Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)­(CO)...

Full description

Saved in:
Bibliographic Details
Published inACS central science Vol. 5; no. 1; pp. 192 - 200
Main Authors Takematsu, Kana, Williamson, Heather R, Nikolovski, Pavle, Kaiser, Jens T, Sheng, Yuling, Pospíšil, Petr, Towrie, Michael, Heyda, Jan, Hollas, Daniel, Záliš, Stanislav, Gray, Harry B, Vlček, Antonín, Winkler, Jay R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.01.2019
Online AccessGet full text

Cover

Loading…
Abstract We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)­(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, K 1 ≅ 3.5–4) and W122 → W124•+ (7–9 ns, K 2 ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
AbstractList We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)­(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, K 1 ≅ 3.5–4) and W122 → W124•+ (7–9 ns, K 2 ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCu I , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the Cu I center and a Re photosensitizer coordinated to the imidazole of H126 (Re I (H126)(CO) 3 (4,7-dimethyl-1,10-phenanthroline) + ). Cu I oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, K 1 ≅ 3.5–4) and W122 → W124 •+ (7–9 ns, K 2 ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) Cu I oxidation by W122 •+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical Cu I oxidation was observed in Re126FWCu I , whereas in Re126WFCu I , the photocycle is restricted to the ReH126W124 unit and Cu I remains isolated. QM/MM/MD simulations of Re126WWCu I indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage. Insertion of two tryptophan residues between a rhenium photooxidant and the copper(I) center in Pseudomonas aeruginosa azurin accelerates electron flow by almost 4 orders of magnitude.
We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400-475 ps, K 1 ≅ 3.5-4) and W122 → W124•+ (7-9 ns, K 2 ≅ 0.55-0.75), followed by a rate-determining (70-90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400-475 ps, K 1 ≅ 3.5-4) and W122 → W124•+ (7-9 ns, K 2 ≅ 0.55-0.75), followed by a rate-determining (70-90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
We have constructed and structurally characterized a azurin mutant , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are inserted between the Cu center and a Re photosensitizer coordinated to the imidazole of H126 (Re (H126)(CO) (4,7-dimethyl-1,10-phenanthroline) ). Cu oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400-475 ps, ≅ 3.5-4) and W122 → W124 (7-9 ns, ≅ 0.55-0.75), followed by a rate-determining (70-90 ns) Cu oxidation by W122 ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical Cu oxidation was observed in , whereas in , the photocycle is restricted to the ReH126W124 unit and Cu remains isolated. QM/MM/MD simulations of indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
Author Williamson, Heather R
Kaiser, Jens T
Takematsu, Kana
Towrie, Michael
Heyda, Jan
Vlček, Antonín
Nikolovski, Pavle
Winkler, Jay R
Hollas, Daniel
Pospíšil, Petr
Gray, Harry B
Sheng, Yuling
Záliš, Stanislav
AuthorAffiliation Department of Chemistry
Department of Physical Chemistry
Harwell Oxford
Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory
Beckman Institute
Academy of Sciences of the Czech Republic
School of Biological and Chemical Sciences
AuthorAffiliation_xml – name: Department of Physical Chemistry
– name: School of Biological and Chemical Sciences
– name: Department of Chemistry
– name: Beckman Institute
– name: Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory
– name: Academy of Sciences of the Czech Republic
– name: Harwell Oxford
Author_xml – sequence: 1
  givenname: Kana
  orcidid: 0000-0002-2334-336X
  surname: Takematsu
  fullname: Takematsu, Kana
  organization: Department of Chemistry
– sequence: 2
  givenname: Heather R
  orcidid: 0000-0002-2413-659X
  surname: Williamson
  fullname: Williamson, Heather R
  organization: Department of Chemistry
– sequence: 3
  givenname: Pavle
  surname: Nikolovski
  fullname: Nikolovski, Pavle
  organization: Beckman Institute
– sequence: 4
  givenname: Jens T
  surname: Kaiser
  fullname: Kaiser, Jens T
  organization: Beckman Institute
– sequence: 5
  givenname: Yuling
  surname: Sheng
  fullname: Sheng, Yuling
  organization: Beckman Institute
– sequence: 6
  givenname: Petr
  surname: Pospíšil
  fullname: Pospíšil, Petr
  organization: Academy of Sciences of the Czech Republic
– sequence: 7
  givenname: Michael
  surname: Towrie
  fullname: Towrie, Michael
  organization: Harwell Oxford
– sequence: 8
  givenname: Jan
  orcidid: 0000-0002-9428-9508
  surname: Heyda
  fullname: Heyda, Jan
  organization: Department of Physical Chemistry
– sequence: 9
  givenname: Daniel
  orcidid: 0000-0003-4075-6438
  surname: Hollas
  fullname: Hollas, Daniel
  organization: Department of Physical Chemistry
– sequence: 10
  givenname: Stanislav
  surname: Záliš
  fullname: Záliš, Stanislav
  email: zalis@jh-inst.cas.cz
  organization: Academy of Sciences of the Czech Republic
– sequence: 11
  givenname: Harry B
  orcidid: 0000-0002-7937-7876
  surname: Gray
  fullname: Gray, Harry B
  email: hbgray@caltech.edu
  organization: Beckman Institute
– sequence: 12
  givenname: Antonín
  orcidid: 0000-0002-6413-8311
  surname: Vlček
  fullname: Vlček, Antonín
  email: avlcek@qmul.ac.uk
  organization: School of Biological and Chemical Sciences
– sequence: 13
  givenname: Jay R
  orcidid: 0000-0002-4453-9716
  surname: Winkler
  fullname: Winkler, Jay R
  email: winklerj@caltech.edu
  organization: Beckman Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30693338$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQhS1UREvoH-CAfOSSMLbX3t0LUqhaqFSpSISz5fWOk402drC9VP33uCQEeuFka_zeN9Z7r8mZDx4JectgwYCzD8Ymiz4nOyyaDqBp-AtywUVdzetWsrPTvRLn5DKlLQCwSinJ61fkXIBqhRDNBfm2egh0FR_3Oew3xie6jEg_Yc4Y6aoM6L1HOni6tBZHjCYPfk2vR7Q5Bk9vxvBA8yaGab2hhn6NIePg35CXzowJL4_njHy_uV5dfZnf3X--vVrezY2EOs9bUL3kzvG-AymcbayowTkreyEsazvplHC94DVjsjJNK4XsmepQ9bYF0YOYkdsDtw9mq_dx2Jn4qIMZ9O9BiGttYh7siBqYcw1DsAaqytRgai67Rjhk1lbS8ML6eGDtp26H_VO00YzPoM9f_LDR6_BTK1EpUcKckfdHQAw_JkxZ74bS0Dgaj2FKmrPShaygVUXKD1IbQ0oR3WkNA_1Urv5brj6WW0zv_v3gyfKnyiJYHATFrLdhir5k_z_iL3qmtLU
CitedBy_id crossref_primary_10_1002_ejic_201900652
crossref_primary_10_1016_j_ijbiomac_2023_124065
crossref_primary_10_1021_acs_jpcc_0c11248
crossref_primary_10_1039_D1CP00218J
crossref_primary_10_1002_chem_202005487
crossref_primary_10_1007_s00214_020_2555_6
crossref_primary_10_1063_5_0085141
crossref_primary_10_1073_pnas_2024627118
crossref_primary_10_1021_acs_jpcb_8b11982
crossref_primary_10_1039_D1SC04286F
crossref_primary_10_1107_S2052252522000665
crossref_primary_10_1016_j_jinorgbio_2021_111552
crossref_primary_10_1016_j_electacta_2020_136465
crossref_primary_10_1021_acscatal_3c03769
crossref_primary_10_1039_D3TB00701D
crossref_primary_10_1021_acs_inorgchem_2c00030
crossref_primary_10_1021_acs_jpclett_3c00218
crossref_primary_10_1039_C9FD00036D
crossref_primary_10_1021_acs_organomet_0c00381
crossref_primary_10_1021_acs_jpcb_9b10802
crossref_primary_10_1002_smll_202104366
crossref_primary_10_1016_j_jwpe_2023_103767
crossref_primary_10_1021_acs_jpclett_0c00614
crossref_primary_10_1021_acs_jpcb_3c06568
crossref_primary_10_1021_acs_jpcb_9b04816
crossref_primary_10_1039_D2CP02981B
crossref_primary_10_1021_acs_jpcb_2c01427
crossref_primary_10_1021_jacs_9b05715
Cites_doi 10.1021/acs.chemrev.5b00298
10.1021/ja500215j
10.1016/j.ccr.2012.07.002
10.1016/bs.mie.2016.05.014
10.1021/ja406830d
10.1007/3-540-62870-3_5
10.1016/j.bbabio.2003.06.010
10.1021/acs.biochem.6b00292
10.1021/acs.accounts.8b00245
10.1016/0020-1693(95)04532-5
10.1073/pnas.1009181107
10.1021/ja805261m
10.1016/S0021-9258(17)32750-3
10.1351/pac199971091753
10.1021/ja403734n
10.1016/0009-2614(94)00282-7
10.1016/S0021-9258(19)45166-1
10.1073/pnas.1311073110
10.1017/S0033583515000062
10.1007/s007750000146
10.1021/ja964386i
10.1063/1.479571
10.1021/cr4004715
10.1002/pro.3071
10.1021/jacs.5b09259
10.1016/j.bbabio.2015.12.009
10.1016/S0010-8545(00)00277-0
10.1016/j.ccr.2012.03.032
10.1073/pnas.1513520112
10.1002/j.1460-2075.1986.tb04461.x
10.1002/chem.201002162
10.1021/jp110460k
10.1021/ar5004048
10.1126/science.1158241
10.1021/ja0115870
10.1021/ja710763w
10.1073/pnas.0408029102
10.1002/ijch.201600069
10.1017/S0033583503003913
10.1038/nature10505
10.1063/1.3382344
10.1063/1.478522
10.1073/pnas.1512704112
10.1021/ar4000407
10.1021/ja902744s
10.1126/science.1160001
ContentType Journal Article
Copyright Copyright © 2019 American Chemical Society 2019 American Chemical Society
Copyright_xml – notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society
DBID N~.
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1021/acscentsci.8b00882
DatabaseName American Chemical Society (ACS) Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2374-7951
EndPage 200
ExternalDocumentID oai_doaj_org_article_01ff81e0ca044a70a725b83fe1cc45a2
10_1021_acscentsci_8b00882
30693338
g20997231
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK019038
GroupedDBID 53G
5VS
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
DIK
EBS
EJD
FRP
GROUPED_DOAJ
HYE
KQ8
N~.
OK1
RPM
VF5
XKZ
AAFWJ
ADHLV
AFPKN
AOIJS
M48
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a507t-906d52ff2db053fc8c370ffc5d33c19b5f63fd3271154a89535d16be6dc903d03
IEDL.DBID RPM
ISSN 2374-7943
IngestDate Tue Oct 22 14:47:26 EDT 2024
Tue Sep 17 21:23:18 EDT 2024
Sat Aug 17 04:28:28 EDT 2024
Fri Aug 23 02:17:49 EDT 2024
Wed Oct 23 10:05:18 EDT 2024
Thu Aug 27 13:43:25 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-906d52ff2db053fc8c370ffc5d33c19b5f63fd3271154a89535d16be6dc903d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9428-9508
0000-0002-7937-7876
0000-0003-4075-6438
0000-0002-2334-336X
0000-0002-2413-659X
0000-0002-6413-8311
0000-0002-4453-9716
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346393/
PMID 30693338
PQID 2179454096
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_01ff81e0ca044a70a725b83fe1cc45a2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6346393
proquest_miscellaneous_2179454096
crossref_primary_10_1021_acscentsci_8b00882
pubmed_primary_30693338
acs_journals_10_1021_acscentsci_8b00882
ProviderPackageCode ACS
ABUCX
AFEFF
VF5
XKZ
N~.
PublicationCentury 2000
PublicationDate 2019-01-23
PublicationDateYYYYMMDD 2019-01-23
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS central science
PublicationTitleAlternate ACS Cent. Sci
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Vlček A. (ref46/cit46) 2010; 29
ref11/cit11
Ehrenberg A. (ref13/cit13) 1972; 247
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Ryde U. (ref40/cit40) 2016; 577
ref42/cit42
Kumar A. (ref47/cit47) 2010; 29
ref41/cit41
ref22/cit22
Sjöberg B. M. (ref14/cit14) 1977; 252
ref33/cit33
ref4/cit4
Sjoberg B. M. (ref20/cit20) 1997; 88
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1021/acs.chemrev.5b00298
– ident: ref1/cit1
  doi: 10.1021/ja500215j
– ident: ref6/cit6
  doi: 10.1016/j.ccr.2012.07.002
– volume: 577
  start-page: 119
  volume-title: Computational Approaches for Studying Enzyme Mechanism, Pt A
  year: 2016
  ident: ref40/cit40
  doi: 10.1016/bs.mie.2016.05.014
  contributor:
    fullname: Ryde U.
– ident: ref34/cit34
  doi: 10.1021/ja406830d
– volume: 88
  start-page: 139
  volume-title: Metal Sites in Proteins and Models: Iron Centres
  year: 1997
  ident: ref20/cit20
  doi: 10.1007/3-540-62870-3_5
  contributor:
    fullname: Sjoberg B. M.
– ident: ref31/cit31
  doi: 10.1016/j.bbabio.2003.06.010
– volume: 29
  start-page: 1
  year: 2010
  ident: ref47/cit47
  publication-title: Top. Organomet. Chem.
  contributor:
    fullname: Kumar A.
– ident: ref17/cit17
  doi: 10.1021/acs.biochem.6b00292
– ident: ref25/cit25
  doi: 10.1021/acs.accounts.8b00245
– ident: ref28/cit28
  doi: 10.1016/0020-1693(95)04532-5
– ident: ref11/cit11
  doi: 10.1073/pnas.1009181107
– ident: ref21/cit21
  doi: 10.1021/ja805261m
– volume: 252
  start-page: 536
  issue: 2
  year: 1977
  ident: ref14/cit14
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32750-3
  contributor:
    fullname: Sjöberg B. M.
– ident: ref29/cit29
  doi: 10.1351/pac199971091753
– ident: ref8/cit8
  doi: 10.1021/ja403734n
– ident: ref44/cit44
  doi: 10.1016/0009-2614(94)00282-7
– volume: 247
  start-page: 3485
  issue: 11
  year: 1972
  ident: ref13/cit13
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)45166-1
  contributor:
    fullname: Ehrenberg A.
– ident: ref22/cit22
  doi: 10.1073/pnas.1311073110
– ident: ref24/cit24
  doi: 10.1017/S0033583515000062
– ident: ref33/cit33
  doi: 10.1007/s007750000146
– ident: ref35/cit35
  doi: 10.1021/ja964386i
– ident: ref41/cit41
  doi: 10.1063/1.479571
– ident: ref2/cit2
  doi: 10.1021/cr4004715
– ident: ref32/cit32
  doi: 10.1002/pro.3071
– ident: ref18/cit18
  doi: 10.1021/jacs.5b09259
– volume: 29
  start-page: 73
  year: 2010
  ident: ref46/cit46
  publication-title: Top. Organomet. Chem.
  contributor:
    fullname: Vlček A.
– ident: ref12/cit12
  doi: 10.1016/j.bbabio.2015.12.009
– ident: ref45/cit45
  doi: 10.1016/S0010-8545(00)00277-0
– ident: ref5/cit5
  doi: 10.1016/j.ccr.2012.03.032
– ident: ref26/cit26
  doi: 10.1073/pnas.1513520112
– ident: ref15/cit15
  doi: 10.1002/j.1460-2075.1986.tb04461.x
– ident: ref9/cit9
  doi: 10.1002/chem.201002162
– ident: ref36/cit36
  doi: 10.1021/jp110460k
– ident: ref37/cit37
  doi: 10.1021/ar5004048
– ident: ref7/cit7
  doi: 10.1126/science.1158241
– ident: ref30/cit30
  doi: 10.1021/ja0115870
– ident: ref48/cit48
  doi: 10.1021/ja710763w
– ident: ref3/cit3
  doi: 10.1073/pnas.0408029102
– ident: ref27/cit27
  doi: 10.1002/ijch.201600069
– ident: ref4/cit4
  doi: 10.1017/S0033583503003913
– ident: ref10/cit10
  doi: 10.1038/nature10505
– ident: ref43/cit43
  doi: 10.1063/1.3382344
– ident: ref42/cit42
  doi: 10.1063/1.478522
– ident: ref23/cit23
  doi: 10.1073/pnas.1512704112
– ident: ref16/cit16
  doi: 10.1021/ar4000407
– ident: ref38/cit38
  doi: 10.1021/ja902744s
– ident: ref19/cit19
  doi: 10.1126/science.1160001
SSID ssj0001466527
Score 2.289673
Snippet We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122,...
We have constructed and structurally characterized a azurin mutant , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are...
We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCu I , where two adjacent tryptophan residues (W124 and W122,...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 192
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxFD5YfWhfSqu9bG-kIPShHZvJSTIzjyouImgLXcG3kMmlXShZcVekL_3tPZmZ1W6x4msmJOH7TnK-TJJzALZrgZ3bL3xT8UJGWgctVqpQ2llrifXQ5sfJxyf68FQenamzNfj0nxN8UX62rg9r5KY7NdkIKcIHsCGqspuGJ793bv6oSK37HK0C8yXDRuLwSub2ZrI_cvMVf9SF7b9Na_57ZfIvHzR-Ao8H8ch2e7afwlpIm_Bwf5mzbQu-Ta5mbHLx6zyHCyAnRFUD2-te7LAJFbAvKbBpYrvOkbvJ5Kfv7GDIhMPGP2dXbEjcwyz7mkM4TNMzOB0fTPYPiyFtQmFJ3C2KhmuvRIzCt4R1dLXDisfolEd0ZdOqqDF6zBAqaetGofKlboP2ruHoOT6H9TRL4SUw2puEktyoEJFL6WxdoVcRua1l9FHHEXwgCM1g9nPTnWiL0tyAbQawR_BxCbM57-No3Fl7LzNxXTPHwO4KyDDMMKUML2Osy8CdpbHZittKqLbGSCN2Ullq5P2SR0M05IMQm8Lscm5EXoVIqjZ6BC96Xq-7oi1Ug7RvH0G1wvjKWFa_pOmPLi63Rkl6D1_dG5TX8Ij0V76vVgh8A-uLi8vwljTOon3XmfYfE6v5ag
  priority: 102
  providerName: American Chemical Society
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFA3WF_tS2lp1tC0RCn2Q0Uzu5GMeVVxE0Ba6gm8hk4-6IFnRFem_92Zm1u6W0r74mglMOOeSe-5Mci4hXzSHLu2XvlGsrCPugxaUKIV01lpkPbT5cvL5hTy9rM-uxNVCq698Jqy3B-6BO2BVjLoKzFlW11Yxq7hoNcRQOVcL2---lVgoprqvK7WUgqvhlgzmsQPrenckN9nXGGo6O--9wsGlfNTZ9v9Na_55ZHIhB43ekjeDeKSH_aLfkZWQ3pO143nPtnXyY_w4peO7X7fZLgCTEE4N9Ki7sUPHOEC_pUAniR46h-kmk59-0pOhEw4d3Uwf6dC4h1r6PVs4TNIHcjk6GR-flkPbhNKiuJuVDZNe8Bi5bxHr6LQDxWJ0wgO4qmlFlBA9cJWdeKxuBAhfyTZI7xoGnsEGWU3TFLYIxdoEcQ6B84joO6sVeBGBWV1HH2UsyFeE0Axhf2-6P9q8Mr_BNgPYBdmbw2xuex-Nf84-ykw8z8we2N0ARoYZIsP8LzIKsjvn0SAN-UeITWH6cG943oVQqjayIJs9r8-vwhKqAazbC6KWGF9ay_KTNLnufLkl1Kj3YPslFr9DXqM0y0fZSg4fyers7iF8Qvkzaz93kf4EDQ4E4A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dSxwxFA3WQuuL9LurbUmh0IcyNpObZGYeSlFxkYJtobvg25DJhy7IjK4r6r_3JpOx3bLtaxIy4Z6b3JNJci4hH0oOMexntipYJjyugxoKmUlltNaIumvC4-Sj7-pwKr4dy-M1MqQ7Sga8XLm1C_mkpvOznZuL26844b_0wgP5Z2164SMz2ynRi5AzPiAPuQARPP4o0f34z0Uo1Wdx5RCuIVYC0jua1d1skEfIqHHLH1-vYP1S8Ioa_6uI6d_3K_8IWOMnZDMxTbrbu8ZTsubaZ-Tx_pDg7Tn5Nbnu6GR-ex60BTBiYVNH9-LzHjrBAvqjdXTW0l1jMDYFT2lP6EFKm0PHZ901TVl-qKY_g97DrH1BpuODyf5hlnIsZBqZ4CKrmLKSe89tg8B4UxoomPdGWgCTV430CrwFXgTZHl1WEqTNVeOUNRUDy-AlWW-71r0mFDcyLseYy7lnQhhdFmClB6ZL4a1XfkQ-ognrAeI6Hn_zvP5t9zrZfUQ-DWauz3vRjf-23gtI3LcMgtmxoJuf1Gn-1Sz3vswdMxrHpgumCy6bEjyO2AipsZP3A441whBOTXTruqvLmoclC3ltpUbkVY_r_acG7xiRYgnxpbEs17Sz0yjirdA9oYKtf_a5TTaQnIXLbBmHN2R9Mb9yb5EALZp30avvADHuAx4
  priority: 102
  providerName: Scholars Portal
Title Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein
URI http://dx.doi.org/10.1021/acscentsci.8b00882
https://www.ncbi.nlm.nih.gov/pubmed/30693338
https://www.proquest.com/docview/2179454096/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC6346393
https://doaj.org/article/01ff81e0ca044a70a725b83fe1cc45a2
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJDm0upe9uH4sKhR6Kd22NJNvHZMkSCpsGsoHcjKxHakjkZbMh9NLf3pFsp9lSeuhFB1m2xcxIMyPNfEPIp4JBVPuJKfM04Q73QQW5SITUSinkuq1DcvLiRB6f868X4mKHiCEXJgbt67qZ-KvriW--x9jK1bWeDnFi09PFTAJHxQrTXbKbAzxw0ePBCpeyK9XKIMQalhz6ZBlUZ1OlO5Ak3UwKlDi0L_fJIzSb0a-PKSr4fEtDRSD_v1mffwZRPtBK86fkSW9O0oNu2s_IjvXPyePZUMXtBTlb3rV0uf6xCgACqJZwqKWHMYeHLrGDfvOWNp4eaI0KKIiDv6RHfW0cOr9q72hfyocqehpAHRr_kpzPj5az46QvpJAoNPc2SZlKI5hzzNRIfacLDXnqnBYGQGdlLZwEZ4DlAZtHFaUAYTJZW2l0mYJJ4RXZ8623bwhFb8VmqFgZcynnWhU5GOEgVQV3xkk3Ip-RhFW_EG6qeMfNsuo33aue7iPyZSBzteqQNf45-jBw4n5kQMWOHe36suplo0oz54rMplrh3FSeqpyJugCHM9ZcKPzIx4GPFbIhXI0ob9vbm4qFfQmN11KOyOuOr_e_GqRjRPItjm_NZfsJCm5E6u4F9e1_v_mO7KOFFiLaEgbvyd5mfWs_oBW0qcfoBczOxvEMAdsFL7A9-TkZx9XwC8SjCt0
link.rule.ids 230,315,733,786,790,870,891,2115,2236,2782,24346,27107,27111,27955,27956,53825,53827,57091,57115,57141,57165
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGkNhe-B6UTyMh8YCSOnbsJI9btarAOibRob1Zjh2PiM2pulYT_HqunWSsE0KCV9tJHJ1j3-vk3nMReptTFsx-ZIqMRKmFfVCxjEdcaKUUoF6VPjl5eigmx-nHE36ygXifCxOC9nVZx-7sPHb1txBbOT_Xwz5ObHg0HQmWgmFlw1voNqxXyq8d0sOnlVSItlgrZT7asEhZly4DBm2odCuTpOs4B86Bh7mN7oDjDCf7kKQC_Ws2Kkj5_8n_vBlGec0uje-hr_0bteEo3-PVsoz1zxtij__8yvfR3c5Txbtt9wO0UbmHaGvUF4h7hL7MLhs8W_yYe20CsHgwtMJ7IT0Iz6ABf3YVrh3e1Rpsm2eaO8X7XdkdPD5rLnFXJQgrfOT1Imr3GB2P92ejSdTVaIgUeJLLqCDCcGotNSUAa3WuWUas1dwwppOi5FYwaxjNvOyPygvOuElEWQmjC8IMYTto0zWueoowHISqBGw2pZakqVZ5xgy3jKg8tcYKO0DvABvZrbELGX6f00T-BlR2gA7Q-x4_OW9FO_46es9DfDXSC26HhmZxKjsMJEmszZOKaAVzUxlRGeVlzizMWKdcwU3e9ASRAIP_66Jc1awuJPVbHvjFhRigJy1hrh7V026AsjUqrc1lvQcIEkTAO0I8--8rX6OtyWx6IA8-HH56jrbBEfSBcxFlL9DmcrGqXoKztSxfhaX1C7KsKPM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSKWX8qbL00hIHFASx46d5NguXZVHy0pspYqL5fhRItrsarurCn49YycpuxXi0Ks9SWx9Y884nvkGobcFZcHsR6bMSZQ52AcVy3nEhVZKAeq28snJh0fi4Dj7dMJPVkp9haB9XdVxc3YeN_WPEFs5O9dJHyeWjA-HgmVgWFkyMy65je7AmqX5ykE9_F7JhGgLtlLmIw7LjHUpM2DUEqVbqiRdxwXoHXiZW2gTnGc43YdEFehfs1OBzv9fPuj1UMoV2zS6h773s2pDUn7Gy0UV69_XCB9vNO37aLvzWPFuK_IA3bLNQ3R32BeKe4S-TS6neDL_NfMcBWD5QNTivZAmhCfQgL82FtcN3tUabJzXuOYU73fld_DobHqJu2pBWOGx542om8foeLQ_GR5EXa2GSIFHuYhKIgynzlFTAcBOF5rlxDnNDWM6LSvuBHOG0dzT_6ii5IybVFRWGF0SZgh7gjaaaWN3EIYDkU3BdlPqSJZpVeTMcMeIKjJnnHAD9A7wkd1au5DhGp2m8i-osgN1gN73GMpZS97xX-k9D_OVpCfeDg3T-anscJAkda5ILdEKxqZyonLKq4I5GLHOuIKXvOmVRAIM_vZFNXa6vJDUb33gH5digJ62SnP1qV71BihfU6e1saz3gJIEMvBOKZ7d-MnXaHP8YSS_fDz6_BxtgT_o4-ciyl6gjcV8aV-Cz7WoXoXV9QfyJitz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Tryptophans+Are+Better+Than+One+in+Accelerating+Electron+Flow+through+a+Protein&rft.jtitle=ACS+central+science&rft.au=Takematsu%2C+Kana&rft.au=Williamson%2C+Heather+R&rft.au=Nikolovski%2C+Pavle&rft.au=Kaiser%2C+Jens+T&rft.date=2019-01-23&rft.issn=2374-7943&rft.volume=5&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1021%2Facscentsci.8b00882&rft_id=info%3Apmid%2F30693338&rft.externalDocID=30693338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon