Resolution Limits of Electron-Beam Lithography toward the Atomic Scale

We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread funct...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 13; no. 4; pp. 1555 - 1558
Main Authors Manfrinato, Vitor R, Zhang, Lihua, Su, Dong, Duan, Huigao, Hobbs, Richard G, Stach, Eric A, Berggren, Karl K
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 10.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread function at 200 keV. Furthermore, we measured the energy loss in the resist using electron-energy-loss spectroscopy.
AbstractList We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread function at 200 keV. Furthermore, we measured the energy loss in the resist using electron-energy-loss spectroscopy.We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread function at 200 keV. Furthermore, we measured the energy loss in the resist using electron-energy-loss spectroscopy.
We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread function at 200 keV. Furthermore, we measured the energy loss in the resist using electron-energy-loss spectroscopy.
Author Duan, Huigao
Stach, Eric A
Berggren, Karl K
Manfrinato, Vitor R
Zhang, Lihua
Su, Dong
Hobbs, Richard G
AuthorAffiliation Massachusetts Institute of Technology
Hunan University
Brookhaven National Laboratory
AuthorAffiliation_xml – name: Brookhaven National Laboratory
– name: Hunan University
– name: Massachusetts Institute of Technology
Author_xml – sequence: 1
  givenname: Vitor R
  surname: Manfrinato
  fullname: Manfrinato, Vitor R
– sequence: 2
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
– sequence: 3
  givenname: Dong
  surname: Su
  fullname: Su, Dong
– sequence: 4
  givenname: Huigao
  surname: Duan
  fullname: Duan, Huigao
– sequence: 5
  givenname: Richard G
  surname: Hobbs
  fullname: Hobbs, Richard G
– sequence: 6
  givenname: Eric A
  surname: Stach
  fullname: Stach, Eric A
– sequence: 7
  givenname: Karl K
  surname: Berggren
  fullname: Berggren, Karl K
  email: berggren@mit.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27275290$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23488936$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1087066$$D View this record in Osti.gov
BookMark eNqF0V1rFDEUBuAgFfvlhX9ABkHQi2lPPiYzuaylVWGhoPU6ZDJn3JSZZE0ylP57s-y6ghS8SghPwsn7npIjHzwS8obCBQVGL_3EQbS02bwgJ7ThUEul2NFh34ljcprSAwAo3sArcsy46DrF5Qm5_YYpTEt2wVcrN7ucqjBWNxPaHIOvP6GZy3leh5_RbNZPVQ6PJg5VXmN1lcPsbPXdmgnPycvRTAlf79cz8uP25v76S726-_z1-mpVmwZkrgewAqlA0zFDVd8a7Lu-bcYecZCCi2HoFQPOgDYjZWMvkQNTjVJG8E6Okp-Rd7t3Q8pOJ-sy2rUN3pd5NYWuBblFH3ZoE8OvBVPWs0sWp8l4DEvStJWs5AVC_J9yJqmgraKFvt3TpZ9x0JvoZhOf9J8sC3i_ByaVTMZovHXpr2tZ2zAFxX3cORtDShHHA6Ggt33qQ5_FXv5jy5fNtq0cjZuevbGfwtikH8ISfenjGfcb5h2rHA
CitedBy_id crossref_primary_10_1002_admi_201902021
crossref_primary_10_1021_acsami_3c02625
crossref_primary_10_1021_nl504716u
crossref_primary_10_1039_C9NR10217E
crossref_primary_10_1109_TPS_2021_3066433
crossref_primary_10_7567_1882_0786_ab33c7
crossref_primary_10_1038_s41598_020_70407_1
crossref_primary_10_1039_C8NR09254K
crossref_primary_10_1016_j_mtadv_2022_100322
crossref_primary_10_3390_molecules27082485
crossref_primary_10_1016_j_mee_2017_04_030
crossref_primary_10_1088_2631_7990_ada857
crossref_primary_10_1016_j_eng_2020_08_019
crossref_primary_10_1021_acsnano_8b04443
crossref_primary_10_1021_acs_nanolett_3c00114
crossref_primary_10_1016_j_measurement_2024_115681
crossref_primary_10_1021_acsanm_8b00865
crossref_primary_10_1002_smll_202303572
crossref_primary_10_1016_j_mee_2014_02_026
crossref_primary_10_1557_jmr_2014_159
crossref_primary_10_1038_ncomms11495
crossref_primary_10_1016_j_pquantelec_2019_04_002
crossref_primary_10_1016_j_scib_2019_06_001
crossref_primary_10_1021_acsnano_5b05710
crossref_primary_10_1002_adma_201903850
crossref_primary_10_1002_andp_201600005
crossref_primary_10_1038_srep05300
crossref_primary_10_1088_2040_8978_17_5_055002
crossref_primary_10_1016_j_heliyon_2023_e15094
crossref_primary_10_1016_j_crgsc_2020_100042
crossref_primary_10_1016_j_mee_2016_10_016
crossref_primary_10_1021_acsnano_7b06307
crossref_primary_10_1038_s41378_020_00225_y
crossref_primary_10_1021_accountsmr_4c00170
crossref_primary_10_1021_acsnano_2c12387
crossref_primary_10_1515_nanoph_2017_0008
crossref_primary_10_1021_jp5037662
crossref_primary_10_3788_PI_2024_R04
crossref_primary_10_1103_PhysRevApplied_18_024079
crossref_primary_10_1116_6_0001895
crossref_primary_10_1557_mrs_2017_186
crossref_primary_10_3390_mi15111321
crossref_primary_10_1021_acs_jpclett_1c03877
crossref_primary_10_1007_s11664_018_6470_8
crossref_primary_10_1116_1_5048190
crossref_primary_10_1007_s12541_014_0604_6
crossref_primary_10_1116_1_5048193
crossref_primary_10_1021_la501033f
crossref_primary_10_5194_se_8_751_2017
crossref_primary_10_1021_acsaelm_9b00281
crossref_primary_10_1002_aenm_202001537
crossref_primary_10_1016_j_optcom_2023_130083
crossref_primary_10_1021_acsanm_2c04831
crossref_primary_10_1103_PhysRevLett_118_037601
crossref_primary_10_1002_smll_201903025
crossref_primary_10_1515_nanoph_2019_0031
crossref_primary_10_1021_acs_nanolett_0c04304
crossref_primary_10_1021_acsnano_7b08810
crossref_primary_10_1021_acs_nanolett_7b03613
crossref_primary_10_1039_C8NR04040K
crossref_primary_10_1134_S0965542519010081
crossref_primary_10_1021_acsanm_2c01321
crossref_primary_10_1063_1_4953178
crossref_primary_10_1002_adma_201601007
crossref_primary_10_1109_LED_2018_2804388
crossref_primary_10_1039_D3TC00957B
crossref_primary_10_1063_1_5043543
crossref_primary_10_1002_adma_201601801
crossref_primary_10_1002_adma_202200903
crossref_primary_10_1021_nl403849g
crossref_primary_10_1103_PhysRevB_89_144405
crossref_primary_10_1021_acs_jpcc_1c07942
crossref_primary_10_1002_adma_202204947
crossref_primary_10_1039_C9NR01682A
crossref_primary_10_3390_nano11102551
crossref_primary_10_1038_s41598_022_19924_9
crossref_primary_10_1007_s00340_018_6892_2
crossref_primary_10_1063_1_5030585
crossref_primary_10_1088_1361_6528_ab746e
crossref_primary_10_1038_ncomms6228
crossref_primary_10_1039_C3TB21763A
crossref_primary_10_1021_acs_nanolett_3c03773
crossref_primary_10_1088_2631_7990_aba2d8
crossref_primary_10_1063_5_0069561
crossref_primary_10_1364_OE_24_006203
crossref_primary_10_1021_acsanm_2c03074
crossref_primary_10_1016_j_isci_2022_105160
crossref_primary_10_1016_j_matpr_2021_06_045
crossref_primary_10_3390_mi11050464
crossref_primary_10_3847_1538_4357_ab9a41
crossref_primary_10_1155_2014_891395
crossref_primary_10_1002_adma_201907101
crossref_primary_10_1021_la4039182
crossref_primary_10_1088_1361_6528_aaabdd
crossref_primary_10_3390_polym16060846
crossref_primary_10_1002_adma_201403510
crossref_primary_10_1021_nl5013773
crossref_primary_10_1088_2040_8986_ad535f
crossref_primary_10_1515_nanoph_2022_0694
crossref_primary_10_1002_adom_202301562
crossref_primary_10_1007_s11468_024_02395_1
crossref_primary_10_1016_j_jcrysgro_2017_12_029
crossref_primary_10_1007_s11051_018_4129_2
crossref_primary_10_1038_s41598_020_67590_6
crossref_primary_10_1002_smll_201805424
crossref_primary_10_1117_1_JMM_18_2_020501
crossref_primary_10_1016_j_micrna_2024_208019
crossref_primary_10_1088_1674_1056_27_9_094216
crossref_primary_10_1007_s00339_014_8588_8
crossref_primary_10_1007_s12206_021_0243_7
crossref_primary_10_1002_adhm_201801478
crossref_primary_10_1002_aisy_202000216
crossref_primary_10_3847_1538_4357_abbe15
crossref_primary_10_1063_1_4826599
crossref_primary_10_36664_bt_2023_v70i1_173200
crossref_primary_10_1002_smtd_202001231
crossref_primary_10_1063_1_4935750
crossref_primary_10_1038_srep28490
crossref_primary_10_1038_srep18818
crossref_primary_10_37188_lam_2025_006
crossref_primary_10_1021_acsanm_9b01830
crossref_primary_10_1039_C6FD00021E
crossref_primary_10_1039_C7CP00477J
crossref_primary_10_1016_j_snb_2022_131380
crossref_primary_10_1007_s11277_022_10019_2
crossref_primary_10_1016_j_pmatsci_2022_101041
crossref_primary_10_1088_1361_6528_ad6e88
crossref_primary_10_3390_nano11082079
crossref_primary_10_1021_acsomega_2c03445
crossref_primary_10_1021_acs_cgd_9b01327
crossref_primary_10_1021_acs_nanolett_6b01012
crossref_primary_10_3390_nano13071156
crossref_primary_10_1364_OE_26_003341
crossref_primary_10_1364_OE_397868
crossref_primary_10_1021_acs_jpcc_3c08250
crossref_primary_10_1088_1361_6528_ad8a6a
crossref_primary_10_1063_10_0021195
crossref_primary_10_1016_j_mee_2020_111238
crossref_primary_10_1021_acs_nanolett_7b04190
crossref_primary_10_1063_1_4942392
crossref_primary_10_1116_6_0002998
crossref_primary_10_1021_accountsmr_1c00112
crossref_primary_10_3390_eng5040175
crossref_primary_10_1016_j_jelechem_2021_115373
crossref_primary_10_7567_JJAP_55_06GE01
crossref_primary_10_1016_j_optlastec_2021_107180
crossref_primary_10_3390_photonics11070608
crossref_primary_10_1088_1361_6528_ac1099
crossref_primary_10_35848_1347_4065_abc78d
crossref_primary_10_1038_s41377_021_00651_1
crossref_primary_10_1039_C4NR07420C
crossref_primary_10_1038_s41598_022_23534_w
crossref_primary_10_1063_1_5025880
crossref_primary_10_1021_nl502172m
crossref_primary_10_3390_ma17020422
crossref_primary_10_1116_1_4935129
crossref_primary_10_1038_srep06142
crossref_primary_10_1002_adma_202006966
crossref_primary_10_1002_smll_201703307
crossref_primary_10_1016_j_supcon_2025_100152
crossref_primary_10_1016_j_matlet_2019_126765
crossref_primary_10_1039_D2TC01339H
crossref_primary_10_1088_0022_3727_46_50_503001
crossref_primary_10_1088_1361_6528_ac8881
crossref_primary_10_1109_TAP_2019_2938705
crossref_primary_10_1186_s11671_023_03938_x
crossref_primary_10_1016_j_polymer_2016_06_065
crossref_primary_10_1016_j_promfg_2019_06_187
crossref_primary_10_1021_acs_nanolett_2c04467
crossref_primary_10_3390_photonics10060698
crossref_primary_10_1002_adma_202110024
crossref_primary_10_1016_j_solmat_2017_11_030
crossref_primary_10_1116_1_5012028
crossref_primary_10_1002_adfm_201903429
crossref_primary_10_3390_act11030071
crossref_primary_10_1016_j_mee_2023_112071
crossref_primary_10_1016_j_apmt_2018_12_014
crossref_primary_10_1063_1_4945357
crossref_primary_10_1088_2399_6528_ab5596
crossref_primary_10_1002_adma_201503567
crossref_primary_10_1088_0957_4484_24_39_395301
crossref_primary_10_1088_1361_6528_aa8005
crossref_primary_10_1039_C6TC00824K
crossref_primary_10_1063_1_4935552
crossref_primary_10_1039_C6RA18214C
crossref_primary_10_1515_nanoph_2017_0089
crossref_primary_10_1109_JMEMS_2017_2699864
crossref_primary_10_1021_acsnano_7b07480
crossref_primary_10_1088_0957_4484_27_10_105302
crossref_primary_10_1002_adom_202201732
crossref_primary_10_1002_smll_201600309
crossref_primary_10_1515_nanoph_2018_0016
crossref_primary_10_1117_1_JMM_21_4_044603
crossref_primary_10_1364_AO_58_009498
crossref_primary_10_1002_adem_202200822
crossref_primary_10_1038_s41377_020_0268_1
crossref_primary_10_1063_1_4918643
crossref_primary_10_1002_smll_201703401
crossref_primary_10_1021_acsnano_6b07359
crossref_primary_10_1038_s41378_018_0007_4
crossref_primary_10_1146_annurev_anchem_061516_045325
crossref_primary_10_1016_j_materresbull_2022_111903
crossref_primary_10_1038_ncomms7940
crossref_primary_10_1038_s41598_019_50411_w
crossref_primary_10_1016_j_jmmm_2019_165572
crossref_primary_10_1016_j_matt_2020_08_002
crossref_primary_10_1063_5_0080721
crossref_primary_10_1039_D2CC05221K
crossref_primary_10_1038_ncomms4305
crossref_primary_10_1126_sciadv_abb1724
crossref_primary_10_1088_1361_6528_aa5ec3
crossref_primary_10_1016_j_mne_2024_100238
crossref_primary_10_1149_2162_8777_ac4c9e
crossref_primary_10_1038_srep46159
crossref_primary_10_1007_s41871_018_0016_9
crossref_primary_10_1016_j_jphotochem_2022_114351
crossref_primary_10_1002_adom_202401633
crossref_primary_10_1016_j_apsusc_2019_02_206
crossref_primary_10_1021_acs_nanolett_1c00559
crossref_primary_10_1002_admt_201900792
crossref_primary_10_1016_j_ultramic_2014_04_007
crossref_primary_10_1039_D0NR01032D
crossref_primary_10_1002_lpor_202100427
crossref_primary_10_1002_cpe_7997
crossref_primary_10_1103_PhysRevB_102_155430
crossref_primary_10_1021_acsnano_4c06022
crossref_primary_10_1016_j_biomaterials_2025_123136
crossref_primary_10_1016_j_bios_2017_11_001
crossref_primary_10_1038_s41467_023_41563_5
crossref_primary_10_1049_mnl_2014_0249
crossref_primary_10_1007_s41403_024_00484_5
crossref_primary_10_1002_appl_202200099
crossref_primary_10_1007_s10825_018_1138_4
crossref_primary_10_1103_PhysRevApplied_8_024011
crossref_primary_10_1038_s41378_019_0100_3
crossref_primary_10_7567_JJAP_54_042002
crossref_primary_10_1021_acs_nanolett_7b00514
crossref_primary_10_1038_ncomms7705
crossref_primary_10_1364_AO_528267
crossref_primary_10_1016_j_mtnano_2019_100058
crossref_primary_10_1002_smll_201502419
crossref_primary_10_1039_D0TA00870B
crossref_primary_10_1149_1945_7111_abfb3a
crossref_primary_10_1515_nanoph_2022_0063
crossref_primary_10_1016_j_mee_2018_04_009
crossref_primary_10_1002_smll_202300311
crossref_primary_10_1021_acsbiomaterials_3c01116
crossref_primary_10_1021_acs_jpcc_5b03513
crossref_primary_10_1021_nl504441m
crossref_primary_10_1039_C5NR06266G
crossref_primary_10_1002_smll_202100640
crossref_primary_10_1103_PhysRevLett_118_203901
crossref_primary_10_1016_j_optcom_2016_04_015
crossref_primary_10_1103_PhysRevLett_114_073601
crossref_primary_10_1021_acsami_2c20203
crossref_primary_10_1140_epjti4
crossref_primary_10_1039_C4CP05904B
crossref_primary_10_1016_j_carbon_2020_04_098
crossref_primary_10_1038_s41467_019_12458_1
crossref_primary_10_1021_acsami_9b19778
crossref_primary_10_1002_adma_201900422
crossref_primary_10_1515_nanoph_2024_0343
crossref_primary_10_1364_JOSAB_391277
crossref_primary_10_1088_2053_1591_aabbb4
crossref_primary_10_3390_nano11082002
crossref_primary_10_1364_OE_406127
crossref_primary_10_3390_ma11081460
crossref_primary_10_1016_j_mee_2015_04_084
crossref_primary_10_1021_acs_nanolett_8b02505
crossref_primary_10_1038_s41378_021_00286_7
crossref_primary_10_1063_1_4963689
crossref_primary_10_3389_fnano_2022_829011
crossref_primary_10_1116_6_0000089
crossref_primary_10_1002_adom_201902132
crossref_primary_10_1002_adfm_202007417
crossref_primary_10_1038_s41598_022_12414_y
crossref_primary_10_1088_1361_6528_aad393
crossref_primary_10_1021_acs_chemmater_6b04641
crossref_primary_10_1088_0957_4484_25_27_275302
crossref_primary_10_1109_MNANO_2020_2966205
crossref_primary_10_1038_s41598_024_54244_0
crossref_primary_10_1038_srep29625
crossref_primary_10_1002_advs_201902428
crossref_primary_10_1021_acs_nanolett_2c05021
crossref_primary_10_1021_acsnano_7b02357
crossref_primary_10_1039_C8SM02590H
crossref_primary_10_1039_C6NR08255F
crossref_primary_10_1021_acs_nanolett_4c04116
crossref_primary_10_1038_srep18892
crossref_primary_10_1364_OE_463427
crossref_primary_10_3762_bjnano_8_236
crossref_primary_10_1007_s12274_014_0499_7
crossref_primary_10_1016_j_apsusc_2020_146690
crossref_primary_10_1007_s00542_017_3581_8
crossref_primary_10_1038_nature20782
crossref_primary_10_1007_s11467_023_1305_3
crossref_primary_10_1103_PhysRevA_96_051802
crossref_primary_10_1002_smll_202306468
crossref_primary_10_1021_acs_nanolett_9b01972
crossref_primary_10_4028_www_scientific_net_SSP_215_459
crossref_primary_10_1116_1_5120631
crossref_primary_10_1063_5_0061630
crossref_primary_10_1016_j_mser_2020_100563
crossref_primary_10_1002_adfm_202004370
crossref_primary_10_1021_acsomega_1c03858
crossref_primary_10_1088_1361_6463_aa752b
crossref_primary_10_3390_photonics12030226
crossref_primary_10_1088_2631_7990_ac087c
crossref_primary_10_1007_s12541_016_0184_8
crossref_primary_10_1098_rsos_202132
crossref_primary_10_1007_s11431_014_5753_4
crossref_primary_10_35848_1347_4065_adb4ff
crossref_primary_10_1080_15980316_2022_2118182
crossref_primary_10_1021_acsnano_1c03703
crossref_primary_10_1016_j_progpolymsci_2023_101688
crossref_primary_10_1016_j_apsusc_2022_152910
Cites_doi 10.1116/1.3253652
10.1016/S0167-9317(98)00076-8
10.1063/1.89155
10.1021/nl3001309
10.1116/1.583847
10.1038/nnano.2010.176
10.1116/1.3501359
10.1116/1.3167367
10.1116/1.3253603
10.1016/S0169-4332(00)00352-4
10.1063/1.329366
10.1116/1.2798711
10.1116/1.1342011
10.1116/1.570288
10.1116/1.582642
10.1038/nmat964
10.1116/1.568524
10.1116/1.1763897
10.1116/1.590762
10.1116/1.2801881
10.1116/1.1421548
10.1038/nature08639
10.1109/T-ED.1965.15607
10.1103/PhysRevB.15.4699
10.1063/1.115958
10.1021/nl102259s
10.1021/nl050522i
10.1116/1.571180
10.1103/PhysRevB.78.233403
10.1038/35046000
10.1116/1.3517607
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2014 INIST-CNRS
CorporateAuthor Brookhaven National Laboratory (BNL) Center for Functional Nanomaterials
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL) Center for Functional Nanomaterials
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1021/nl304715p
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 1558
ExternalDocumentID 1087066
23488936
27275290
10_1021_nl304715p
b967995322
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ABFRP
OTOTI
ID FETCH-LOGICAL-a506t-d0c4e14ea82a19b7aeb8b75fbeed6434ddb92032015f12fb6e3029599a4386f63
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu May 18 18:33:03 EDT 2023
Thu Jul 10 22:52:43 EDT 2025
Thu Jul 10 23:33:25 EDT 2025
Mon Jul 21 05:41:59 EDT 2025
Mon Jul 21 09:13:55 EDT 2025
Tue Jul 01 00:42:52 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords STEM lithography
electron beam lithography
high voltage electron beam lithography
hydrogen silsesquioxane
EELS
point spread function
EEL spectroscopy
Electron resists
Silsesquioxane polymer
Electron beam lithography
Aberrations
Resists
Energy losses
Scanning transmission electron microscopy
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-d0c4e14ea82a19b7aeb8b75fbeed6434ddb92032015f12fb6e3029599a4386f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
BNL-101189-2013-JA
DE-AC02-98CH10886
OpenAccessLink http://hdl.handle.net/1721.1/92829
PMID 23488936
PQID 1326141791
PQPubID 23479
PageCount 4
ParticipantIDs osti_scitechconnect_1087066
proquest_miscellaneous_1762047044
proquest_miscellaneous_1326141791
pubmed_primary_23488936
pascalfrancis_primary_27275290
crossref_primary_10_1021_nl304715p
crossref_citationtrail_10_1021_nl304715p
acs_journals_10_1021_nl304715p
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-10
PublicationDateYYYYMMDD 2013-04-10
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Rishton S. (ref11/cit11) 1987; 5
Broers A. (ref2/cit2) 1976; 29
Pease R. F. (ref7/cit7) 2010; 28
Arjmandi N. (ref8/cit8) 2009; 27
Namatsu H. (ref15/cit15) 1998; 42
Chung M. (ref32/cit32) 1977; 15
Isaacson M. (ref3/cit3) 1981; 19
Joy D. (ref30/cit30) 1995; 4
Werner W. (ref33/cit33) 2011; 99
Wu B. (ref29/cit29) 2001; 19
Howard R. (ref9/cit9) 1983; 1
Song H. (ref26/cit26) 2009; 462
Joachim C. (ref25/cit25) 2000; 408
Duan H. (ref28/cit28) 2010; 10
Cord B. (ref5/cit5) 2009; 27
Kyser D. (ref12/cit12) 1975; 12
Luo S. (ref31/cit31) 1990
Wells O. (ref1/cit1) 1965; 12
Yang J. (ref19/cit19) 2007; 25
Murata K. (ref13/cit13) 1981; 52
Hu W. (ref17/cit17) 2004; 22
Werner W. (ref34/cit34) 2008; 78
Vieu C. (ref20/cit20) 2000; 164
Ward D. (ref23/cit23) 2010; 5
van Dorp W. (ref22/cit22) 2005; 5
Fujita J. (ref16/cit16) 1996; 68
Duan H. (ref24/cit24) 2012; 12
Yang J. (ref4/cit4) 2009; 27
Yang X. (ref18/cit18) 2007; 25
Yasin S. (ref21/cit21) 2001; 19
Sarikaya M. (ref27/cit27) 2003; 2
Duan H. (ref6/cit6) 2010; 28
Kyser D. (ref10/cit10) 1979; 16
Olkhovets A. (ref14/cit14) 1999; 17
References_xml – volume: 27
  start-page: 2622
  issue: 6
  year: 2009
  ident: ref4/cit4
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.3253652
– volume: 42
  start-page: 331
  year: 1998
  ident: ref15/cit15
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(98)00076-8
– volume: 29
  start-page: 596
  issue: 9
  year: 1976
  ident: ref2/cit2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.89155
– volume: 12
  start-page: 1683
  issue: 3
  year: 2012
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl3001309
– volume: 5
  start-page: 135
  issue: 1
  year: 1987
  ident: ref11/cit11
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.583847
– volume: 5
  start-page: 732
  issue: 10
  year: 2010
  ident: ref23/cit23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.176
– volume: 28
  start-page: C6H11
  issue: 6
  year: 2010
  ident: ref6/cit6
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.3501359
– volume: 27
  start-page: 1915
  issue: 4
  year: 2009
  ident: ref8/cit8
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3167367
– volume: 4
  start-page: 125
  issue: 3
  year: 1995
  ident: ref30/cit30
  publication-title: Microbeam Anal.
– volume: 27
  start-page: 2616
  issue: 6
  year: 2009
  ident: ref5/cit5
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.3253603
– volume: 164
  start-page: 111
  year: 2000
  ident: ref20/cit20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(00)00352-4
– volume: 99
  start-page: 18
  year: 2011
  ident: ref33/cit33
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 4396
  issue: 7
  year: 1981
  ident: ref13/cit13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329366
– volume: 25
  start-page: 2202
  issue: 6
  year: 2007
  ident: ref18/cit18
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.2798711
– volume: 19
  start-page: 311
  issue: 1
  year: 2001
  ident: ref21/cit21
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.1342011
– volume: 16
  start-page: 1759
  issue: 6
  year: 1979
  ident: ref10/cit10
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.570288
– volume: 1
  start-page: 1101
  issue: 4
  year: 1983
  ident: ref9/cit9
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.582642
– volume: 2
  start-page: 577
  issue: 9
  year: 2003
  ident: ref27/cit27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat964
– start-page: 127
  year: 1990
  ident: ref31/cit31
  publication-title: Scanning Microsc.
– volume: 12
  start-page: 1305
  issue: 6
  year: 1975
  ident: ref12/cit12
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.568524
– volume: 22
  start-page: 1711
  issue: 4
  year: 2004
  ident: ref17/cit17
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.1763897
– volume: 17
  start-page: 1366
  issue: 4
  year: 1999
  ident: ref14/cit14
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.590762
– volume: 25
  start-page: 2025
  issue: 6
  year: 2007
  ident: ref19/cit19
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.2801881
– volume: 19
  start-page: 2508
  issue: 6
  year: 2001
  ident: ref29/cit29
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.1421548
– volume: 462
  start-page: 1039
  issue: 7276
  year: 2009
  ident: ref26/cit26
  publication-title: Nature
  doi: 10.1038/nature08639
– volume: 12
  start-page: 556
  issue: 10
  year: 1965
  ident: ref1/cit1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1965.15607
– volume: 15
  start-page: 4699
  issue: 10
  year: 1977
  ident: ref32/cit32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.15.4699
– volume: 68
  start-page: 1297
  issue: 9
  year: 1996
  ident: ref16/cit16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.115958
– volume: 10
  start-page: 3710
  issue: 9
  year: 2010
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl102259s
– volume: 5
  start-page: 1303
  issue: 7
  year: 2005
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl050522i
– volume: 19
  start-page: 1117
  issue: 4
  year: 1981
  ident: ref3/cit3
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.571180
– volume: 78
  start-page: 23
  year: 2008
  ident: ref34/cit34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.233403
– volume: 408
  start-page: 541
  issue: 6812
  year: 2000
  ident: ref25/cit25
  publication-title: Nature
  doi: 10.1038/35046000
– volume: 28
  start-page: C6A1
  issue: 6
  year: 2010
  ident: ref7/cit7
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.3517607
SSID ssj0009350
Score 2.5674236
Snippet We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1555
SubjectTerms Aberration
Cross-disciplinary physics: materials science; rheology
Electron beam lithography
Electronics
Electrons
Energy measurement
Energy use
Exact sciences and technology
functional nanomaterials
high voltage electron beam lithography
Hydrogen - chemistry
Materials science
Methods of nanofabrication
Microscopy, Electron, Scanning Transmission
Nanolithography
NANOSCIENCE AND NANOTECHNOLOGY
Nanostructure
Organosilicon Compounds - chemistry
Physics
Resists
Scanning electron microscopy
Spectroscopy
Spectroscopy, Electron Energy-Loss
STEM lithography
Title Resolution Limits of Electron-Beam Lithography toward the Atomic Scale
URI http://dx.doi.org/10.1021/nl304715p
https://www.ncbi.nlm.nih.gov/pubmed/23488936
https://www.proquest.com/docview/1326141791
https://www.proquest.com/docview/1762047044
https://www.osti.gov/biblio/1087066
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7R7aU90HdZaJELPfQSGj8TH7eUFapULoDELbIdW0ilWcRmL_x6ZpLsAirQazRJ7PE4803G8w3AVylTbTzlDLWwmXIYoDgni8yGZE0t8iQFFTj_PjKHp-rXmT5bg91HMviCf28uKDPE9eUzeC5MWVCENdk_vmXWlV0bVty5GAfZUi3pg-7eSq4nzO-5ntEMtxCdhHRzVEbqu1g8DjM7dzN9BT-XRTv9KZM_e4vW74Xrfzkcn5rJa1gf4Cab9PbxBtZi8xZe3iEhfAdT-oPf2x_ryp3mbJbYwdAeJ_sR3V-83p4P3Nas7Q7aMgSObNJSTTM7xqnF93A6PTjZP8yG7gqZ07lpszoPKnIVXSkct75w0Ze-0Mmj10SYoura2669OteJi-RNlLmw2lqnZGmSkR9g1MyauAHM2Trm1iF4orrWkErrMfD0Iemi1sn4MWyj-qthd8yrLvEteLVSyBi-LVemCgM3ObXIuHhIdGcletkTcjwktEXLWyGKICrcQGeGQktkqAVCLBzOvVVfPUcgmEOTzcfwZWkGFe42SqG4Js4WOHJEu5yatvEnZAri-C9ypcbwsbeh2zdI_GBaaTb_p5EteCG6xhsKHeUnGLVXi_gZ4U_rtzvzvwFiKvyf
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5QAceD-WQjEIJC4piV-JDxyW0tWWPi5tpd5S27GFRMlWJCsEP4W_wp9j7GR3W1TgVInrynK84xnPN5qZbwBeMuYraULOUFCVcI0BitYsT5T1SlY09YyGBufdPTk55B-OxNEK_Jj3wuAhGtypiUn8JbtA9qY-CQmiTJz2BZTb7ttXDM-at1vv8S5fUTrePNiYJP0EgUSLVLZJlVruMu50QXWmTK6dKUwuvEHPgK6YV5VRcYR4JnxGvZGOpVQJpTRnhfSS4b5X4CqCHhoCu9HG_pLQl8Xpr_hgYPilCj5nLTp71ODxbHPO4w2maLmhAFM3eAe-G57xZ3Qbvdz4FvxcyCcWt3xan7Vm3X7_jTry_xTgbbjZg2sy6qzhDqy4-i7cOEO5eA_GIV_RWRuJzV0NmXqy2Q8DSt45_Rl_bz_2TN6kjWXFBGEyGbWhg5vso0TdfTi8lD_yAAb1tHaPgGhVuVRphIqhi9f6QhkMs431Iq-El2YIayj_sn8LmjKm-WlWLi5gCK_nClHanok9DAQ5uWjpi8XS045-5KJFq0GrSsRMgfjXhgop2wbq1xwBJR7nnLIt9qEIXdFA0yE8n2tfiW9LSBjp2k1neHLE9lkYUZf9ZU0eJhrkKedDeNip7vILDN2DYvLxvyTyDK5NDnZ3yp2tve1VuE7jyBGOEOEJDNovM_cUgV9r1qIFEji-bI39BQJJX2s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VRUJw4J92KRSDQOKSNrEdJz5wWNquWgoVUqnUW7ATW0iU7KrJCsHD8Cq8GjNOdtuiAqdKXFeW4_XMeL7RzHwD8FwIXylLOcOU60gaDFCMEVmkS69VxWMvODU4v9tXO4fyzVF6tAQ_5r0weIgGd2pCEp-selr5nmEg2aiPKUmUpNO-iHLPffuKIVrzancL5fmC8_H2h82dqJ8iEJk0Vm1UxaV0iXQm5ybRNjPO5jZLvUXvgO5YVpXVYYx4kvqEe6uciLlOtTZS5MorgftegauUHqTgbrR5cErqK8IEWHw0MATTuZwzF509Knm9sjnn9QYTtF4qwjQNysF3AzT-jHCDpxvfgp-LOwoFLp_XZ61dL7__Rh_5_17ibbjZg2w26qziDiy5-i7cOEO9eA_GlLforI6FJq-GTTzb7ocCRa-d-YK_t596Rm_WhvJihnCZjVrq5GYHeKvuPhxeyh95AIN6UrsVYEZXLtYGISN185Y-1xbDbVv6NKtSr-wQ1lAGRf8mNEVI9_OkWAhgCC_nSlGUPSM7DQY5vmjps8XSaUdDctGiVdKsArETEQCXVClVtkQBmyGwxOOcU7jFPhwhLBpqPISncw0s8I2hxJGp3WSGJ0eMn9CouuQvazKabJDFUg5huVPf0y8IdBNaqIf_upEncO391rh4u7u_twrXeZg8IhEpPIJBezJzjxH_tXYtGCGDj5etsL8AqYhh7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolution+Limits+of+Electron-Beam+Lithography+toward+the+Atomic+Scale&rft.jtitle=Nano+letters&rft.au=MANFRINATO%2C+Vitor+R&rft.au=LIHUA+ZHANG&rft.au=DONG+SU&rft.au=HUIGAO+DUAN&rft.date=2013-04-10&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.volume=13&rft.issue=4&rft.spage=1555&rft.epage=1558&rft_id=info:doi/10.1021%2Fnl304715p&rft.externalDBID=n%2Fa&rft.externalDocID=27275290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon