Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries

Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively prot...

Full description

Saved in:
Bibliographic Details
Published inACS central science Vol. 7; no. 2; pp. 335 - 344
Main Authors Liu, Xizheng, Lei, Xiaofeng, Wang, Yong-Gang, Ding, Yi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.02.2021
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.
AbstractList Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H O and O crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.
Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.
Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H 2 O and O 2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li + from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. The Na−air batteries have been developed with in situ formed gel electrolyte on a Li modified Na anode. They display ultrastable cycle performance up to 2000 h in ambient air.
Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.
Author Ding, Yi
Lei, Xiaofeng
Wang, Yong-Gang
Liu, Xizheng
AuthorAffiliation Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
AuthorAffiliation_xml – name: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering
– name: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
Author_xml – sequence: 1
  givenname: Xizheng
  orcidid: 0000-0001-5641-3849
  surname: Liu
  fullname: Liu, Xizheng
  organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering
– sequence: 2
  givenname: Xiaofeng
  surname: Lei
  fullname: Lei, Xiaofeng
  organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering
– sequence: 3
  givenname: Yong-Gang
  orcidid: 0000-0002-2447-4679
  surname: Wang
  fullname: Wang, Yong-Gang
  email: ygwang@fudan.edu.cn
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
– sequence: 4
  givenname: Yi
  orcidid: 0000-0002-1347-2811
  surname: Ding
  fullname: Ding, Yi
  email: yding@tjut.edu.cn
  organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33655071$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEQxy1UREvpC3BAPnLZ1F57vfEFqQT6IUWFA0jcLK93nDra2MXeFLjxDrwhT8KEpKXl0Is_5_-b0fznOdmLKQIhLzmbcFbzY-uKgzgWFybMMd4o9oQc1KKVVasbvnd3lmKfHJWyZIxxqVRTt8_IvhCqaVjLD8iXjxlukBNSpMnTS0tnKedUNncbe_oOYp_DCPQsp2_jFfUp03mKi2oePNDTAb6HbgDU_f756yRk-taOI-QA5QV56u1Q4Gi3H5LPp-8_zc6r-Yezi9nJvLJYwFhx6xplRad9bz23vnMeKwXJdO0c61umWwVT1nda4CrbvhFK16ABOActenFILrbcPtmluc5hZfMPk2wwfx9SXhibx-AGMNgn0ByQwUGqzmnovHBacu00dhCQ9WbLul53K-g3_c12eAB9-BPDlVmkG9NqNmWyRsDrHSCnr2soo1kFtGkYbIS0LqaWWqEveqox9NX9XHdJbq3BgOk2wKEdJYM3Lox2YxSmDoPhzGwGwfwbBLMbBJTW_0lv6Y-KJlsR_pllWueItj0m-AM0m8tO
CitedBy_id crossref_primary_10_1021_acs_energyfuels_2c04147
crossref_primary_10_1039_D1TA07096G
crossref_primary_10_1016_j_scib_2022_11_027
crossref_primary_10_1016_j_matdes_2022_110406
crossref_primary_10_1002_adfm_202109378
crossref_primary_10_1039_D3SE01262J
crossref_primary_10_1016_j_scib_2024_09_032
crossref_primary_10_3390_nano14191604
crossref_primary_10_1002_EXP_20240054
crossref_primary_10_1021_acs_energyfuels_4c03140
crossref_primary_10_1016_j_jechem_2023_11_004
crossref_primary_10_1002_adfm_202201258
crossref_primary_10_1016_j_coelec_2022_101120
crossref_primary_10_1002_cey2_276
crossref_primary_10_1002_inf2_12232
crossref_primary_10_1021_acscentsci_4c00925
crossref_primary_10_3390_nano11102476
crossref_primary_10_1016_j_ensm_2023_02_028
crossref_primary_10_1002_batt_202200338
crossref_primary_10_1002_batt_202400354
crossref_primary_10_1002_cssc_202202192
crossref_primary_10_1002_aenm_202401398
crossref_primary_10_1016_j_esci_2022_10_001
crossref_primary_10_1002_adfm_202201205
crossref_primary_10_1002_batt_202100207
crossref_primary_10_1016_j_pmatsci_2024_101337
crossref_primary_10_1038_s41467_024_51033_1
crossref_primary_10_1039_D1EE01404H
crossref_primary_10_1021_acsami_1c05602
crossref_primary_10_1016_j_chempr_2024_02_012
crossref_primary_10_3390_batteries9110532
crossref_primary_10_1016_j_jpowsour_2021_230226
crossref_primary_10_1016_j_egyr_2024_06_007
crossref_primary_10_1002_celc_202300136
Cites_doi 10.1038/ncomms2855
10.1021/acsnano.0c00283
10.1021/acs.chemmater.9b03266
10.1002/batt.201900020
10.1073/pnas.1901329116
10.1016/j.electacta.2018.04.168
10.1039/c1cs15228a
10.1038/s41557-018-0166-9
10.1021/ja507889x
10.1002/aenm.201803046
10.1039/C8SC05178J
10.1002/adfm.201706374
10.1039/c3ee00053b
10.1039/C5CC00825E
10.1016/j.ensm.2018.04.014
10.1038/nmat3486
10.1002/aenm.201301863
10.1021/acsenergylett.7b01213
10.1021/ja508794r
10.1002/aenm.201802603
10.1002/advs.201902866
10.1021/acs.nanolett.0c01670
10.1039/C8EE01373J
10.1002/adfm.201801904
10.1039/C3CS60248F
10.1126/science.1223985
10.1002/adma.201504373
10.1002/anie.201910202
10.1038/nature25984
10.1002/anie.201809203
10.1002/anie.201711598
10.1039/C8MH01375F
10.1002/cctc.201600646
10.1002/anie.202006303
10.1002/anie.201510856
10.1021/acs.jpcc.5b02673
10.1021/acsami.9b01239
10.1038/s41598-019-55268-7
10.1002/app.32103
10.1021/ja312241y
10.1021/ja2021747
10.1039/c4ee00318g
10.1002/anie.201810882
10.1039/D0CS00033G
10.1021/cr500054y
10.1038/nchem.2260
10.1039/c4cp01961j
10.1021/acs.chemmater.5b00435
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society.
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society.
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/acscentsci.0c01560
DatabaseName Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: N~.
  name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2374-7951
EndPage 344
ExternalDocumentID oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e
PMC7908042
33655071
10_1021_acscentsci_0c01560
a666549386
Genre Journal Article
GroupedDBID 53G
5VS
ABFRP
ABUCX
ACS
ADACO
ADBBV
AFEFF
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
DIK
EBS
FRP
GGK
GROUPED_DOAJ
HYE
KQ8
M48
N~.
OK1
RPM
VF5
XKZ
AAFWJ
AAYXX
ABBLG
ADHLV
ADUCK
AFPKN
AOIJS
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a507t-1ac56a3b9fdaf1afbcf000e4092cc0d70976e80db9380d47d53692e9ee11e93d3
IEDL.DBID DOA
ISSN 2374-7943
IngestDate Wed Aug 27 01:25:20 EDT 2025
Thu Aug 21 17:49:05 EDT 2025
Thu Jul 10 17:27:42 EDT 2025
Wed Feb 19 02:29:06 EST 2025
Tue Jul 01 04:21:05 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Fri Apr 23 03:23:46 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2021 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a507t-1ac56a3b9fdaf1afbcf000e4092cc0d70976e80db9380d47d53692e9ee11e93d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5641-3849
0000-0002-2447-4679
0000-0002-1347-2811
OpenAccessLink https://doaj.org/article/0c0e91e7d51e46bc9ebf3c9419c9015e
PMID 33655071
PQID 2496237989
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7908042
proquest_miscellaneous_2496237989
pubmed_primary_33655071
crossref_citationtrail_10_1021_acscentsci_0c01560
crossref_primary_10_1021_acscentsci_0c01560
acs_journals_10_1021_acscentsci_0c01560
ProviderPackageCode ABFRP
ACS
AFEFF
VF5
XKZ
ABUCX
GGK
N~.
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-24
PublicationDateYYYYMMDD 2021-02-24
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS central science
PublicationTitleAlternate ACS Cent. Sci
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1038/ncomms2855
– ident: ref18/cit18
  doi: 10.1021/acsnano.0c00283
– ident: ref36/cit36
  doi: 10.1021/acs.chemmater.9b03266
– ident: ref24/cit24
  doi: 10.1002/batt.201900020
– ident: ref5/cit5
  doi: 10.1073/pnas.1901329116
– ident: ref48/cit48
  doi: 10.1016/j.electacta.2018.04.168
– ident: ref2/cit2
  doi: 10.1039/c1cs15228a
– ident: ref13/cit13
  doi: 10.1038/s41557-018-0166-9
– ident: ref39/cit39
  doi: 10.1021/ja507889x
– ident: ref12/cit12
  doi: 10.1002/aenm.201803046
– ident: ref31/cit31
  doi: 10.1039/C8SC05178J
– ident: ref29/cit29
  doi: 10.1002/adfm.201706374
– ident: ref11/cit11
  doi: 10.1039/c3ee00053b
– ident: ref30/cit30
  doi: 10.1039/C5CC00825E
– ident: ref27/cit27
  doi: 10.1016/j.ensm.2018.04.014
– ident: ref3/cit3
  doi: 10.1038/nmat3486
– ident: ref16/cit16
  doi: 10.1002/aenm.201301863
– ident: ref34/cit34
  doi: 10.1021/acsenergylett.7b01213
– ident: ref45/cit45
  doi: 10.1021/ja508794r
– ident: ref28/cit28
  doi: 10.1002/aenm.201802603
– ident: ref49/cit49
– ident: ref38/cit38
  doi: 10.1002/advs.201902866
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.0c01670
– ident: ref15/cit15
  doi: 10.1039/C8EE01373J
– ident: ref23/cit23
  doi: 10.1002/adfm.201801904
– ident: ref1/cit1
  doi: 10.1039/C3CS60248F
– ident: ref7/cit7
  doi: 10.1126/science.1223985
– ident: ref14/cit14
  doi: 10.1002/adma.201504373
– ident: ref35/cit35
  doi: 10.1002/anie.201910202
– ident: ref4/cit4
  doi: 10.1038/nature25984
– ident: ref25/cit25
  doi: 10.1002/anie.201809203
– ident: ref26/cit26
  doi: 10.1002/anie.201711598
– ident: ref43/cit43
  doi: 10.1039/C8MH01375F
– ident: ref22/cit22
  doi: 10.1002/cctc.201600646
– ident: ref44/cit44
  doi: 10.1002/anie.202006303
– ident: ref17/cit17
  doi: 10.1002/anie.201510856
– ident: ref21/cit21
  doi: 10.1021/acs.jpcc.5b02673
– ident: ref32/cit32
  doi: 10.1021/acsami.9b01239
– ident: ref41/cit41
  doi: 10.1038/s41598-019-55268-7
– ident: ref40/cit40
  doi: 10.1002/app.32103
– ident: ref42/cit42
  doi: 10.1021/ja312241y
– ident: ref8/cit8
  doi: 10.1021/ja2021747
– ident: ref10/cit10
  doi: 10.1039/c4ee00318g
– ident: ref37/cit37
  doi: 10.1002/anie.201810882
– ident: ref33/cit33
  doi: 10.1039/D0CS00033G
– ident: ref9/cit9
  doi: 10.1021/cr500054y
– ident: ref19/cit19
  doi: 10.1038/nchem.2260
– ident: ref46/cit46
  doi: 10.1039/c4cp01961j
– ident: ref47/cit47
  doi: 10.1021/acs.chemmater.5b00435
SSID ssj0001466527
Score 2.331996
Snippet Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na...
Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na...
Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 335
SummonAdditionalLinks – databaseName: Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCl4k1KQUZC4gAp8WMd-9guLBUqPVFpb5EfY7pS5VS722vFf-Af8ksYJ9kti0rFJVISO47H48w3secbQt6gDayDlryM0ulSCsdKZ6IvNeAX2fkAFcvByV9P1NGp_DIdTbfI-3-s4HP2wfqe1sjP9ivfBf7eIXe5Qr3LaS6v9q__qEil-hytXORNhkaKIUrm5sdke-QXG_aoo-2_CWv-vWXyDxs0eUB2BvBID_rRfki2ID0i98arnG2PyXTFyNQm2kZ6Yum4nWO7-dymQD9CCnMEmfQzet_LM4qIlR636Xt5PItAJ5kc050D1vv14-fBbE579k10pp-Q08mnb-OjcsidUFpEeMuSWT9SVqDcg43MRucjigjQm-PeV6GuEIaAroIzAo-yDiOhDAcDwBgYEcRTsp3aBM9zVDf3cdQBh1pGbXStReWV1K4KQthQkLcox2bQ_UXTLWtz1lxLvBkkXhC2knXjBwrynAnj_NY679Z1LnoCjltLH-YhXJfM5NndBdSoZpiLuSwYBthnBlI5b8BF4Y1kxudOQkFerxSgwfHLKyg2QXu5aNBXRbhYG20K8qxXiHVTQqjMDccKUm-oysa7bN5Js7OO0Ls2iNsl3_1vQb4g93neW5ND6-Ue2V7OL-ElgqOle9XNid92dw5_
  priority: 102
  providerName: American Chemical Society
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAF8W54yUhIHFBKHDuxfUCoLCwVantipb1FfozblVYJZLcS3PgP_EN-CeM8FhateuISKYkt2zN25pvY8w0hL9AGSq9EngZhVSq4ZanVwaUK8ItsnYeMxeDk07PyeCY-zYv5HhnTHQ0CXO107WI-qVm7PPz29ftbXPBveuIB9tq4nvjILQ4z14UGXyPX0TLJuFBPB7jf_XMRZVnkcoid2V01Wim32rJSHZn_LgT670HKvyzT9Da5NUBKetTPgTtkD-q75MZkzOR2j8xHnqampk2gZ4ZOmhbbjfem9vQ91L5F6Ek_ok--vqCIY-lJU5-nJ4sAdBopM-0SsN6vHz-PFi3tOTnRxb5PZtMPnyfH6ZBRITWI-9YpM64oDUdteBOYCdYFFAugj5c7l3mZITgBlXmrOV6F9AUvdQ4agDHQ3PMHZL9uajiIsd65C0UHJ6QISiupeOZKoWzmOTc-IS9RjtWo0Krb7M5Z9Ufi1SDxhLBR1pUbiMljfozllXVebep86Wk5riz9LqpwUzJSancPmva8GlZoLAuaAY6ZgSit02ADd1ow7eIgISHPxwlQof7ivoqpoblcVejBIoiUWumEPOwnxKYpzsvIGMcSIremylZftt_Ui4uO5ltqRPMif_Q_Ov-Y3MzjYZwYiy-ekP11ewlPEU2t7bNuifwGtsEjpw
  priority: 102
  providerName: Scholars Portal
Title Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries
URI http://dx.doi.org/10.1021/acscentsci.0c01560
https://www.ncbi.nlm.nih.gov/pubmed/33655071
https://www.proquest.com/docview/2496237989
https://pubmed.ncbi.nlm.nih.gov/PMC7908042
https://doaj.org/article/0c0e91e7d51e46bc9ebf3c9419c9015e
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL-WCaPlLgcpISBxQ2jh2YvvYblkq1O4FKu3N8s-YrlQlaHd7rXgH3pAnYZxkl12EyoWLpSR2bI0nnm9izzeEvEUbKIMSZR6FU7ngjuVOR58rwBXZ-QAFS8HJl5P6_Ep8mlbTjVRf6UxYTw_cC-648AVoBjJUDETtvAYXudeCaZ9MGaTVF23ehjPV_V0RdV2VcoiSQTt2bH3PjuRnR_jKFD-c7JFfbNmjjrb_b1jzzyOTGzZo_Jg8GsAjPekHvUceQLNPdkernG1PyHTFyNQ2tI10YumonWO_6do2gZ5BE-YIMulH9L6X1xQRK71om6_5xSwCHSdyTHcD2O7n9x8nsznt2TfRmX5KrsYfvozO8yF3Qm4R4S1zZn1VW45yDzYyG52PKBZAb670vgiyQBgCqghOcywFipfXugQNwBhoHvgzstO0DbxIUd2lj1UHHKSISiupeOFroVwROLchI-9QjmbQ_YXptrVLZn5L3AwSzwhbydr4gYI8ZcK4ubfN-3Wbbz0Bx721T9MUrmsm8uzuBqqUGVTK_EulMvJmpQAG5y_toNgG2tuFQV8V4aLUSmfkea8Q6644rxM3HMuI3FKVrbFsP2lm1x2ht9SI20V58D8G_5I8LNOxmxR1L16RneX8Fl4jblq6Q_QbRp8Puw8Fy0uhsJzcHf0CijgdHg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9MwFLdgHMZl_Gfhr5GQOKCUOHaT-FgKpUDXC53UWxTbz1u1KUFNeuG077BvyCfh2UlbOk0TXCLFsR2_5-f492K_nwl5i3NgajIRh1aoLBRcsVBJq8MM8IustIGIueDko2kyPhbf5v15F8ftYmGwETXWVPtF_C27APuAaZ7dSC96kfbxv7fJHUQjsTPrwfDH9seKSJL2qNaYu72GUvAuWOb6aty0pOudacmz918HOa_unPxrKhrdI7ONEH4Hyllv1aie_nWF3_E_pbxPDjpoSgetLT0gt6B8SPaH6xPhHpH5mu-pKmll6bSgw2qJ4rj7ojT0E5RmiRCWfkHfvjmliIfppCpPwsnCAh056k11Dlju98XlYLGkLbcnuuqPyfHo82w4DruTGcIC8WMTskL3k4Jjr5rCssIqbVHzgL5irHVk0ghBDmSRUZLjVaSmzxMZgwRgDCQ3_AnZK6sSDl3MeKxt38OSVNhMZmnGI52ITEWG88IE5B0qJe9GVp37RfOY5VtN5Z2mAsLWXZjrjuDcnbNxfmOZ95syP1t6jxtzf3SWscnpqLl9AnZj3o10lxckA5SZgUiUlqAs11IwqZ2QEJA3a7vKsf_c-kxRQrWqc_SEEYymMpMBedra2eZVnCeOeY4FJN2xwJ227D4pF6eeLjyV6BWI-Nk_K_I12R_Pjib55Ov0-3NyN3a7eFwQv3hB9prlCl4iDGvUKz_s_gAjJTDf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL4k14GgmJA0qJY28SH8uWpcCy4kClvVl-jOlKVVJttteK_8A_5JcwdrxbFlUVl0hx_Bzbmc-P-YaQ16gDa9eIMvfCNLnghuVGeps3gH9kYx0ULBgnf51Vh0fi83w0T1sXwRYGK9FjTn08xA-z-tT5xDDA3mF4ZDiyi73CRhvg6-QG4pEi-GyYne9dbK6IqhrctZY83DeUgieDmcuzCarJ9luqKTL4XwY7_709-Zc6mtwhtxOOpPtDx98l16C9R26N1-7b7pP5mpypa2nn6UzTcbfEcsO7bh09gNYtEW_Sj7gQXx1TBK902rU_8unCA50EnkxzApju989f-4slHYg4cV39gBxNPnwfH-bJjUKuEeytcqbtqNIcu8Bpz7Q31qOIABd2pbWFqwtEJNAUzkiOT1G7Ea9kCRKAMZDc8Ydkp-1aeBwMvEvrRxFD1MI3sqkbXthKNKZwnGuXkTcoR5WmQa_iCXfJ1IXEVZJ4Rtha1somNvLgFOPkyjRvN2lOBy6OK2O_D124iRl4tGMAjiyVpmWIC5IBtpmBqIyVYDy3UjBpQyMhI6_WA0Bh_4XDFN1Cd9YrXLYicqxlIzPyaBgQm6I4rwJNHMtIvTVUtuqy_aVdHEdu71oihBflk_8W5Ety89vBRE0_zb48JbtluHETDO7FM7KzWp7Bc4RMK_MiTo8_uKgVMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevention+of+Na+Corrosion+and+Dendrite+Growth+for+Long-Life+Flexible+Na%E2%80%93Air+Batteries&rft.jtitle=ACS+central+science&rft.au=Xizheng+Liu&rft.au=Xiaofeng+Lei&rft.au=Yong-Gang+Wang&rft.au=Yi+Ding&rft.date=2021-02-24&rft.pub=American+Chemical+Society&rft.eissn=2374-7951&rft.volume=7&rft.issue=2&rft.spage=335&rft.epage=344&rft_id=info:doi/10.1021%2Facscentsci.0c01560&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon