Advances in Catalytic Asymmetric Dearomatization

Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The dir...

Full description

Saved in:
Bibliographic Details
Published inACS central science Vol. 7; no. 3; pp. 432 - 444
Main Authors Zheng, Chao, You, Shu-Li
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.
AbstractList Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects. Recent advances in catalytic asymmetric dearomatization provide diverse polycyclic molecular scaffolds, novel mechanistic insights, and unprecedented disconnection strategies for total synthesis.
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.
Author Zheng, Chao
You, Shu-Li
AuthorAffiliation State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis
AuthorAffiliation_xml – name: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-7349-262X
  surname: Zheng
  fullname: Zheng, Chao
– sequence: 2
  givenname: Shu-Li
  orcidid: 0000-0003-4586-8359
  surname: You
  fullname: You, Shu-Li
  email: slyou@sioc.ac.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33791426$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOAyEUJabG-voBF6ZLN628BpiNSVNfTZq40TVhgFGaGagwNalfL7W1PhYuCDfce87hnnMEej54C8AZgiMEMbpUOmnru6TdCGqIWIH2wCEmnA55WaDerqakD05TmkMIEWWswPwA9AnhJaKYHQI4Nm_Ka5sGzg8mqlPNqnN6ME6rtrVdzOW1VTG0qnPv-QR_AvZr1SR7ur2PwdPtzePkfjh7uJtOxrOhKiDvhgYxbmpMMGO2JqooDUaFqctaFJpgQwUxVak5pRU3JRSwsEJTXuWGNRSyihyD6YbXBDWXi-haFVcyKCc_H0J8lirmrzZWZhGKWEWpyetWuhSUkRpbJAzGSAmeua42XItl1Vqz9i2q5hfp7453L_I5vEkBIUOcZoKLLUEMr0ubOtm6bH_TKG_DMkmcd-a4ZHQ9ev5TayfyZXkeEJsBHUNK0dZSu-7T2iztGomgXAcsvwOW24AzFP-BfrH_CxptQLkn52EZfY7tP8AHJie7bg
CitedBy_id crossref_primary_10_1039_D2QO01054B
crossref_primary_10_1002_chir_23455
crossref_primary_10_1021_acs_orglett_1c03318
crossref_primary_10_1021_jacs_1c10743
crossref_primary_10_1002_adsc_202400700
crossref_primary_10_1021_acs_orglett_3c02092
crossref_primary_10_1002_ejoc_202400248
crossref_primary_10_6023_cjoc202207046
crossref_primary_10_1039_D1GC02713A
crossref_primary_10_1002_ange_202403461
crossref_primary_10_1039_D2QO01936A
crossref_primary_10_1039_D4QO02111H
crossref_primary_10_1016_j_cclet_2022_06_070
crossref_primary_10_1021_acs_orglett_4c00557
crossref_primary_10_1021_acs_joc_1c01857
crossref_primary_10_1039_D4SC06334A
crossref_primary_10_1002_adsc_202201220
crossref_primary_10_1002_anie_202116171
crossref_primary_10_1038_s41467_024_46647_4
crossref_primary_10_1055_s_0041_1737413
crossref_primary_10_1126_sciadv_adg4648
crossref_primary_10_1002_marc_202100904
crossref_primary_10_1021_acs_orglett_2c01594
crossref_primary_10_1021_acscatal_5c00136
crossref_primary_10_1021_jacs_1c02550
crossref_primary_10_1021_jacs_3c12894
crossref_primary_10_1039_D2CC07101K
crossref_primary_10_1038_s41586_024_08472_z
crossref_primary_10_1021_acscatal_1c05008
crossref_primary_10_1002_ange_202412979
crossref_primary_10_1002_adsc_202101189
crossref_primary_10_1039_D2CC01435A
crossref_primary_10_1021_acs_accounts_5c00035
crossref_primary_10_1039_D4SC03530E
crossref_primary_10_1039_D3OB00212H
crossref_primary_10_1002_adsc_202201110
crossref_primary_10_1021_acscatal_4c05763
crossref_primary_10_1039_D3CC02848H
crossref_primary_10_1002_ange_202402819
crossref_primary_10_1039_D1QO01757H
crossref_primary_10_1039_D4NJ03285C
crossref_primary_10_1021_jacs_1c09975
crossref_primary_10_1039_D4DT01550A
crossref_primary_10_1021_acs_joc_2c02817
crossref_primary_10_1039_D2SC04509E
crossref_primary_10_1021_jacs_4c02979
crossref_primary_10_1021_acs_orglett_5c00510
crossref_primary_10_1016_j_ccr_2024_216136
crossref_primary_10_1039_D3CC01940C
crossref_primary_10_1016_j_xcrp_2023_101645
crossref_primary_10_1021_acs_orglett_3c03035
crossref_primary_10_1002_cctc_202200099
crossref_primary_10_1021_acs_orglett_4c03489
crossref_primary_10_1021_acs_orglett_4c00775
crossref_primary_10_1021_acs_orglett_4c03921
crossref_primary_10_1002_anie_202303876
crossref_primary_10_1016_j_gresc_2022_05_010
crossref_primary_10_1002_adsc_202400281
crossref_primary_10_1021_acs_orglett_2c01927
crossref_primary_10_1039_D2CC00294A
crossref_primary_10_1021_jacs_4c12303
crossref_primary_10_1002_adsc_202400718
crossref_primary_10_1021_acs_orglett_2c03679
crossref_primary_10_1002_ange_202314517
crossref_primary_10_1002_anie_202113464
crossref_primary_10_1002_ejoc_202101269
crossref_primary_10_1021_jacs_1c10279
crossref_primary_10_1021_acscatal_2c00400
crossref_primary_10_1002_chem_202301973
crossref_primary_10_1021_jacs_4c09814
crossref_primary_10_1039_D1SC02838C
crossref_primary_10_1002_adsc_202400274
crossref_primary_10_1002_anie_202211785
crossref_primary_10_1002_ange_202303876
crossref_primary_10_1002_ange_202107767
crossref_primary_10_1021_jacs_4c06780
crossref_primary_10_1002_ange_202108853
crossref_primary_10_1021_jacs_2c01674
crossref_primary_10_1039_D3CC00512G
crossref_primary_10_1038_s41929_022_00784_5
crossref_primary_10_1039_D2GC03000D
crossref_primary_10_1055_a_1986_7969
crossref_primary_10_1021_acs_joc_2c01869
crossref_primary_10_1002_chem_202300776
crossref_primary_10_1039_D2CC03161B
crossref_primary_10_1016_j_cclet_2023_108441
crossref_primary_10_1021_acs_orglett_1c03510
crossref_primary_10_1021_acs_orglett_5c00215
crossref_primary_10_1002_anie_202107767
crossref_primary_10_1039_D2QO00312K
crossref_primary_10_1002_anie_202108853
crossref_primary_10_6023_cjoc202105050
crossref_primary_10_1002_anie_202402819
crossref_primary_10_1016_j_scib_2022_07_019
crossref_primary_10_1021_acs_orglett_4c01441
crossref_primary_10_1039_D1OB01405F
crossref_primary_10_3390_molecules28062765
crossref_primary_10_1021_jacs_4c08290
crossref_primary_10_1021_jacs_3c02773
crossref_primary_10_1002_slct_202405224
crossref_primary_10_1039_D4CC02998D
crossref_primary_10_1021_acscatal_4c01756
crossref_primary_10_1039_D3SC05952A
crossref_primary_10_1007_s11030_024_10861_5
crossref_primary_10_1021_acs_orglett_1c04036
crossref_primary_10_1002_ange_202205814
crossref_primary_10_1002_anie_202312980
crossref_primary_10_1002_anie_202403461
crossref_primary_10_1039_D1OB01377G
crossref_primary_10_1021_acs_orglett_3c01106
crossref_primary_10_1021_acs_orglett_4c04164
crossref_primary_10_1039_D4CC00944D
crossref_primary_10_1002_ange_202116171
crossref_primary_10_1055_s_0042_1751351
crossref_primary_10_1021_acs_joc_3c01041
crossref_primary_10_1021_acs_joc_3c01162
crossref_primary_10_1002_cctc_202301757
crossref_primary_10_1002_ejoc_202400826
crossref_primary_10_1021_jacs_3c04983
crossref_primary_10_1002_ange_202309256
crossref_primary_10_1002_anie_202207518
crossref_primary_10_1039_D3QO01014G
crossref_primary_10_1002_anie_202116024
crossref_primary_10_1021_acs_orglett_2c02536
crossref_primary_10_1039_D4OB01792G
crossref_primary_10_1021_acsomega_3c01279
crossref_primary_10_1002_ange_202406195
crossref_primary_10_6023_cjoc202200030
crossref_primary_10_1039_D3GC03222A
crossref_primary_10_1002_anie_202407056
crossref_primary_10_1055_s_0043_1773519
crossref_primary_10_1021_acs_joc_3c02945
crossref_primary_10_1039_D4CC02231A
crossref_primary_10_1002_ange_202303264
crossref_primary_10_1039_D1CC03514B
crossref_primary_10_1039_D4CS00137K
crossref_primary_10_1021_jacs_2c01106
crossref_primary_10_1021_acs_orglett_4c03045
crossref_primary_10_1002_ange_202403917
crossref_primary_10_1039_D3OB02084C
crossref_primary_10_1021_acs_orglett_2c00129
crossref_primary_10_1002_ange_202116024
crossref_primary_10_1002_adsc_202100516
crossref_primary_10_1055_a_2007_9342
crossref_primary_10_1021_acs_orglett_3c00917
crossref_primary_10_1021_jacs_3c02314
crossref_primary_10_1021_jacs_3c02556
crossref_primary_10_1002_anie_202412979
crossref_primary_10_1002_ange_202407056
crossref_primary_10_1002_anie_202406195
crossref_primary_10_1021_acs_joc_4c01168
crossref_primary_10_1021_jacs_4c14754
crossref_primary_10_1007_s11426_023_1782_9
crossref_primary_10_1002_ange_202313074
crossref_primary_10_1002_ajoc_202400005
crossref_primary_10_12677_JOCR_2024_121001
crossref_primary_10_1021_acscatal_2c01529
crossref_primary_10_1002_anie_202403917
crossref_primary_10_1021_acs_accounts_4c00709
crossref_primary_10_1002_anie_202217328
crossref_primary_10_1002_anie_202303264
crossref_primary_10_1016_j_ccr_2024_215668
crossref_primary_10_1038_s41467_022_33807_7
crossref_primary_10_1039_D1CC05609C
crossref_primary_10_1021_acs_orglett_2c00530
crossref_primary_10_1039_D3QO01262J
crossref_primary_10_1021_acscatal_1c04549
crossref_primary_10_1021_acscatal_2c00397
crossref_primary_10_1021_acs_orglett_4c00719
crossref_primary_10_1021_acs_joc_5c00171
crossref_primary_10_1002_adsc_202400307
crossref_primary_10_1002_anie_202313074
crossref_primary_10_1016_j_gresc_2022_06_006
crossref_primary_10_1038_s41557_024_01608_8
crossref_primary_10_1002_ajoc_202400374
crossref_primary_10_1021_acs_orglett_4c01003
crossref_primary_10_1039_D2QO00275B
crossref_primary_10_1021_acs_orglett_3c03692
crossref_primary_10_6023_cjoc202405030
crossref_primary_10_1002_ange_202421608
crossref_primary_10_1016_j_tchem_2023_100055
crossref_primary_10_1002_anie_202309256
crossref_primary_10_1002_ange_202217328
crossref_primary_10_1002_ange_202207518
crossref_primary_10_1021_acs_orglett_2c00427
crossref_primary_10_1021_acs_orglett_2c01630
crossref_primary_10_1039_D1GC04686A
crossref_primary_10_1039_D2OB02303B
crossref_primary_10_1021_acs_orglett_4c00166
crossref_primary_10_1002_ange_202113464
crossref_primary_10_1021_acscatal_4c01563
crossref_primary_10_1039_D4SC07681H
crossref_primary_10_1002_ejoc_202300253
crossref_primary_10_1021_acs_joc_1c02438
crossref_primary_10_1021_acs_joc_2c03037
crossref_primary_10_1002_chem_202404640
crossref_primary_10_1021_acscatal_3c02546
crossref_primary_10_1021_jacs_2c01852
crossref_primary_10_1002_anie_202205814
crossref_primary_10_1021_acs_orglett_2c04119
crossref_primary_10_1021_jacs_4c05288
crossref_primary_10_1021_acs_orglett_3c04096
crossref_primary_10_1039_D4SC05541A
crossref_primary_10_1021_acs_orglett_1c02881
crossref_primary_10_1038_s41467_022_29464_5
crossref_primary_10_1039_D4RA03231D
crossref_primary_10_1002_ange_202312980
crossref_primary_10_1002_chem_202301567
crossref_primary_10_1021_acs_orglett_2c03262
crossref_primary_10_1021_jacs_2c00734
crossref_primary_10_1002_ange_202107139
crossref_primary_10_1021_acs_oprd_2c00108
crossref_primary_10_1021_jacs_1c11092
crossref_primary_10_1021_acs_orglett_3c00966
crossref_primary_10_1038_s41467_024_53605_7
crossref_primary_10_3762_bjoc_20_232
crossref_primary_10_6023_A23100472
crossref_primary_10_1021_acs_joc_4c01085
crossref_primary_10_1039_D3QO00506B
crossref_primary_10_1039_D4CC01215A
crossref_primary_10_1002_chem_202402247
crossref_primary_10_6023_A22070308
crossref_primary_10_6023_cjoc202210026
crossref_primary_10_3390_molecules26164992
crossref_primary_10_1021_acscatal_4c06557
crossref_primary_10_1021_acscatal_2c00911
crossref_primary_10_3390_molecules29112481
crossref_primary_10_1039_D2CC04778K
crossref_primary_10_1021_acs_accounts_2c00412
crossref_primary_10_1002_ange_202310066
crossref_primary_10_1021_acs_orglett_5c00051
crossref_primary_10_1002_anie_202314517
crossref_primary_10_1021_jacs_4c08459
crossref_primary_10_1021_acs_orglett_2c01381
crossref_primary_10_1021_acs_orglett_1c02027
crossref_primary_10_1039_D2CY00316C
crossref_primary_10_1021_jacs_4c08691
crossref_primary_10_1002_ange_202211785
crossref_primary_10_1021_acssuschemeng_3c03415
crossref_primary_10_1002_chem_202301595
crossref_primary_10_1038_s41586_024_07210_9
crossref_primary_10_1039_D5DT00579E
crossref_primary_10_1055_a_1970_4290
crossref_primary_10_1002_cjoc_202200402
crossref_primary_10_1038_s41467_023_40891_w
crossref_primary_10_1016_j_cclet_2023_108830
crossref_primary_10_1002_anie_202107139
crossref_primary_10_1002_asia_202101115
crossref_primary_10_1021_acscatal_3c05058
crossref_primary_10_1002_adsc_202200582
crossref_primary_10_1002_anie_202210312
crossref_primary_10_1021_acs_joc_3c02094
crossref_primary_10_1039_D2CC00027J
crossref_primary_10_1021_acs_orglett_3c00534
crossref_primary_10_1002_adsc_202300080
crossref_primary_10_1021_jacs_3c01994
crossref_primary_10_1039_D1SC06684F
crossref_primary_10_1039_D1QO01862K
crossref_primary_10_1248_cpb_c23_00227
crossref_primary_10_1038_s41467_022_31976_z
crossref_primary_10_1002_adsc_202400527
crossref_primary_10_1038_s44160_022_00065_w
crossref_primary_10_1055_a_1942_0683
crossref_primary_10_1002_chem_202402456
crossref_primary_10_1021_acs_orglett_3c01174
crossref_primary_10_1002_ange_202210312
crossref_primary_10_1002_chem_202401120
crossref_primary_10_1039_D2QO01966C
crossref_primary_10_1016_j_gresc_2024_09_003
crossref_primary_10_1016_j_tchem_2022_100007
crossref_primary_10_1039_D2CC01650H
crossref_primary_10_1039_D5GC00240K
crossref_primary_10_1002_anie_202310066
crossref_primary_10_1007_s10593_021_03013_2
crossref_primary_10_1039_D3CC01438J
crossref_primary_10_1016_j_cclet_2022_107779
crossref_primary_10_1038_s41467_022_32201_7
crossref_primary_10_1016_j_checat_2021_12_012
crossref_primary_10_1021_jacs_2c13295
crossref_primary_10_1055_s_0043_1775428
crossref_primary_10_3390_molecules28176186
crossref_primary_10_1038_s41467_023_38059_7
crossref_primary_10_1039_D1QO01755A
crossref_primary_10_1021_acs_orglett_4c02482
crossref_primary_10_1038_s44160_022_00039_y
crossref_primary_10_1002_advs_202305101
crossref_primary_10_1002_anie_202421608
crossref_primary_10_1039_D1QO01731D
Cites_doi 10.1016/j.chempr.2020.07.010
10.1021/jo400365e
10.1016/j.chempr.2018.06.006
10.1016/B978-0-08-052349-1.00048-2
10.1021/ja5044825
10.1126/science.1083622
10.1002/anie.201802891
10.1021/cr200328h
10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8
10.1055/s-0035-1561622
10.1002/anie.201204822
10.1002/asia.201800133
10.1021/jm901241e
10.1021/ar500167f
10.1039/C2CS35332F
10.1021/cr60204a003
10.1002/9781118754887
10.1002/anie.201808919
10.1351/pac199668020209
10.1038/s41557-020-0489-1
10.1021/jm960054c
10.1002/9783527698479.ch4
10.1073/pnas.0308177101
10.1021/cr200251d
10.1021/ja403535a
10.2533/chimia.2020.577
10.1021/acs.accounts.0c00074
10.1021/jacs.7b10351
10.1021/cr500671p
10.1002/9783527635207
10.1039/jr9440000430
10.1038/s41929-018-0111-8
10.1021/acs.joc.8b00046
10.1021/jacs.8b12123
10.1021/jacs.5b10440
10.1002/cber.188501802118
10.1021/acs.orglett.7b02068
10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O
10.1002/anie.201900036
10.1016/j.chempr.2016.11.005
10.1002/anie.201008071
10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4
10.1021/acs.orglett.5b00850
10.1021/acs.orglett.5b02489
10.1351/pac199668030553
10.1021/cr010007e
10.1002/anie.201708419
10.1021/acs.joc.7b03259
10.1055/s-0031-1289520
10.1002/anie.201900248
10.1039/C9CC04542B
10.6023/cjoc201709009
10.1002/anie.201711873
10.1002/9783527698479.ch11
10.1002/anie.201306774
10.1002/cber.187600901247
10.1021/acs.orglett.7b03667
10.1039/C0SC00577K
10.1021/acs.chemrev.5b00121
10.1016/j.chempr.2017.06.015
10.1002/3527601767
10.1002/anie.201803102
10.1002/anie.201609654
10.1002/9783527698479.ch12
10.1002/ejoc.201901229
10.1039/C8CS00054A
10.1021/ar700094b
10.1021/ja105111n
10.2174/1385272819666150608220335
10.1039/C6SC00176A
10.1002/anie.201905021
10.1002/anie.201107677
10.1002/adsc.201900750
10.1002/anie.201905485
10.1126/science.aav5606
10.1002/9783527698479.ch3
10.1039/C8CS00389K
10.1039/9781788013598-00432
10.1039/C8NP00098K
10.1021/jacs.8b00136
10.1039/C5QO00346F
10.1021/cr9903656
10.1002/anie.201814471
10.1002/anie.201611056
10.1002/anie.201405223
10.1002/9783527698479
10.1038/nchem.2825
10.1021/acs.chemrev.8b00506
10.1021/ja100207s
10.1055/s-0036-1591940
10.1002/anie.196803451
10.1002/anie.201511519
10.1002/anie.201609693
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society.
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society.
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acscentsci.0c01651
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2374-7951
EndPage 444
ExternalDocumentID oai_doaj_org_article_326416b44d794bc98463f2e18d221a87
PMC8006174
33791426
10_1021_acscentsci_0c01651
a427026864
Genre Journal Article
Review
GroupedDBID 53G
5VS
ABFRP
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
DIK
EBS
FRP
GGK
GROUPED_DOAJ
HYE
KQ8
M48
N~.
OK1
RPM
VF5
XKZ
AAFWJ
AAYXX
ABBLG
ADHLV
ADUCK
AFPKN
AOIJS
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a507t-d167df23266ef3a59d215df9f85c32d483db9c744b7d90805e8c47bd48ed406b3
IEDL.DBID M48
ISSN 2374-7943
IngestDate Wed Aug 27 01:32:16 EDT 2025
Thu Aug 21 13:59:40 EDT 2025
Fri Jul 11 08:20:42 EDT 2025
Wed Feb 19 02:08:07 EST 2025
Tue Jul 01 04:21:05 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Fri Apr 23 03:23:47 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2021 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-d167df23266ef3a59d215df9f85c32d483db9c744b7d90805e8c47bd48ed406b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4586-8359
0000-0002-7349-262X
OpenAccessLink https://doaj.org/article/326416b44d794bc98463f2e18d221a87
PMID 33791426
PQID 2507729644
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_326416b44d794bc98463f2e18d221a87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006174
proquest_miscellaneous_2507729644
pubmed_primary_33791426
crossref_citationtrail_10_1021_acscentsci_0c01651
crossref_primary_10_1021_acscentsci_0c01651
acs_journals_10_1021_acscentsci_0c01651
ProviderPackageCode ABFRP
ACS
AFEFF
VF5
XKZ
ABUCX
GGK
N~.
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-24
PublicationDateYYYYMMDD 2021-03-24
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS central science
PublicationTitleAlternate ACS Cent. Sci
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref17/cit17b
ref17/cit17a
ref16/cit16
ref52/cit52
ref23/cit23
Kuwano R. (ref8/cit8e) 2016
McConathy J. (ref11/cit11) 2003; 5
ref20/cit20
ref48/cit48
ref5/cit5b
ref5/cit5c
Sherbrook E. M. (ref45/cit45b) 2018; 46
ref5/cit5a
ref35/cit35
ref19/cit19
Blaser H.-U. (ref10/cit10c) 2004
ref42/cit42
ref45/cit45c1
ref7/cit7a
ref38/cit38
Lewis S. E. (ref9/cit9) 2016
ref5/cit5d
ref18/cit18
ref29/cit29
ref8/cit8a
ref8/cit8c
ref8/cit8b
Christmann M. (ref10/cit10a) 2008
ref32/cit32
ref49/cit49a
ref39/cit39
ref49/cit49b
ref49/cit49c
ref43/cit43
Astruc D. (ref3/cit3a) 2002
ref41/cit41b
Mingat G. (ref8/cit8d) 2016
ref41/cit41a
ref55/cit55
ref4/cit4a
ref4/cit4b
ref4/cit4c
ref28/cit28a
ref28/cit28b
ref28/cit28c
ref22/cit22
ref40/cit40b
ref40/cit40c
ref33/cit33
ref4/cit4d
ref4/cit4e
Mortier J. (ref3/cit3b) 2015
ref44/cit44
ref40/cit40a
ref53/cit53a
ref27/cit27
ref53/cit53b
ref56/cit56
ref13/cit13b
Carreira E. M. (ref10/cit10b) 2012
ref12/cit12b
Zhou Q.-L. (ref13/cit13c) 2011
ref12/cit12a
Zhuo C.-X. (ref15/cit15a) 2002; 51
ref2/cit2c
ref2/cit2b
ref31/cit31
ref59/cit59
ref2/cit2a
ref34/cit34
ref37/cit37
ref21/cit21
ref46/cit46
ref24/cit24
ref50/cit50
ref45/cit45c
ref36/cit36
ref45/cit45a
ref15/cit15b
ref25/cit25
ref57/cit57
ref51/cit51
Tsukano C. (ref7/cit7b) 2016
ref54/cit54b
You S.-L. (ref15/cit15c) 2016
ref54/cit54a
ref26/cit26
ref14/cit14a
ref14/cit14c
ref14/cit14b
ref58/cit58
Jacobsen E. N. (ref13/cit13a) 2000
ref30/cit30
ref6/cit6a
ref47/cit47
ref1/cit1
ref6/cit6b
ref6/cit6c
References_xml – ident: ref45/cit45c1
  doi: 10.1016/j.chempr.2020.07.010
– ident: ref23/cit23
  doi: 10.1021/jo400365e
– ident: ref26/cit26
  doi: 10.1016/j.chempr.2018.06.006
– ident: ref6/cit6c
  doi: 10.1016/B978-0-08-052349-1.00048-2
– ident: ref33/cit33
  doi: 10.1021/ja5044825
– ident: ref13/cit13b
  doi: 10.1126/science.1083622
– ident: ref46/cit46
  doi: 10.1002/anie.201802891
– volume-title: Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions
  year: 2004
  ident: ref10/cit10c
– ident: ref8/cit8b
  doi: 10.1021/cr200328h
– ident: ref14/cit14a
  doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8
– ident: ref8/cit8c
  doi: 10.1055/s-0035-1561622
– volume: 51
  start-page: 12662
  year: 2002
  ident: ref15/cit15a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204822
– ident: ref37/cit37
  doi: 10.1002/asia.201800133
– ident: ref16/cit16
  doi: 10.1021/jm901241e
– ident: ref17/cit17a
  doi: 10.1021/ar500167f
– ident: ref12/cit12a
  doi: 10.1039/C2CS35332F
– ident: ref6/cit6b
  doi: 10.1021/cr60204a003
– volume-title: Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds
  year: 2015
  ident: ref3/cit3b
  doi: 10.1002/9781118754887
– ident: ref47/cit47
  doi: 10.1002/anie.201808919
– ident: ref2/cit2a
  doi: 10.1351/pac199668020209
– ident: ref32/cit32
  doi: 10.1038/s41557-020-0489-1
– ident: ref20/cit20
  doi: 10.1021/jm960054c
– start-page: 69
  volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref8/cit8e
  doi: 10.1002/9783527698479.ch4
– ident: ref49/cit49a
  doi: 10.1073/pnas.0308177101
– ident: ref7/cit7a
  doi: 10.1021/cr200251d
– ident: ref24/cit24
  doi: 10.1021/ja403535a
– ident: ref53/cit53b
  doi: 10.2533/chimia.2020.577
– ident: ref27/cit27
  doi: 10.1021/acs.accounts.0c00074
– ident: ref54/cit54a
  doi: 10.1021/jacs.7b10351
– ident: ref12/cit12b
  doi: 10.1021/cr500671p
– volume-title: Privileged Chiral Ligands and Catalysts
  year: 2011
  ident: ref13/cit13c
  doi: 10.1002/9783527635207
– ident: ref4/cit4a
  doi: 10.1039/jr9440000430
– ident: ref51/cit51
  doi: 10.1038/s41929-018-0111-8
– ident: ref36/cit36
  doi: 10.1021/acs.joc.8b00046
– ident: ref54/cit54b
  doi: 10.1021/jacs.8b12123
– ident: ref29/cit29
  doi: 10.1021/jacs.5b10440
– ident: ref5/cit5a
  doi: 10.1002/cber.188501802118
– ident: ref40/cit40c
  doi: 10.1021/acs.orglett.7b02068
– ident: ref14/cit14c
  doi: 10.1002/1521-3773(20020617)41:12<2024::AID-ANIE2024>3.0.CO;2-O
– ident: ref42/cit42
  doi: 10.1002/anie.201900036
– ident: ref15/cit15b
  doi: 10.1016/j.chempr.2016.11.005
– ident: ref25/cit25
  doi: 10.1002/anie.201008071
– ident: ref14/cit14b
  doi: 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4
– ident: ref40/cit40a
  doi: 10.1021/acs.orglett.5b00850
– ident: ref40/cit40b
  doi: 10.1021/acs.orglett.5b02489
– ident: ref4/cit4b
  doi: 10.1351/pac199668030553
– ident: ref5/cit5b
  doi: 10.1021/cr010007e
– ident: ref19/cit19
  doi: 10.1002/anie.201708419
– ident: ref35/cit35
  doi: 10.1021/acs.joc.7b03259
– ident: ref5/cit5c
  doi: 10.1055/s-0031-1289520
– ident: ref43/cit43
  doi: 10.1002/anie.201900248
– ident: ref44/cit44
  doi: 10.1039/C9CC04542B
– ident: ref2/cit2c
  doi: 10.6023/cjoc201709009
– volume: 5
  start-page: 70
  year: 2003
  ident: ref11/cit11
  publication-title: Primary Care Companion J. Clin. Psychiatry
– ident: ref34/cit34
  doi: 10.1002/anie.201711873
– start-page: 247
  volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref7/cit7b
  doi: 10.1002/9783527698479.ch11
– ident: ref50/cit50
  doi: 10.1002/anie.201306774
– ident: ref6/cit6a
  doi: 10.1002/cber.187600901247
– ident: ref41/cit41b
  doi: 10.1021/acs.orglett.7b03667
– ident: ref49/cit49b
  doi: 10.1039/C0SC00577K
– ident: ref5/cit5d
  doi: 10.1021/acs.chemrev.5b00121
– ident: ref41/cit41a
  doi: 10.1016/j.chempr.2017.06.015
– volume-title: Modern Arene Chemistry: Concepts, Synthesis, and Applications
  year: 2002
  ident: ref3/cit3a
  doi: 10.1002/3527601767
– ident: ref45/cit45c
  doi: 10.1002/anie.201803102
– ident: ref28/cit28b
  doi: 10.1002/anie.201609654
– start-page: 279
  volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref9/cit9
  doi: 10.1002/9783527698479.ch12
– ident: ref58/cit58
  doi: 10.1002/ejoc.201901229
– ident: ref45/cit45a
  doi: 10.1039/C8CS00054A
– ident: ref8/cit8a
  doi: 10.1021/ar700094b
– ident: ref18/cit18
  doi: 10.1021/ja105111n
– ident: ref4/cit4c
  doi: 10.2174/1385272819666150608220335
– volume-title: Asymmetric Synthesis: The Essentials
  year: 2008
  ident: ref10/cit10a
– ident: ref22/cit22
  doi: 10.1039/C6SC00176A
– ident: ref55/cit55
  doi: 10.1002/anie.201905021
– ident: ref21/cit21
  doi: 10.1002/anie.201107677
– ident: ref59/cit59
  doi: 10.1002/adsc.201900750
– ident: ref4/cit4e
  doi: 10.1002/anie.201905485
– volume-title: Comprehensive Asymmetric Catalysis
  year: 2000
  ident: ref13/cit13a
– ident: ref4/cit4d
  doi: 10.1126/science.aav5606
– start-page: 33
  volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref8/cit8d
  doi: 10.1002/9783527698479.ch3
– ident: ref56/cit56
  doi: 10.1039/C8CS00389K
– volume: 46
  start-page: 432
  volume-title: Photochemistry
  year: 2018
  ident: ref45/cit45b
  doi: 10.1039/9781788013598-00432
– ident: ref48/cit48
  doi: 10.1039/C8NP00098K
– ident: ref31/cit31
  doi: 10.1021/jacs.8b00136
– ident: ref39/cit39
  doi: 10.1039/C5QO00346F
– ident: ref2/cit2b
  doi: 10.1021/cr9903656
– ident: ref57/cit57
  doi: 10.1002/anie.201814471
– ident: ref30/cit30
  doi: 10.1002/anie.201611056
– ident: ref38/cit38
  doi: 10.1002/anie.201405223
– volume-title: Asymmetric Dearomatization Reactions
  year: 2016
  ident: ref15/cit15c
  doi: 10.1002/9783527698479
– volume-title: Comprehensive Chirality
  year: 2012
  ident: ref10/cit10b
– ident: ref49/cit49c
  doi: 10.1038/nchem.2825
– ident: ref17/cit17b
  doi: 10.1021/acs.chemrev.8b00506
– ident: ref52/cit52
  doi: 10.1021/ja100207s
– ident: ref53/cit53a
  doi: 10.1055/s-0036-1591940
– ident: ref1/cit1
  doi: 10.1002/anie.196803451
– ident: ref28/cit28a
  doi: 10.1002/anie.201511519
– ident: ref28/cit28c
  doi: 10.1002/anie.201609693
SSID ssj0001466527
Score 2.5958097
SecondaryResourceType review_article
Snippet Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric...
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 432
SubjectTerms Outlook
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT9wwEIBHiB7opeqLkr6USkg9tIG1PbaT43YBISQ4gcTN8itiJTZbNcuBC7-dcZJduoiiXmM7j5mJ5rPHngHYxWBRooqFE4wXqKMviJtlQfYRyd_KUtm0Dnl6po4v8ORSXm7Az39E8Dnbt75Pa-SneyOfDt_QXOcFV2R3qczl3d7Digoq1ddo5SJtMqxQDKdknr5N8ke-XfNHXdr-p1jz8ZbJv3zQ0Wt4NcBjPu61_QY2YvMWtibLmm3vYDTuQ_ptPm3ySVqZuaWu-bi9nc1S6SyfH5BlzxOl9scv38PF0eH55LgYaiIUlshtUQSmdKgJg5SKtbCyCuSzQ13VpfSCByxFcJXXiE6HimhQxtKjdtQQA_luJ7Zhs5k3cQdyy2orVS2D5h550FXNIkYpAjoeRAwZfCf5mMGmW9OFqzkzD5I0gyQzYEsZGj-kFk8VLq6fHfNjNeZ3n1jj2d6_kmpWPVNS7O4CWYoZ_jFDQiG8dIj0Leh8RWglah5ZGThnttQZfFsq1pBeUmTENnF-0xriwDTLIDbM4EOv6NWjhNAVI47JQK-ZwNq7rLc006suUXfZASJ-_G9BfoKXPO2ZGYmC42fYXPy5iV8Iehbua2fr90AV_hs
  priority: 102
  providerName: American Chemical Society
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQF7hULdB224IWCamHapvYHtu7xxCIEBKcQOJm-WvVSM0GdcMh_77j9SYkFaIXrmtbO5p50nv-mBlCzsAbECBDYTllBajgCtTNokB8BORbUUoTzyFvbuXVPVw_iIeNVl_xTVgqD5wcN0B5gZrBAnhEjnUV8iWvWaClZ4yasssjR87b2Ex1pysgpWCqz5JBHhsYl6ojuenPoYs5PDTykWu3-Kgr2_-S1vz3yeQGB03ek3e9eMxHyegPZCc0B2RvvOrZdkiGo3Sl3-bTJh_Hk5klTs1H7XI2i62zXH6ByJ5HlZrSL4_I_eTybnxV9D0RCoPKbVF4KpWvUQZJGWpuROWRs31d1aVwnHkoubeVUwBW-QrVoAilA2VxIHjkbss_kt1m3oTPJDe0NkLWwivmgKF7axogCO7BMs-Dz8h39I_uMd3q7rqaUf3sSd17MiN05UPt-tLiscPF71fX_FiveUyFNV6dfR5Ds54Zi2J3HxAquoeK_h9UMnK6CqzGuMSbEdOE-VOrUQfGXQZqw4x8SoFe_4pzVVHUMRlRWxDYsmV7pJn-6gp1l51AhC9vYfxXss_ic5ohLxh8I7uLP0_hGPXQwp500P8LPbYIAg
  priority: 102
  providerName: Directory of Open Access Journals
Title Advances in Catalytic Asymmetric Dearomatization
URI http://dx.doi.org/10.1021/acscentsci.0c01651
https://www.ncbi.nlm.nih.gov/pubmed/33791426
https://www.proquest.com/docview/2507729644
https://pubmed.ncbi.nlm.nih.gov/PMC8006174
https://doaj.org/article/326416b44d794bc98463f2e18d221a87
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6VIkEviDfLI1okJA5oQ2yP17sHhEKgqpDaC0TqzfJrS6R2Q5NUai78dsb7CASFXvawtvcxM9Z8M7a_AXiD3qDEPGRWMJ6hCi4j3Cwzso9A_lYWuYl5yOOT_GiKX0_l6R705Y46AS53hnaxntR0cT68vlx_pAn_oSUeYO-Na4mP3Gw4cvF4DkVDt8kzqThRjzu43-RcMM_bKq5cxG2IJYruHM3uxxzAHSFUyTBSL9yi9i3n1XD87wKm_-6v_MthHd6Hex3STMetaTyAvVA_hLuTvsDbIxiN2_X_ZTqr00lM46ypazperi8uYp0tl36maTCPkLY9q_kYpodfvk-Osq6AQmYI5q0yz3LlK8JMeR4qYWTpycH7qqwK6QT3WAhvS6cQrfIlQUcZCofKUkPw5OiteAL79bwOzyA1rDIyr6RX3CH3qqxYwCCFR8u9CD6BtyQf3etPN2vbnOk_QtWdUBNgvQy163jIYzmM8xvHvNuM-dmycNzY-1NUzaZnZNBubswXZ7qbkJqEQljUItK_oHUl4TBR8cAKzzkzhUrgda9YTXqJyyimDvOrpSbQGEMSApIJPG0VvXlVby4JqC0T2PqW7ZZ69qNh9S4aNInP__vMF3DA44aakcg4voT91eIqvCJEtLIDiggm3wZNPmHQmDxdT34NfwOAsgrT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGP-EtsO4wHiH8QgSEgeUUtuf7eRYClOBbRc6aTcrfkSrYCki7WH89fucpC2dpgmu8SP-XvLP9vcAeIu-RIkqZFYwnqEOLiPcLDPSj0D7rcxVGe8hj0_U5BS_nsmzPo47xsLQIhqaqWkf8TfZBdgH-tZmN3KzwdDFGBw68uzSZDyq9Wj8fXOxgkp1pVq5iL6GBYo-WObmaeK25JqtbanN3n8T5LzuOfnXVnR4H6ZrIloPlB-D5cIO3J9r-R3_k8p9uNdD03TU6dIDuBPqh7A3XlWEewTDUecw0KSzOh3He59L6pqOmsuLi1iYy6WfyG7mEQN3wZ2P4fTw83Q8yfqKC1lJuHCReaa0rwhkKRUqUcrCEyLwVVHl0gnuMRfeFk4jWu0Lwpoy5A61pYbgCRlY8QR26nkdnkFasqqUqpJec4fc66JiAYMUHi33IvgE3hGxpreYxrSP4ZyZDQdMz4EE2Eo0xvWJy2P9jJ-3jnm_HvOrS9txa--PUeLrnjHldvuBxGN6CzbEFAKvFpFoQesKAm6i4oHlnnNW5jqBNyt9MSSX-O5S1mG-bAyhzHiGIeSZwNNOf9a_EkIXjFBSAnpLs7bWst1Sz87bNOB5Cz_x-T8z8jXsTabHR-boy8m3A7jLo3fOUGQcX8DO4vcyvCR4tbCvWnO6AqopIIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIgEXxJvwDBISB5Sytsd2cly2rMprxYFKvVnxS6xEsxXZHnrhtzNOvFsWVRVXv-LMjDWfZzwzAK_RtyhRhcoKxivUwVWEm2VF8hFI38patckO-XWhDo_w07E8zqaLFAtDm-hppX5w4qdTfepjzjDA3lH7kOHILfcnLsXh0LXnOuGRSarZsPi9f2FcQaXGcq1cpPeGDYocMHP5Mkk1uX5HNQ0Z_C-Dnf--nvxLHc3vwO2MI8vpyPi7cC109-DmbFO-7T5MpqN3vy-XXTlLRppzGlpO-_OTk1RFy5UHJOSrBFjHSMwHcDT_8H12WOXyCFVLIG5deaa0j4SIlApRtLLxpL59bGItneAea-Ft4zSi1b4hYChD7VBb6gie1LgVD2GvW3XhMZQti61UUXrNHXKvm8gCBik8Wu5F8AW8IfqYLN69GTzXnJkLSppMyQLYhobG5SzjqdjFzyvnvN3OOR1zbFw5-n1izXZkyo89NJDEmHzcDBGFkKZFpH9B6xpCWSLywGrPOWtrXcCrDWMN8SU5SdourM56Q5AwXTgIJhbwaGT09lNC6IYRpClA74jAzl52e7rljyFndz1gRXzy34R8CTe-HczNl4-Lz0_hFk8vaSai4vgM9ta_zsJzgkJr-2IQ-z8X4QTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Catalytic+Asymmetric+Dearomatization&rft.jtitle=ACS+central+science&rft.au=Zheng%2C+Chao&rft.au=You%2C+Shu-Li&rft.date=2021-03-24&rft.issn=2374-7943&rft.volume=7&rft.issue=3&rft.spage=432&rft_id=info:doi/10.1021%2Facscentsci.0c01651&rft_id=info%3Apmid%2F33791426&rft.externalDocID=33791426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon