett_2c01381 crossref_primary_10_1021_acs_orglett_1c02027 crossref_primary_10_1039_D2CY00316C crossref_primary_10_1021_jacs_4c08691 crossref_primary_10_1002_ange_202211785 crossref_primary_10_1021_acssuschemeng_3c03415 crossref_primary_10_1002_chem_202301595 crossref_primary_10_1038_s41586_024_07210_9 crossref_primary_10_1039_D5DT00579E crossref_primary_10_1055_a_1970_4290 crossref_primary_10_1002_cjoc_202200402 crossref_primary_10_1038_s41467_023_40891_w crossref_primary_10_1016_j_cclet_2023_108830 crossref_primary_10_1002_anie_202107139 crossref_primary_10_1002_asia_202101115 crossref_primary_10_1021_acscatal_3c05058 crossref_primary_10_1002_adsc_202200582 crossref_primary_10_1002_anie_202210312 crossref_primary_10_1021_acs_joc_3c02094 crossref_primary_10_1039_D2CC00027J crossref_primary_10_1021_acs_orglett_3c00534 crossref_primary_10_1002_adsc_202300080 crossref_primary_10_1021_jacs_3c01994 crossref_primary_10_1039_D1SC06684F crossref_primary_10_1039_D1QO01862K crossref_primary_10_1248_cpb_c23_00227 crossref_primary_10_1038_s41467_022_31976_z crossref_primary_10_1002_adsc_202400527 crossref_primary_10_1038_s44160_022_00065_w crossref_primary_10_1055_a_1942_0683 crossref_primary_10_1002_chem_202402456 crossref_primary_10_1021_acs_orglett_3c01174 crossref_primary_10_1002_ange_202210312 crossref_primary_10_1002_chem_202401120 crossref_primary_10_1039_D2QO01966C crossref_primary_10_1016_j_gresc_2024_09_003 crossref_primary_10_1016_j_tchem_2022_100007 crossref_primary_10_1039_D2CC01650H crossref_primary_10_1039_D5GC00240K crossref_primary_10_1002_anie_202310066 crossref_primary_10_1007_s10593_021_03013_2 crossref_primary_10_1039_D3CC01438J crossref_primary_10_1016_j_cclet_2022_107779 crossref_primary_10_1038_s41467_022_32201_7 crossref_primary_10_1016_j_checat_2021_12_012 crossref_primary_10_1021_jacs_2c13295 crossref_primary_10_1055_s_0043_1775428 crossref_primary_10_3390_molecules28176186 crossref_primary_10_1038_s41467_023_38059_7 crossref_primary_10_1039_D1QO01755A crossref_primary_10_1021_acs_orglett_4c02482 crossref_primary_10_1038_s44160_022_00039_y crossref_primary_10_1002_advs_202305101 crossref_primary_10_1002_anie_202421608 crossref_primary_10_1039_D1QO01731D |
Cites_doi | 10.1016/j.chempr.2020.07.010 10.1021/jo400365e 10.1016/j.chempr.2018.06.006 10.1016/B978-0-08-052349-1.00048-2 10.1021/ja5044825 10.1126/science.1083622 10.1002/anie.201802891 10.1021/cr200328h 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8 10.1055/s-0035-1561622 10.1002/anie.201204822 10.1002/asia.201800133 10.1021/jm901241e 10.1021/ar500167f 10.1039/C2CS35332F 10.1021/cr60204a003 10.1002/9781118754887 10.1002/anie.201808919 10.1351/pac199668020209 10.1038/s41557-020-0489-1 10.1021/jm960054c 10.1002/9783527698479.ch4 10.1073/pnas.0308177101 10.1021/cr200251d 10.1021/ja403535a 10.2533/chimia.2020.577 10.1021/acs.accounts.0c00074 10.1021/jacs.7b10351 10.1021/cr500671p 10.1002/9783527635207 10.1039/jr9440000430 10.1038/s41929-018-0111-8 10.1021/acs.joc.8b00046 10.1021/jacs.8b12123 10.1021/jacs.5b10440 10.1002/cber.188501802118 10.1021/acs.orglett.7b02068 10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O 10.1002/anie.201900036 10.1016/j.chempr.2016.11.005 10.1002/anie.201008071 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 10.1021/acs.orglett.5b00850 10.1021/acs.orglett.5b02489 10.1351/pac199668030553 10.1021/cr010007e 10.1002/anie.201708419 10.1021/acs.joc.7b03259 10.1055/s-0031-1289520 10.1002/anie.201900248 10.1039/C9CC04542B 10.6023/cjoc201709009 10.1002/anie.201711873 10.1002/9783527698479.ch11 10.1002/anie.201306774 10.1002/cber.187600901247 10.1021/acs.orglett.7b03667 10.1039/C0SC00577K 10.1021/acs.chemrev.5b00121 10.1016/j.chempr.2017.06.015 10.1002/3527601767 10.1002/anie.201803102 10.1002/anie.201609654 10.1002/9783527698479.ch12 10.1002/ejoc.201901229 10.1039/C8CS00054A 10.1021/ar700094b 10.1021/ja105111n 10.2174/1385272819666150608220335 10.1039/C6SC00176A 10.1002/anie.201905021 10.1002/anie.201107677 10.1002/adsc.201900750 10.1002/anie.201905485 10.1126/science.aav5606 10.1002/9783527698479.ch3 10.1039/C8CS00389K 10.1039/9781788013598-00432 10.1039/C8NP00098K 10.1021/jacs.8b00136 10.1039/C5QO00346F 10.1021/cr9903656 10.1002/anie.201814471 10.1002/anie.201611056 10.1002/anie.201405223 10.1002/9783527698479 10.1038/nchem.2825 10.1021/acs.chemrev.8b00506 10.1021/ja100207s 10.1055/s-0036-1591940 10.1002/anie.196803451 10.1002/anie.201511519 10.1002/anie.201609693 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published
by American
Chemical Society 2021 The Authors. Published by American Chemical Society. 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society. – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acscentsci.0c01651 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2374-7951 |
EndPage | 444 |
ExternalDocumentID | oai_doaj_org_article_326416b44d794bc98463f2e18d221a87 PMC8006174 33791426 10_1021_acscentsci_0c01651 a427026864 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS ABFRP ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV DIK EBS FRP GGK GROUPED_DOAJ HYE KQ8 M48 N~. OK1 RPM VF5 XKZ AAFWJ AAYXX ABBLG ADHLV ADUCK AFPKN AOIJS CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a507t-d167df23266ef3a59d215df9f85c32d483db9c744b7d90805e8c47bd48ed406b3 |
IEDL.DBID | M48 |
ISSN | 2374-7943 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Thu Aug 21 13:59:40 EDT 2025 Fri Jul 11 08:20:42 EDT 2025 Wed Feb 19 02:08:07 EST 2025 Tue Jul 01 04:21:05 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Fri Apr 23 03:23:47 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2021 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a507t-d167df23266ef3a59d215df9f85c32d483db9c744b7d90805e8c47bd48ed406b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4586-8359 0000-0002-7349-262X |
OpenAccessLink | https://doaj.org/article/326416b44d794bc98463f2e18d221a87 |
PMID | 33791426 |
PQID | 2507729644 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_326416b44d794bc98463f2e18d221a87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006174 proquest_miscellaneous_2507729644 pubmed_primary_33791426 crossref_citationtrail_10_1021_acscentsci_0c01651 crossref_primary_10_1021_acscentsci_0c01651 acs_journals_10_1021_acscentsci_0c01651 |
ProviderPackageCode | ABFRP ACS AFEFF VF5 XKZ ABUCX GGK N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-24 |
PublicationDateYYYYMMDD | 2021-03-24 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS central science |
PublicationTitleAlternate | ACS Cent. Sci |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17b ref17/cit17a ref16/cit16 ref52/cit52 ref23/cit23 Kuwano R. (ref8/cit8e) 2016 McConathy J. (ref11/cit11) 2003; 5 ref20/cit20 ref48/cit48 ref5/cit5b ref5/cit5c Sherbrook E. M. (ref45/cit45b) 2018; 46 ref5/cit5a ref35/cit35 ref19/cit19 Blaser H.-U. (ref10/cit10c) 2004 ref42/cit42 ref45/cit45c1 ref7/cit7a ref38/cit38 Lewis S. E. (ref9/cit9) 2016 ref5/cit5d ref18/cit18 ref29/cit29 ref8/cit8a ref8/cit8c ref8/cit8b Christmann M. (ref10/cit10a) 2008 ref32/cit32 ref49/cit49a ref39/cit39 ref49/cit49b ref49/cit49c ref43/cit43 Astruc D. (ref3/cit3a) 2002 ref41/cit41b Mingat G. (ref8/cit8d) 2016 ref41/cit41a ref55/cit55 ref4/cit4a ref4/cit4b ref4/cit4c ref28/cit28a ref28/cit28b ref28/cit28c ref22/cit22 ref40/cit40b ref40/cit40c ref33/cit33 ref4/cit4d ref4/cit4e Mortier J. (ref3/cit3b) 2015 ref44/cit44 ref40/cit40a ref53/cit53a ref27/cit27 ref53/cit53b ref56/cit56 ref13/cit13b Carreira E. M. (ref10/cit10b) 2012 ref12/cit12b Zhou Q.-L. (ref13/cit13c) 2011 ref12/cit12a Zhuo C.-X. (ref15/cit15a) 2002; 51 ref2/cit2c ref2/cit2b ref31/cit31 ref59/cit59 ref2/cit2a ref34/cit34 ref37/cit37 ref21/cit21 ref46/cit46 ref24/cit24 ref50/cit50 ref45/cit45c ref36/cit36 ref45/cit45a ref15/cit15b ref25/cit25 ref57/cit57 ref51/cit51 Tsukano C. (ref7/cit7b) 2016 ref54/cit54b You S.-L. (ref15/cit15c) 2016 ref54/cit54a ref26/cit26 ref14/cit14a ref14/cit14c ref14/cit14b ref58/cit58 Jacobsen E. N. (ref13/cit13a) 2000 ref30/cit30 ref6/cit6a ref47/cit47 ref1/cit1 ref6/cit6b ref6/cit6c |
References_xml | – ident: ref45/cit45c1 doi: 10.1016/j.chempr.2020.07.010 – ident: ref23/cit23 doi: 10.1021/jo400365e – ident: ref26/cit26 doi: 10.1016/j.chempr.2018.06.006 – ident: ref6/cit6c doi: 10.1016/B978-0-08-052349-1.00048-2 – ident: ref33/cit33 doi: 10.1021/ja5044825 – ident: ref13/cit13b doi: 10.1126/science.1083622 – ident: ref46/cit46 doi: 10.1002/anie.201802891 – volume-title: Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions year: 2004 ident: ref10/cit10c – ident: ref8/cit8b doi: 10.1021/cr200328h – ident: ref14/cit14a doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8 – ident: ref8/cit8c doi: 10.1055/s-0035-1561622 – volume: 51 start-page: 12662 year: 2002 ident: ref15/cit15a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204822 – ident: ref37/cit37 doi: 10.1002/asia.201800133 – ident: ref16/cit16 doi: 10.1021/jm901241e – ident: ref17/cit17a doi: 10.1021/ar500167f – ident: ref12/cit12a doi: 10.1039/C2CS35332F – ident: ref6/cit6b doi: 10.1021/cr60204a003 – volume-title: Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds year: 2015 ident: ref3/cit3b doi: 10.1002/9781118754887 – ident: ref47/cit47 doi: 10.1002/anie.201808919 – ident: ref2/cit2a doi: 10.1351/pac199668020209 – ident: ref32/cit32 doi: 10.1038/s41557-020-0489-1 – ident: ref20/cit20 doi: 10.1021/jm960054c – start-page: 69 volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref8/cit8e doi: 10.1002/9783527698479.ch4 – ident: ref49/cit49a doi: 10.1073/pnas.0308177101 – ident: ref7/cit7a doi: 10.1021/cr200251d – ident: ref24/cit24 doi: 10.1021/ja403535a – ident: ref53/cit53b doi: 10.2533/chimia.2020.577 – ident: ref27/cit27 doi: 10.1021/acs.accounts.0c00074 – ident: ref54/cit54a doi: 10.1021/jacs.7b10351 – ident: ref12/cit12b doi: 10.1021/cr500671p – volume-title: Privileged Chiral Ligands and Catalysts year: 2011 ident: ref13/cit13c doi: 10.1002/9783527635207 – ident: ref4/cit4a doi: 10.1039/jr9440000430 – ident: ref51/cit51 doi: 10.1038/s41929-018-0111-8 – ident: ref36/cit36 doi: 10.1021/acs.joc.8b00046 – ident: ref54/cit54b doi: 10.1021/jacs.8b12123 – ident: ref29/cit29 doi: 10.1021/jacs.5b10440 – ident: ref5/cit5a doi: 10.1002/cber.188501802118 – ident: ref40/cit40c doi: 10.1021/acs.orglett.7b02068 – ident: ref14/cit14c doi: 10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O – ident: ref42/cit42 doi: 10.1002/anie.201900036 – ident: ref15/cit15b doi: 10.1016/j.chempr.2016.11.005 – ident: ref25/cit25 doi: 10.1002/anie.201008071 – ident: ref14/cit14b doi: 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 – ident: ref40/cit40a doi: 10.1021/acs.orglett.5b00850 – ident: ref40/cit40b doi: 10.1021/acs.orglett.5b02489 – ident: ref4/cit4b doi: 10.1351/pac199668030553 – ident: ref5/cit5b doi: 10.1021/cr010007e – ident: ref19/cit19 doi: 10.1002/anie.201708419 – ident: ref35/cit35 doi: 10.1021/acs.joc.7b03259 – ident: ref5/cit5c doi: 10.1055/s-0031-1289520 – ident: ref43/cit43 doi: 10.1002/anie.201900248 – ident: ref44/cit44 doi: 10.1039/C9CC04542B – ident: ref2/cit2c doi: 10.6023/cjoc201709009 – volume: 5 start-page: 70 year: 2003 ident: ref11/cit11 publication-title: Primary Care Companion J. Clin. Psychiatry – ident: ref34/cit34 doi: 10.1002/anie.201711873 – start-page: 247 volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref7/cit7b doi: 10.1002/9783527698479.ch11 – ident: ref50/cit50 doi: 10.1002/anie.201306774 – ident: ref6/cit6a doi: 10.1002/cber.187600901247 – ident: ref41/cit41b doi: 10.1021/acs.orglett.7b03667 – ident: ref49/cit49b doi: 10.1039/C0SC00577K – ident: ref5/cit5d doi: 10.1021/acs.chemrev.5b00121 – ident: ref41/cit41a doi: 10.1016/j.chempr.2017.06.015 – volume-title: Modern Arene Chemistry: Concepts, Synthesis, and Applications year: 2002 ident: ref3/cit3a doi: 10.1002/3527601767 – ident: ref45/cit45c doi: 10.1002/anie.201803102 – ident: ref28/cit28b doi: 10.1002/anie.201609654 – start-page: 279 volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref9/cit9 doi: 10.1002/9783527698479.ch12 – ident: ref58/cit58 doi: 10.1002/ejoc.201901229 – ident: ref45/cit45a doi: 10.1039/C8CS00054A – ident: ref8/cit8a doi: 10.1021/ar700094b – ident: ref18/cit18 doi: 10.1021/ja105111n – ident: ref4/cit4c doi: 10.2174/1385272819666150608220335 – volume-title: Asymmetric Synthesis: The Essentials year: 2008 ident: ref10/cit10a – ident: ref22/cit22 doi: 10.1039/C6SC00176A – ident: ref55/cit55 doi: 10.1002/anie.201905021 – ident: ref21/cit21 doi: 10.1002/anie.201107677 – ident: ref59/cit59 doi: 10.1002/adsc.201900750 – ident: ref4/cit4e doi: 10.1002/anie.201905485 – volume-title: Comprehensive Asymmetric Catalysis year: 2000 ident: ref13/cit13a – ident: ref4/cit4d doi: 10.1126/science.aav5606 – start-page: 33 volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref8/cit8d doi: 10.1002/9783527698479.ch3 – ident: ref56/cit56 doi: 10.1039/C8CS00389K – volume: 46 start-page: 432 volume-title: Photochemistry year: 2018 ident: ref45/cit45b doi: 10.1039/9781788013598-00432 – ident: ref48/cit48 doi: 10.1039/C8NP00098K – ident: ref31/cit31 doi: 10.1021/jacs.8b00136 – ident: ref39/cit39 doi: 10.1039/C5QO00346F – ident: ref2/cit2b doi: 10.1021/cr9903656 – ident: ref57/cit57 doi: 10.1002/anie.201814471 – ident: ref30/cit30 doi: 10.1002/anie.201611056 – ident: ref38/cit38 doi: 10.1002/anie.201405223 – volume-title: Asymmetric Dearomatization Reactions year: 2016 ident: ref15/cit15c doi: 10.1002/9783527698479 – volume-title: Comprehensive Chirality year: 2012 ident: ref10/cit10b – ident: ref49/cit49c doi: 10.1038/nchem.2825 – ident: ref17/cit17b doi: 10.1021/acs.chemrev.8b00506 – ident: ref52/cit52 doi: 10.1021/ja100207s – ident: ref53/cit53a doi: 10.1055/s-0036-1591940 – ident: ref1/cit1 doi: 10.1002/anie.196803451 – ident: ref28/cit28a doi: 10.1002/anie.201511519 – ident: ref28/cit28c doi: 10.1002/anie.201609693 |
SSID | ssj0001466527 |
Score | 2.5958097 |
SecondaryResourceType | review_article |
Snippet | Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric... Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 432 |
SubjectTerms | Outlook |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIBHiB7opeqLkr6USkg9tIG1PbaT43YBISQ4gcTN8itiJTZbNcuBC7-dcZJduoiiXmM7j5mJ5rPHngHYxWBRooqFE4wXqKMviJtlQfYRyd_KUtm0Dnl6po4v8ORSXm7Az39E8Dnbt75Pa-SneyOfDt_QXOcFV2R3qczl3d7Digoq1ddo5SJtMqxQDKdknr5N8ke-XfNHXdr-p1jz8ZbJv3zQ0Wt4NcBjPu61_QY2YvMWtibLmm3vYDTuQ_ptPm3ySVqZuaWu-bi9nc1S6SyfH5BlzxOl9scv38PF0eH55LgYaiIUlshtUQSmdKgJg5SKtbCyCuSzQ13VpfSCByxFcJXXiE6HimhQxtKjdtQQA_luJ7Zhs5k3cQdyy2orVS2D5h550FXNIkYpAjoeRAwZfCf5mMGmW9OFqzkzD5I0gyQzYEsZGj-kFk8VLq6fHfNjNeZ3n1jj2d6_kmpWPVNS7O4CWYoZ_jFDQiG8dIj0Leh8RWglah5ZGThnttQZfFsq1pBeUmTENnF-0xriwDTLIDbM4EOv6NWjhNAVI47JQK-ZwNq7rLc006suUXfZASJ-_G9BfoKXPO2ZGYmC42fYXPy5iV8Iehbua2fr90AV_hs priority: 102 providerName: American Chemical Society – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQF7hULdB224IWCamHapvYHtu7xxCIEBKcQOJm-WvVSM0GdcMh_77j9SYkFaIXrmtbO5p50nv-mBlCzsAbECBDYTllBajgCtTNokB8BORbUUoTzyFvbuXVPVw_iIeNVl_xTVgqD5wcN0B5gZrBAnhEjnUV8iWvWaClZ4yasssjR87b2Ex1pysgpWCqz5JBHhsYl6ojuenPoYs5PDTykWu3-Kgr2_-S1vz3yeQGB03ek3e9eMxHyegPZCc0B2RvvOrZdkiGo3Sl3-bTJh_Hk5klTs1H7XI2i62zXH6ByJ5HlZrSL4_I_eTybnxV9D0RCoPKbVF4KpWvUQZJGWpuROWRs31d1aVwnHkoubeVUwBW-QrVoAilA2VxIHjkbss_kt1m3oTPJDe0NkLWwivmgKF7axogCO7BMs-Dz8h39I_uMd3q7rqaUf3sSd17MiN05UPt-tLiscPF71fX_FiveUyFNV6dfR5Ds54Zi2J3HxAquoeK_h9UMnK6CqzGuMSbEdOE-VOrUQfGXQZqw4x8SoFe_4pzVVHUMRlRWxDYsmV7pJn-6gp1l51AhC9vYfxXss_ic5ohLxh8I7uLP0_hGPXQwp500P8LPbYIAg priority: 102 providerName: Directory of Open Access Journals |
Title | Advances in Catalytic Asymmetric Dearomatization |
URI | http://dx.doi.org/10.1021/acscentsci.0c01651 https://www.ncbi.nlm.nih.gov/pubmed/33791426 https://www.proquest.com/docview/2507729644 https://pubmed.ncbi.nlm.nih.gov/PMC8006174 https://doaj.org/article/326416b44d794bc98463f2e18d221a87 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6VIkEviDfLI1okJA5oQ2yP17sHhEKgqpDaC0TqzfJrS6R2Q5NUai78dsb7CASFXvawtvcxM9Z8M7a_AXiD3qDEPGRWMJ6hCi4j3Cwzso9A_lYWuYl5yOOT_GiKX0_l6R705Y46AS53hnaxntR0cT68vlx_pAn_oSUeYO-Na4mP3Gw4cvF4DkVDt8kzqThRjzu43-RcMM_bKq5cxG2IJYruHM3uxxzAHSFUyTBSL9yi9i3n1XD87wKm_-6v_MthHd6Hex3STMetaTyAvVA_hLuTvsDbIxiN2_X_ZTqr00lM46ypazperi8uYp0tl36maTCPkLY9q_kYpodfvk-Osq6AQmYI5q0yz3LlK8JMeR4qYWTpycH7qqwK6QT3WAhvS6cQrfIlQUcZCofKUkPw5OiteAL79bwOzyA1rDIyr6RX3CH3qqxYwCCFR8u9CD6BtyQf3etPN2vbnOk_QtWdUBNgvQy163jIYzmM8xvHvNuM-dmycNzY-1NUzaZnZNBubswXZ7qbkJqEQljUItK_oHUl4TBR8cAKzzkzhUrgda9YTXqJyyimDvOrpSbQGEMSApIJPG0VvXlVby4JqC0T2PqW7ZZ69qNh9S4aNInP__vMF3DA44aakcg4voT91eIqvCJEtLIDiggm3wZNPmHQmDxdT34NfwOAsgrT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGP-EtsO4wHiH8QgSEgeUUtuf7eRYClOBbRc6aTcrfkSrYCki7WH89fucpC2dpgmu8SP-XvLP9vcAeIu-RIkqZFYwnqEOLiPcLDPSj0D7rcxVGe8hj0_U5BS_nsmzPo47xsLQIhqaqWkf8TfZBdgH-tZmN3KzwdDFGBw68uzSZDyq9Wj8fXOxgkp1pVq5iL6GBYo-WObmaeK25JqtbanN3n8T5LzuOfnXVnR4H6ZrIloPlB-D5cIO3J9r-R3_k8p9uNdD03TU6dIDuBPqh7A3XlWEewTDUecw0KSzOh3He59L6pqOmsuLi1iYy6WfyG7mEQN3wZ2P4fTw83Q8yfqKC1lJuHCReaa0rwhkKRUqUcrCEyLwVVHl0gnuMRfeFk4jWu0Lwpoy5A61pYbgCRlY8QR26nkdnkFasqqUqpJec4fc66JiAYMUHi33IvgE3hGxpreYxrSP4ZyZDQdMz4EE2Eo0xvWJy2P9jJ-3jnm_HvOrS9txa--PUeLrnjHldvuBxGN6CzbEFAKvFpFoQesKAm6i4oHlnnNW5jqBNyt9MSSX-O5S1mG-bAyhzHiGIeSZwNNOf9a_EkIXjFBSAnpLs7bWst1Sz87bNOB5Cz_x-T8z8jXsTabHR-boy8m3A7jLo3fOUGQcX8DO4vcyvCR4tbCvWnO6AqopIIs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIgEXxJvwDBISB5Sytsd2cly2rMprxYFKvVnxS6xEsxXZHnrhtzNOvFsWVRVXv-LMjDWfZzwzAK_RtyhRhcoKxivUwVWEm2VF8hFI38patckO-XWhDo_w07E8zqaLFAtDm-hppX5w4qdTfepjzjDA3lH7kOHILfcnLsXh0LXnOuGRSarZsPi9f2FcQaXGcq1cpPeGDYocMHP5Mkk1uX5HNQ0Z_C-Dnf--nvxLHc3vwO2MI8vpyPi7cC109-DmbFO-7T5MpqN3vy-XXTlLRppzGlpO-_OTk1RFy5UHJOSrBFjHSMwHcDT_8H12WOXyCFVLIG5deaa0j4SIlApRtLLxpL59bGItneAea-Ft4zSi1b4hYChD7VBb6gie1LgVD2GvW3XhMZQti61UUXrNHXKvm8gCBik8Wu5F8AW8IfqYLN69GTzXnJkLSppMyQLYhobG5SzjqdjFzyvnvN3OOR1zbFw5-n1izXZkyo89NJDEmHzcDBGFkKZFpH9B6xpCWSLywGrPOWtrXcCrDWMN8SU5SdourM56Q5AwXTgIJhbwaGT09lNC6IYRpClA74jAzl52e7rljyFndz1gRXzy34R8CTe-HczNl4-Lz0_hFk8vaSai4vgM9ta_zsJzgkJr-2IQ-z8X4QTc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Catalytic+Asymmetric+Dearomatization&rft.jtitle=ACS+central+science&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu-Li&rft.date=2021-03-24&rft.issn=2374-7943&rft.volume=7&rft.issue=3&rft.spage=432&rft_id=info:doi/10.1021%2Facscentsci.0c01651&rft_id=info%3Apmid%2F33791426&rft.externalDocID=33791426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon |