Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries
Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively prot...
Saved in:
Published in | ACS central science Vol. 7; no. 2; pp. 335 - 344 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. |
---|---|
AbstractList | Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H
O and O
crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li
from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air.Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H 2 O and O 2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li + from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. The Na−air batteries have been developed with in situ formed gel electrolyte on a Li modified Na anode. They display ultrastable cycle performance up to 2000 h in ambient air. Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na anode corrosion in ambient air and the growth of abnormal dendrites lead to insufficient cycle performance and safety hazards. Effectively protecting the Na anode from corrosion and inducing the uniform Na plating and stripping are therefore of vital importance for practical application. We herein report a NAB with in situ formed gel electrolyte and Na anode with trace residual Li. The gel electrolyte is obtained within cells through cross-linking Li ethylenediamine at the anode surface with tetraethylene glycol dimethyl ether (G4) from the liquid electrolyte. The gel can effectively prevent H2O and O2 crossover, thus delaying Na anode corrosion and electrolyte decomposition. Na dendrite growth was suppressed by the electrostatic shield effect of Li+ from the modified Li layer. Benefiting from these improvements, the NAB achieves a robust cycle performance over 2000 h in opened ambient air, which is superior to previous results. Gelation of the electrolyte prevents liquid leakage during battery bending, facilitating greater cell flexibility, which could lead to the development of NABs suitable for wearable electronic devices in ambient air. |
Author | Ding, Yi Lei, Xiaofeng Wang, Yong-Gang Liu, Xizheng |
AuthorAffiliation | Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) |
AuthorAffiliation_xml | – name: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering – name: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) |
Author_xml | – sequence: 1 givenname: Xizheng orcidid: 0000-0001-5641-3849 surname: Liu fullname: Liu, Xizheng organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering – sequence: 2 givenname: Xiaofeng surname: Lei fullname: Lei, Xiaofeng organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering – sequence: 3 givenname: Yong-Gang orcidid: 0000-0002-2447-4679 surname: Wang fullname: Wang, Yong-Gang email: ygwang@fudan.edu.cn organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) – sequence: 4 givenname: Yi orcidid: 0000-0002-1347-2811 surname: Ding fullname: Ding, Yi email: yding@tjut.edu.cn organization: Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33655071$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEQxy1UREvpC3BAPnLZ1F57vfEFqQT6IUWFA0jcLK93nDra2MXeFLjxDrwhT8KEpKXl0Is_5_-b0fznOdmLKQIhLzmbcFbzY-uKgzgWFybMMd4o9oQc1KKVVasbvnd3lmKfHJWyZIxxqVRTt8_IvhCqaVjLD8iXjxlukBNSpMnTS0tnKedUNncbe_oOYp_DCPQsp2_jFfUp03mKi2oePNDTAb6HbgDU_f756yRk-taOI-QA5QV56u1Q4Gi3H5LPp-8_zc6r-Yezi9nJvLJYwFhx6xplRad9bz23vnMeKwXJdO0c61umWwVT1nda4CrbvhFK16ABOActenFILrbcPtmluc5hZfMPk2wwfx9SXhibx-AGMNgn0ByQwUGqzmnovHBacu00dhCQ9WbLul53K-g3_c12eAB9-BPDlVmkG9NqNmWyRsDrHSCnr2soo1kFtGkYbIS0LqaWWqEveqox9NX9XHdJbq3BgOk2wKEdJYM3Lox2YxSmDoPhzGwGwfwbBLMbBJTW_0lv6Y-KJlsR_pllWueItj0m-AM0m8tO |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_2c04147 crossref_primary_10_1039_D1TA07096G crossref_primary_10_1016_j_scib_2022_11_027 crossref_primary_10_1016_j_matdes_2022_110406 crossref_primary_10_1002_adfm_202109378 crossref_primary_10_1039_D3SE01262J crossref_primary_10_1016_j_scib_2024_09_032 crossref_primary_10_3390_nano14191604 crossref_primary_10_1002_EXP_20240054 crossref_primary_10_1021_acs_energyfuels_4c03140 crossref_primary_10_1016_j_jechem_2023_11_004 crossref_primary_10_1002_adfm_202201258 crossref_primary_10_1016_j_coelec_2022_101120 crossref_primary_10_1002_cey2_276 crossref_primary_10_1002_inf2_12232 crossref_primary_10_1021_acscentsci_4c00925 crossref_primary_10_3390_nano11102476 crossref_primary_10_1016_j_ensm_2023_02_028 crossref_primary_10_1002_batt_202200338 crossref_primary_10_1002_batt_202400354 crossref_primary_10_1002_cssc_202202192 crossref_primary_10_1002_aenm_202401398 crossref_primary_10_1016_j_esci_2022_10_001 crossref_primary_10_1002_adfm_202201205 crossref_primary_10_1002_batt_202100207 crossref_primary_10_1016_j_pmatsci_2024_101337 crossref_primary_10_1038_s41467_024_51033_1 crossref_primary_10_1039_D1EE01404H crossref_primary_10_1021_acsami_1c05602 crossref_primary_10_1016_j_chempr_2024_02_012 crossref_primary_10_3390_batteries9110532 crossref_primary_10_1016_j_jpowsour_2021_230226 crossref_primary_10_1016_j_egyr_2024_06_007 crossref_primary_10_1002_celc_202300136 |
Cites_doi | 10.1038/ncomms2855 10.1021/acsnano.0c00283 10.1021/acs.chemmater.9b03266 10.1002/batt.201900020 10.1073/pnas.1901329116 10.1016/j.electacta.2018.04.168 10.1039/c1cs15228a 10.1038/s41557-018-0166-9 10.1021/ja507889x 10.1002/aenm.201803046 10.1039/C8SC05178J 10.1002/adfm.201706374 10.1039/c3ee00053b 10.1039/C5CC00825E 10.1016/j.ensm.2018.04.014 10.1038/nmat3486 10.1002/aenm.201301863 10.1021/acsenergylett.7b01213 10.1021/ja508794r 10.1002/aenm.201802603 10.1002/advs.201902866 10.1021/acs.nanolett.0c01670 10.1039/C8EE01373J 10.1002/adfm.201801904 10.1039/C3CS60248F 10.1126/science.1223985 10.1002/adma.201504373 10.1002/anie.201910202 10.1038/nature25984 10.1002/anie.201809203 10.1002/anie.201711598 10.1039/C8MH01375F 10.1002/cctc.201600646 10.1002/anie.202006303 10.1002/anie.201510856 10.1021/acs.jpcc.5b02673 10.1021/acsami.9b01239 10.1038/s41598-019-55268-7 10.1002/app.32103 10.1021/ja312241y 10.1021/ja2021747 10.1039/c4ee00318g 10.1002/anie.201810882 10.1039/D0CS00033G 10.1021/cr500054y 10.1038/nchem.2260 10.1039/c4cp01961j 10.1021/acs.chemmater.5b00435 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published by American
Chemical Society 2021 The Authors. Published by American Chemical Society. 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society. – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | N~. AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1021/acscentsci.0c01560 |
DatabaseName | Amer. Chemical Soc. (ACS) (Free, activated by CARLI) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: N~. name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI) url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2374-7951 |
EndPage | 344 |
ExternalDocumentID | oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e PMC7908042 33655071 10_1021_acscentsci_0c01560 a666549386 |
Genre | Journal Article |
GroupedDBID | 53G 5VS ABFRP ABUCX ACS ADACO ADBBV AFEFF ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV DIK EBS FRP GGK GROUPED_DOAJ HYE KQ8 M48 N~. OK1 RPM VF5 XKZ AAFWJ AAYXX ABBLG ADHLV ADUCK AFPKN AOIJS CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a507t-1ac56a3b9fdaf1afbcf000e4092cc0d70976e80db9380d47d53692e9ee11e93d3 |
IEDL.DBID | DOA |
ISSN | 2374-7943 |
IngestDate | Wed Aug 27 01:25:20 EDT 2025 Thu Aug 21 17:49:05 EDT 2025 Thu Jul 10 17:27:42 EDT 2025 Wed Feb 19 02:29:06 EST 2025 Tue Jul 01 04:21:05 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Fri Apr 23 03:23:46 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2021 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a507t-1ac56a3b9fdaf1afbcf000e4092cc0d70976e80db9380d47d53692e9ee11e93d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5641-3849 0000-0002-2447-4679 0000-0002-1347-2811 |
OpenAccessLink | https://doaj.org/article/0c0e91e7d51e46bc9ebf3c9419c9015e |
PMID | 33655071 |
PQID | 2496237989 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7908042 proquest_miscellaneous_2496237989 pubmed_primary_33655071 crossref_citationtrail_10_1021_acscentsci_0c01560 crossref_primary_10_1021_acscentsci_0c01560 acs_journals_10_1021_acscentsci_0c01560 |
ProviderPackageCode | ABFRP ACS AFEFF VF5 XKZ ABUCX GGK N~. CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-24 |
PublicationDateYYYYMMDD | 2021-02-24 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS central science |
PublicationTitleAlternate | ACS Cent. Sci |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1038/ncomms2855 – ident: ref18/cit18 doi: 10.1021/acsnano.0c00283 – ident: ref36/cit36 doi: 10.1021/acs.chemmater.9b03266 – ident: ref24/cit24 doi: 10.1002/batt.201900020 – ident: ref5/cit5 doi: 10.1073/pnas.1901329116 – ident: ref48/cit48 doi: 10.1016/j.electacta.2018.04.168 – ident: ref2/cit2 doi: 10.1039/c1cs15228a – ident: ref13/cit13 doi: 10.1038/s41557-018-0166-9 – ident: ref39/cit39 doi: 10.1021/ja507889x – ident: ref12/cit12 doi: 10.1002/aenm.201803046 – ident: ref31/cit31 doi: 10.1039/C8SC05178J – ident: ref29/cit29 doi: 10.1002/adfm.201706374 – ident: ref11/cit11 doi: 10.1039/c3ee00053b – ident: ref30/cit30 doi: 10.1039/C5CC00825E – ident: ref27/cit27 doi: 10.1016/j.ensm.2018.04.014 – ident: ref3/cit3 doi: 10.1038/nmat3486 – ident: ref16/cit16 doi: 10.1002/aenm.201301863 – ident: ref34/cit34 doi: 10.1021/acsenergylett.7b01213 – ident: ref45/cit45 doi: 10.1021/ja508794r – ident: ref28/cit28 doi: 10.1002/aenm.201802603 – ident: ref49/cit49 – ident: ref38/cit38 doi: 10.1002/advs.201902866 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.0c01670 – ident: ref15/cit15 doi: 10.1039/C8EE01373J – ident: ref23/cit23 doi: 10.1002/adfm.201801904 – ident: ref1/cit1 doi: 10.1039/C3CS60248F – ident: ref7/cit7 doi: 10.1126/science.1223985 – ident: ref14/cit14 doi: 10.1002/adma.201504373 – ident: ref35/cit35 doi: 10.1002/anie.201910202 – ident: ref4/cit4 doi: 10.1038/nature25984 – ident: ref25/cit25 doi: 10.1002/anie.201809203 – ident: ref26/cit26 doi: 10.1002/anie.201711598 – ident: ref43/cit43 doi: 10.1039/C8MH01375F – ident: ref22/cit22 doi: 10.1002/cctc.201600646 – ident: ref44/cit44 doi: 10.1002/anie.202006303 – ident: ref17/cit17 doi: 10.1002/anie.201510856 – ident: ref21/cit21 doi: 10.1021/acs.jpcc.5b02673 – ident: ref32/cit32 doi: 10.1021/acsami.9b01239 – ident: ref41/cit41 doi: 10.1038/s41598-019-55268-7 – ident: ref40/cit40 doi: 10.1002/app.32103 – ident: ref42/cit42 doi: 10.1021/ja312241y – ident: ref8/cit8 doi: 10.1021/ja2021747 – ident: ref10/cit10 doi: 10.1039/c4ee00318g – ident: ref37/cit37 doi: 10.1002/anie.201810882 – ident: ref33/cit33 doi: 10.1039/D0CS00033G – ident: ref9/cit9 doi: 10.1021/cr500054y – ident: ref19/cit19 doi: 10.1038/nchem.2260 – ident: ref46/cit46 doi: 10.1039/c4cp01961j – ident: ref47/cit47 doi: 10.1021/acs.chemmater.5b00435 |
SSID | ssj0001466527 |
Score | 2.331996 |
Snippet | Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na... Rechargeable Na-air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na... Rechargeable Na–air batteries (NABs) based on abundant Na resources are generating great interest due to their high energy density and low cost. However, Na... |
SourceID | doaj pubmedcentral proquest pubmed crossref acs |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 335 |
SummonAdditionalLinks | – databaseName: Amer. Chemical Soc. (ACS) (Free, activated by CARLI) dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCl4k1KQUZC4gAp8WMd-9guLBUqPVFpb5EfY7pS5VS722vFf-Af8ksYJ9kti0rFJVISO47H48w3secbQt6gDayDlryM0ulSCsdKZ6IvNeAX2fkAFcvByV9P1NGp_DIdTbfI-3-s4HP2wfqe1sjP9ivfBf7eIXe5Qr3LaS6v9q__qEil-hytXORNhkaKIUrm5sdke-QXG_aoo-2_CWv-vWXyDxs0eUB2BvBID_rRfki2ID0i98arnG2PyXTFyNQm2kZ6Yum4nWO7-dymQD9CCnMEmfQzet_LM4qIlR636Xt5PItAJ5kc050D1vv14-fBbE579k10pp-Q08mnb-OjcsidUFpEeMuSWT9SVqDcg43MRucjigjQm-PeV6GuEIaAroIzAo-yDiOhDAcDwBgYEcRTsp3aBM9zVDf3cdQBh1pGbXStReWV1K4KQthQkLcox2bQ_UXTLWtz1lxLvBkkXhC2knXjBwrynAnj_NY679Z1LnoCjltLH-YhXJfM5NndBdSoZpiLuSwYBthnBlI5b8BF4Y1kxudOQkFerxSgwfHLKyg2QXu5aNBXRbhYG20K8qxXiHVTQqjMDccKUm-oysa7bN5Js7OO0Ls2iNsl3_1vQb4g93neW5ND6-Ue2V7OL-ElgqOle9XNid92dw5_ priority: 102 providerName: American Chemical Society – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAF8W54yUhIHFBKHDuxfUCoLCwVantipb1FfozblVYJZLcS3PgP_EN-CeM8FhateuISKYkt2zN25pvY8w0hL9AGSq9EngZhVSq4ZanVwaUK8ItsnYeMxeDk07PyeCY-zYv5HhnTHQ0CXO107WI-qVm7PPz29ftbXPBveuIB9tq4nvjILQ4z14UGXyPX0TLJuFBPB7jf_XMRZVnkcoid2V01Wim32rJSHZn_LgT670HKvyzT9Da5NUBKetTPgTtkD-q75MZkzOR2j8xHnqampk2gZ4ZOmhbbjfem9vQ91L5F6Ek_ok--vqCIY-lJU5-nJ4sAdBopM-0SsN6vHz-PFi3tOTnRxb5PZtMPnyfH6ZBRITWI-9YpM64oDUdteBOYCdYFFAugj5c7l3mZITgBlXmrOV6F9AUvdQ4agDHQ3PMHZL9uajiIsd65C0UHJ6QISiupeOZKoWzmOTc-IS9RjtWo0Krb7M5Z9Ufi1SDxhLBR1pUbiMljfozllXVebep86Wk5riz9LqpwUzJSancPmva8GlZoLAuaAY6ZgSit02ADd1ow7eIgISHPxwlQof7ivoqpoblcVejBIoiUWumEPOwnxKYpzsvIGMcSIremylZftt_Ui4uO5ltqRPMif_Q_Ov-Y3MzjYZwYiy-ekP11ewlPEU2t7bNuifwGtsEjpw priority: 102 providerName: Scholars Portal |
Title | Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na–Air Batteries |
URI | http://dx.doi.org/10.1021/acscentsci.0c01560 https://www.ncbi.nlm.nih.gov/pubmed/33655071 https://www.proquest.com/docview/2496237989 https://pubmed.ncbi.nlm.nih.gov/PMC7908042 https://doaj.org/article/0c0e91e7d51e46bc9ebf3c9419c9015e |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL-WCaPlLgcpISBxQ2jh2YvvYblkq1O4FKu3N8s-YrlQlaHd7rXgH3pAnYZxkl12EyoWLpSR2bI0nnm9izzeEvEUbKIMSZR6FU7ngjuVOR58rwBXZ-QAFS8HJl5P6_Ep8mlbTjVRf6UxYTw_cC-648AVoBjJUDETtvAYXudeCaZ9MGaTVF23ehjPV_V0RdV2VcoiSQTt2bH3PjuRnR_jKFD-c7JFfbNmjjrb_b1jzzyOTGzZo_Jg8GsAjPekHvUceQLNPdkernG1PyHTFyNQ2tI10YumonWO_6do2gZ5BE-YIMulH9L6X1xQRK71om6_5xSwCHSdyTHcD2O7n9x8nsznt2TfRmX5KrsYfvozO8yF3Qm4R4S1zZn1VW45yDzYyG52PKBZAb670vgiyQBgCqghOcywFipfXugQNwBhoHvgzstO0DbxIUd2lj1UHHKSISiupeOFroVwROLchI-9QjmbQ_YXptrVLZn5L3AwSzwhbydr4gYI8ZcK4ubfN-3Wbbz0Bx721T9MUrmsm8uzuBqqUGVTK_EulMvJmpQAG5y_toNgG2tuFQV8V4aLUSmfkea8Q6644rxM3HMuI3FKVrbFsP2lm1x2ht9SI20V58D8G_5I8LNOxmxR1L16RneX8Fl4jblq6Q_QbRp8Puw8Fy0uhsJzcHf0CijgdHg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9MwFLdgHMZl_Gfhr5GQOKCUOHaT-FgKpUDXC53UWxTbz1u1KUFNeuG077BvyCfh2UlbOk0TXCLFsR2_5-f492K_nwl5i3NgajIRh1aoLBRcsVBJq8MM8IustIGIueDko2kyPhbf5v15F8ftYmGwETXWVPtF_C27APuAaZ7dSC96kfbxv7fJHUQjsTPrwfDH9seKSJL2qNaYu72GUvAuWOb6aty0pOudacmz918HOa_unPxrKhrdI7ONEH4Hyllv1aie_nWF3_E_pbxPDjpoSgetLT0gt6B8SPaH6xPhHpH5mu-pKmll6bSgw2qJ4rj7ojT0E5RmiRCWfkHfvjmliIfppCpPwsnCAh056k11Dlju98XlYLGkLbcnuuqPyfHo82w4DruTGcIC8WMTskL3k4Jjr5rCssIqbVHzgL5irHVk0ghBDmSRUZLjVaSmzxMZgwRgDCQ3_AnZK6sSDl3MeKxt38OSVNhMZmnGI52ITEWG88IE5B0qJe9GVp37RfOY5VtN5Z2mAsLWXZjrjuDcnbNxfmOZ95syP1t6jxtzf3SWscnpqLl9AnZj3o10lxckA5SZgUiUlqAs11IwqZ2QEJA3a7vKsf_c-kxRQrWqc_SEEYymMpMBedra2eZVnCeOeY4FJN2xwJ227D4pF6eeLjyV6BWI-Nk_K_I12R_Pjib55Ov0-3NyN3a7eFwQv3hB9prlCl4iDGvUKz_s_gAjJTDf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL4k14GgmJA0qJY28SH8uWpcCy4kClvVl-jOlKVVJttteK_8A_5JcwdrxbFlUVl0hx_Bzbmc-P-YaQ16gDa9eIMvfCNLnghuVGeps3gH9kYx0ULBgnf51Vh0fi83w0T1sXwRYGK9FjTn08xA-z-tT5xDDA3mF4ZDiyi73CRhvg6-QG4pEi-GyYne9dbK6IqhrctZY83DeUgieDmcuzCarJ9luqKTL4XwY7_709-Zc6mtwhtxOOpPtDx98l16C9R26N1-7b7pP5mpypa2nn6UzTcbfEcsO7bh09gNYtEW_Sj7gQXx1TBK902rU_8unCA50EnkxzApju989f-4slHYg4cV39gBxNPnwfH-bJjUKuEeytcqbtqNIcu8Bpz7Q31qOIABd2pbWFqwtEJNAUzkiOT1G7Ea9kCRKAMZDc8Ydkp-1aeBwMvEvrRxFD1MI3sqkbXthKNKZwnGuXkTcoR5WmQa_iCXfJ1IXEVZJ4Rtha1somNvLgFOPkyjRvN2lOBy6OK2O_D124iRl4tGMAjiyVpmWIC5IBtpmBqIyVYDy3UjBpQyMhI6_WA0Bh_4XDFN1Cd9YrXLYicqxlIzPyaBgQm6I4rwJNHMtIvTVUtuqy_aVdHEdu71oihBflk_8W5Ety89vBRE0_zb48JbtluHETDO7FM7KzWp7Bc4RMK_MiTo8_uKgVMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevention+of+Na+Corrosion+and+Dendrite+Growth+for+Long-Life+Flexible+Na%E2%80%93Air+Batteries&rft.jtitle=ACS+central+science&rft.au=Xizheng+Liu&rft.au=Xiaofeng+Lei&rft.au=Yong-Gang+Wang&rft.au=Yi+Ding&rft.date=2021-02-24&rft.pub=American+Chemical+Society&rft.eissn=2374-7951&rft.volume=7&rft.issue=2&rft.spage=335&rft.epage=344&rft_id=info:doi/10.1021%2Facscentsci.0c01560&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0c0e91e7d51e46bc9ebf3c9419c9015e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon |