Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligen...
Saved in:
Published in | Hydrology and earth system sciences Vol. 22; no. 9; pp. 4771 - 4792 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
13.09.2018
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1607-7938 1027-5606 1607-7938 |
DOI | 10.5194/hess-22-4771-2018 |
Cover
Loading…
Abstract | Groundwater is one of the most valuable natural resources in the world (Jha
et al., 2007). However, it is not an unlimited resource; therefore
understanding groundwater potential is crucial to ensure its sustainable use.
The aim of the current study is to propose and verify new artificial
intelligence methods for the spatial prediction of groundwater spring
potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran.
These methods are new hybrids of an adaptive neuro-fuzzy inference system
(ANFIS) and five metaheuristic algorithms, namely invasive weed optimization
(IWO), differential evolution (DE), firefly algorithm (FA), particle swarm
optimization (PSO), and the bees algorithm (BA). A total of 2463 spring
locations were identified and collected, and then divided randomly into two
subsets: 70 % (1725 locations) were used for training models and the
remaining 30 % (738 spring locations) were utilized for evaluating the
models. A total of 13 groundwater conditioning factors were prepared for
modeling, namely the slope degree, slope aspect, altitude, plan curvature,
stream power index (SPI), topographic wetness index (TWI), terrain roughness
index (TRI), distance from fault, distance from river, land use/land cover,
rainfall, soil order, and lithology. In the next step, the step-wise
assessment ratio analysis (SWARA) method was applied to quantify the degree
of relevance of these groundwater conditioning factors. The global
performance of these derived models was assessed using the area under the
curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were
carried out to check and confirm the best model to use in this study. The
result showed that all models have a high prediction performance; however,
the ANFIS–DE model has the highest prediction capability (AUC = 0.875),
followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO
model (0.865), and the ANFIS–BA model (0.839). The results of this research
can be useful for decision makers responsible for the sustainable management
of groundwater resources. |
---|---|
AbstractList | Groundwater is one of the most valuable natural resources in the world (Jha
et al., 2007). However, it is not an unlimited resource; therefore
understanding groundwater potential is crucial to ensure its sustainable use.
The aim of the current study is to propose and verify new artificial
intelligence methods for the spatial prediction of groundwater spring
potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran.
These methods are new hybrids of an adaptive neuro-fuzzy inference system
(ANFIS) and five metaheuristic algorithms, namely invasive weed optimization
(IWO), differential evolution (DE), firefly algorithm (FA), particle swarm
optimization (PSO), and the bees algorithm (BA). A total of 2463 spring
locations were identified and collected, and then divided randomly into two
subsets: 70 % (1725 locations) were used for training models and the
remaining 30 % (738 spring locations) were utilized for evaluating the
models. A total of 13 groundwater conditioning factors were prepared for
modeling, namely the slope degree, slope aspect, altitude, plan curvature,
stream power index (SPI), topographic wetness index (TWI), terrain roughness
index (TRI), distance from fault, distance from river, land use/land cover,
rainfall, soil order, and lithology. In the next step, the step-wise
assessment ratio analysis (SWARA) method was applied to quantify the degree
of relevance of these groundwater conditioning factors. The global
performance of these derived models was assessed using the area under the
curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were
carried out to check and confirm the best model to use in this study. The
result showed that all models have a high prediction performance; however,
the ANFIS–DE model has the highest prediction capability (AUC = 0.875),
followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO
model (0.865), and the ANFIS–BA model (0.839). The results of this research
can be useful for decision makers responsible for the sustainable management
of groundwater resources. Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht-Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS-DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS-IWO model, the ANFIS-FA model (0.873), the ANFIS-PSO model (0.865), and the ANFIS-BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources. Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources. |
Audience | Academic |
Author | Khosravi, Khabat Panahi, Mahdi Tien Bui, Dieu |
Author_xml | – sequence: 1 givenname: Khabat orcidid: 0000-0001-5773-4003 surname: Khosravi fullname: Khosravi, Khabat – sequence: 2 givenname: Mahdi orcidid: 0000-0001-7601-9208 surname: Panahi fullname: Panahi, Mahdi – sequence: 3 givenname: Dieu surname: Tien Bui fullname: Tien Bui, Dieu |
BookMark | eNp9ks9u1DAQxiNUJNrCA3CzxIlDiu3ETnysKv6sVKkShbM1sSdbrzZxsB1g9xV4aZxdRFmEkC3ZGv2-zzPjuSjORj9iUbxk9EowVb95wBhLzsu6aVjJKWufFOdM0qZsVNWe_XF_VlzEuKGUt63k58WP-wmSgy2ZAlpnkvMj8T1ZBz-P9hskDCROwY1rMvmE4wEdYJqWSAcRLckCyNvClNxXJCPOwZf9vN_viBt7DDgaJHEXEw4ZtGTABA8ZcjE5Q3xWDW4Py8PPi6c9bCO--HVeFp_fvf1086G8vXu_urm-LUFQmcpaKGotKGmUEtSgYKjqXlGkWCFXolWYi-sY9FLWbddwSTlaCQ3UnFsB1WWxOvpaDxudqxsg7LQHpw8BH9YaQk5ui1rRBhStRSc5r6lVUImWYWNYRQ00nc1er45eU_BfZoxJb_wcxpy-5iw3WTLRikdqDdk0t8WnAGZw0ehrIWrGhZQ8U1f_oPKyODiT_7t3OX4ieH0iyEzC72kNc4x6df_xlGVH1gQfY8D-d-GM6mWE9DJCmnO9jJBeRihrmr80xqXDV-XE3PY_yp-2Us8H |
CitedBy_id | crossref_primary_10_1061__ASCE_HE_1943_5584_0002223 crossref_primary_10_1080_10106049_2022_2142964 crossref_primary_10_1007_s11356_023_26769_w crossref_primary_10_1016_j_asr_2024_03_038 crossref_primary_10_1016_j_gsf_2020_07_012 crossref_primary_10_1007_s12665_024_11618_x crossref_primary_10_1016_j_envint_2022_107724 crossref_primary_10_1016_j_compag_2019_105041 crossref_primary_10_3390_rs14102429 crossref_primary_10_1007_s12665_021_09725_0 crossref_primary_10_1016_j_jhydrol_2020_124602 crossref_primary_10_2166_hydro_2024_328 crossref_primary_10_1007_s12145_021_00576_8 crossref_primary_10_1016_j_envc_2021_100278 crossref_primary_10_3390_w13050658 crossref_primary_10_3390_su14010148 crossref_primary_10_3390_app10072469 crossref_primary_10_1007_s42107_024_01192_9 crossref_primary_10_1016_j_jhydrol_2022_127963 crossref_primary_10_1016_j_chemolab_2024_105135 crossref_primary_10_1007_s12665_022_10593_5 crossref_primary_10_1007_s40808_022_01639_5 crossref_primary_10_3390_rs12172757 crossref_primary_10_1007_s11600_023_01238_7 crossref_primary_10_1016_j_jhydrol_2019_124498 crossref_primary_10_3389_fenvs_2021_753028 crossref_primary_10_1016_j_jclepro_2022_130407 crossref_primary_10_1080_10106049_2020_1870164 crossref_primary_10_1007_s12665_021_09455_3 crossref_primary_10_1016_j_envres_2023_117790 crossref_primary_10_1016_j_measurement_2020_107652 crossref_primary_10_1080_10106049_2021_2022011 crossref_primary_10_3390_hydrology10020036 crossref_primary_10_1080_19475705_2020_1833990 crossref_primary_10_1016_j_enceco_2025_02_012 crossref_primary_10_3390_su15032499 crossref_primary_10_1016_j_scitotenv_2020_136836 crossref_primary_10_3390_sym12111848 crossref_primary_10_1007_s11069_022_05603_5 crossref_primary_10_1016_j_jhydrol_2024_130946 crossref_primary_10_1111_gwat_13094 crossref_primary_10_2166_hydro_2019_037 crossref_primary_10_1016_j_scitotenv_2021_151055 crossref_primary_10_1080_10106049_2022_2086631 crossref_primary_10_1016_j_scitotenv_2021_149811 crossref_primary_10_1080_02626667_2020_1754419 crossref_primary_10_3390_w11091909 crossref_primary_10_1016_j_rsma_2021_101779 crossref_primary_10_1016_j_jhydrol_2022_127977 crossref_primary_10_1007_s00521_022_07112_9 crossref_primary_10_1016_j_gsf_2019_10_008 crossref_primary_10_1007_s11600_023_01053_0 crossref_primary_10_1007_s11269_021_02815_5 crossref_primary_10_1007_s40899_022_00775_1 crossref_primary_10_1016_j_jhydrol_2022_128150 crossref_primary_10_1007_s11069_022_05701_4 crossref_primary_10_1007_s11069_022_05248_4 crossref_primary_10_3390_sym12040604 crossref_primary_10_1111_gwat_12963 crossref_primary_10_1007_s12145_023_01209_y crossref_primary_10_1016_j_gsd_2021_100548 crossref_primary_10_1007_s10040_019_02017_9 crossref_primary_10_1016_j_gsd_2020_100529 crossref_primary_10_1080_17538947_2020_1718785 crossref_primary_10_2166_ws_2023_087 crossref_primary_10_3390_s19214636 crossref_primary_10_1007_s11269_020_02555_y crossref_primary_10_1007_s12040_019_1155_0 crossref_primary_10_1016_j_hydres_2023_11_002 crossref_primary_10_3390_rs15174202 crossref_primary_10_1007_s13201_025_02362_z crossref_primary_10_3390_app9183755 crossref_primary_10_1007_s00366_020_01003_0 crossref_primary_10_1080_10106049_2021_2007292 crossref_primary_10_3390_rs14081953 crossref_primary_10_1021_acsomega_2c06854 crossref_primary_10_1007_s13201_024_02301_4 crossref_primary_10_1016_j_gsd_2024_101223 crossref_primary_10_3390_ai5040098 crossref_primary_10_1016_j_jher_2021_07_003 crossref_primary_10_3390_rs12020266 crossref_primary_10_1155_2021_4758062 crossref_primary_10_1007_s12145_022_00857_w crossref_primary_10_1109_ACCESS_2024_3360337 crossref_primary_10_3390_rs13244966 crossref_primary_10_1007_s11356_021_15966_0 crossref_primary_10_3390_rs14215413 crossref_primary_10_1016_j_apm_2019_10_022 crossref_primary_10_1007_s11069_023_06060_4 crossref_primary_10_1016_j_scitotenv_2024_176024 crossref_primary_10_3390_app10020425 crossref_primary_10_1016_j_jenvman_2023_118790 crossref_primary_10_3390_rs11131589 crossref_primary_10_1016_j_jhydrol_2020_124774 crossref_primary_10_1016_j_clema_2024_100263 crossref_primary_10_1016_j_jobe_2023_105929 crossref_primary_10_2166_ws_2022_280 crossref_primary_10_1007_s12517_021_07324_8 crossref_primary_10_3390_w12102951 crossref_primary_10_1080_10106049_2020_1716396 crossref_primary_10_1080_10106049_2021_1939439 crossref_primary_10_1016_j_jhydrol_2020_125275 crossref_primary_10_1016_j_jhydrol_2022_128501 crossref_primary_10_3390_rs15010152 crossref_primary_10_1007_s00521_022_06891_5 crossref_primary_10_1016_j_jhydrol_2019_03_013 crossref_primary_10_1016_j_jhydrol_2020_125552 crossref_primary_10_3390_w11081596 crossref_primary_10_1016_j_scitotenv_2019_05_312 crossref_primary_10_1016_j_scitotenv_2021_145416 crossref_primary_10_1080_19942060_2024_2346221 crossref_primary_10_1108_FEBE_09_2021_0044 crossref_primary_10_3390_app9173495 crossref_primary_10_1007_s12665_020_08944_1 crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_3390_rs14030672 crossref_primary_10_1016_j_asoc_2020_106103 crossref_primary_10_1016_j_jhydrol_2023_129229 crossref_primary_10_2166_hydro_2019_127 crossref_primary_10_3390_rs15194761 crossref_primary_10_1007_s10668_024_04687_2 crossref_primary_10_1016_j_ejrh_2023_101385 crossref_primary_10_1080_02626667_2020_1828589 crossref_primary_10_3390_s19163590 crossref_primary_10_1016_j_jhydrol_2019_123981 crossref_primary_10_1016_j_jhydrol_2023_129100 crossref_primary_10_1016_j_sciaf_2025_e02616 crossref_primary_10_3390_rs14215515 crossref_primary_10_1016_j_envpol_2021_118385 crossref_primary_10_1016_j_scitotenv_2020_141565 crossref_primary_10_1016_j_matpr_2021_11_561 crossref_primary_10_1016_j_scitotenv_2019_07_203 crossref_primary_10_1016_j_chemosphere_2024_142859 crossref_primary_10_1039_D4TA00251B crossref_primary_10_1007_s12665_023_11250_1 crossref_primary_10_1016_j_gsf_2022_101456 |
Cites_doi | 10.1061/(ASCE)HE.1943-5584.0001398 10.1016/j.apm.2012.09.006 10.1186/2193-1801-3-394 10.1016/j.jhydrol.2012.03.031 10.1007/978-3-319-02720-3_6 10.1016/j.cageo.2010.04.004 10.1007/s00500-015-1896-x 10.1023/A:1008202821328 10.1109/ICNN.1995.488968 10.1016/j.geomorph.2004.06.010 10.1007/s00521-016-2666-0 10.1007/s10040-010-0631-z 10.1007/s10040-013-1089-6 10.1007/s40710-017-0248-5 10.1080/10106049.2014.966161 10.1016/j.jksus.2016.08.003 10.1007/s10040-005-0483-0 10.1007/s12517-012-0532-7 10.5194/nhess-5-853-2005 10.1016/j.catena.2017.05.034 10.1002/2015WR017349 10.1016/j.catena.2018.04.004 10.1007/s11069-012-0217-2 10.5194/hess-20-1405-2016 10.1007/s10661-015-5049-6 10.1007/s12517-013-0849-x 10.1016/j.jhydrol.2016.06.027 10.1080/01621459.1937.10503522 10.1007/s11069-016-2357-2 10.1007/s00704-015-1702-9 10.1016/j.geomorph.2017.12.008 10.1016/j.jhydrol.2013.09.034 10.1007/s13201-013-0127-9 10.1016/j.scitotenv.2018.01.266 10.1007/s12517-014-1668-4 10.1007/s11135-006-9018-6 10.1007/s12517-016-2385-y 10.4236/ijg.2014.51006 10.1016/j.jhydrol.2010.12.027 10.1007/s10346-011-0283-7 10.1007/s11269-006-9024-4 10.1109/TSMC.1985.6313399 10.1016/j.catena.2014.02.005 10.1016/j.ecoinf.2018.08.008 10.1016/j.jhydrol.2014.03.008 10.1016/j.jher.2017.11.004 10.1109/TEVC.2008.2009457 10.1016/j.jss.2010.07.032 10.1007/s12665-011-1092-y 10.1016/j.geomorph.2011.12.040 10.1007/s12665-012-1832-7 10.1016/j.swevo.2011.02.002 10.1016/j.jhydrol.2014.02.053 10.1016/j.neucom.2014.01.078 10.1007/s12665-013-2702-7 10.1007/s11269-014-0810-0 10.1016/j.scitotenv.2017.10.114 10.1016/j.ecoinf.2018.05.009 10.1016/j.catena.2015.10.010 10.1016/j.jhydrol.2011.10.010 10.1007/978-0-387-30164-8_630 10.1109/21.256541 10.1007/s11069-013-0728-5 10.1016/j.scitotenv.2017.09.262 10.1007/s100400050086 10.1016/S0167-9473(02)00147-0 10.1016/j.ecoinf.2006.07.003 10.1016/j.jhydrol.2011.05.015 10.1016/j.catena.2012.04.001 10.1007/s11069-013-0661-7 10.1016/j.knosys.2013.01.004 10.1016/j.envint.2013.11.019 10.1007/s10661-016-5665-9 10.1016/j.catena.2015.05.019 10.3390/insects4040646 10.1016/j.energy.2014.06.026 10.1023/B:NHAZ.0000007172.62651.2b 10.3846/jbem.2010.12 10.1007/s11069-011-9844-2 10.1007/s11269-015-1132-6 10.1080/19475705.2013.843206 10.1016/j.agrformet.2016.11.002 10.1016/j.jhydrol.2012.03.028 10.3846/20294913.2013.814606 10.1007/s12145-014-0145-7 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Copernicus GmbH 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/hess-22-4771-2018 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ, Directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 4792 |
ExternalDocumentID | oai_doaj_org_article_907a9045b62240d9a3581e7c130ca7bd A554125662 10_5194_hess_22_4771_2018 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS IPNFZ ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ~KM BBORY PMFND 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-a506t-4590dda96c9950ce51e94f90e0e3e29589e288b1af6648b72602ed6a7a422d5a3 |
IEDL.DBID | DOA |
ISSN | 1607-7938 1027-5606 |
IngestDate | Wed Aug 27 01:01:03 EDT 2025 Fri Jul 25 10:45:32 EDT 2025 Tue Jun 17 21:12:41 EDT 2025 Tue Jun 10 20:45:02 EDT 2025 Fri Jun 27 04:34:55 EDT 2025 Tue Jul 01 02:45:48 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a506t-4590dda96c9950ce51e94f90e0e3e29589e288b1af6648b72602ed6a7a422d5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5773-4003 0000-0001-7601-9208 |
OpenAccessLink | https://doaj.org/article/907a9045b62240d9a3581e7c130ca7bd |
PQID | 2102861585 |
PQPubID | 105724 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_907a9045b62240d9a3581e7c130ca7bd proquest_journals_2102861585 gale_infotracmisc_A554125662 gale_infotracacademiconefile_A554125662 gale_incontextgauss_ISR_A554125662 crossref_primary_10_5194_hess_22_4771_2018 crossref_citationtrail_10_5194_hess_22_4771_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-13 |
PublicationDateYYYYMMDD | 2018-09-13 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2018 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref94 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref53 doi: 10.1061/(ASCE)HE.1943-5584.0001398 – ident: ref62 – ident: ref1 doi: 10.1016/j.apm.2012.09.006 – ident: ref3 doi: 10.1186/2193-1801-3-394 – ident: ref91 – ident: ref42 doi: 10.1016/j.jhydrol.2012.03.031 – ident: ref10 doi: 10.1007/978-3-319-02720-3_6 – ident: ref86 doi: 10.1016/j.cageo.2010.04.004 – ident: ref49 doi: 10.1007/s00500-015-1896-x – ident: ref74 doi: 10.1023/A:1008202821328 – ident: ref36 doi: 10.1109/ICNN.1995.488968 – ident: ref8 doi: 10.1016/j.geomorph.2004.06.010 – ident: ref15 doi: 10.1007/s00521-016-2666-0 – ident: ref33 doi: 10.1007/s10040-010-0631-z – ident: ref67 doi: 10.1007/s10040-013-1089-6 – ident: ref59 doi: 10.1007/s40710-017-0248-5 – ident: ref72 – ident: ref63 doi: 10.1080/10106049.2014.966161 – ident: ref27 doi: 10.1016/j.jksus.2016.08.003 – ident: ref30 doi: 10.1007/s10040-005-0483-0 – ident: ref66 doi: 10.1007/s12517-012-0532-7 – ident: ref11 doi: 10.5194/nhess-5-853-2005 – ident: ref16 doi: 10.1016/j.catena.2017.05.034 – ident: ref70 doi: 10.1002/2015WR017349 – ident: ref60 doi: 10.1016/j.catena.2018.04.004 – ident: ref64 doi: 10.1007/s11069-012-0217-2 – ident: ref75 doi: 10.5194/hess-20-1405-2016 – ident: ref48 doi: 10.1007/s10661-015-5049-6 – ident: ref34 doi: 10.1007/s12517-013-0849-x – ident: ref14 doi: 10.1016/j.jhydrol.2016.06.027 – ident: ref24 doi: 10.1080/01621459.1937.10503522 – ident: ref38 doi: 10.1007/s11069-016-2357-2 – ident: ref58 doi: 10.1007/s00704-015-1702-9 – ident: ref61 doi: 10.1016/j.geomorph.2017.12.008 – ident: ref77 doi: 10.1016/j.jhydrol.2013.09.034 – ident: ref22 doi: 10.1007/s13201-013-0127-9 – ident: ref23 – ident: ref40 doi: 10.1016/j.scitotenv.2018.01.266 – ident: ref68 doi: 10.1007/s12517-014-1668-4 – ident: ref54 doi: 10.1007/s11135-006-9018-6 – ident: ref5 doi: 10.1007/s12517-016-2385-y – ident: ref25 doi: 10.4236/ijg.2014.51006 – ident: ref55 doi: 10.1016/j.jhydrol.2010.12.027 – ident: ref4 doi: 10.1007/s10346-011-0283-7 – ident: ref32 doi: 10.1007/s11269-006-9024-4 – ident: ref76 doi: 10.1109/TSMC.1985.6313399 – ident: ref85 doi: 10.1016/j.catena.2014.02.005 – ident: ref80 doi: 10.1016/j.ecoinf.2018.08.008 – ident: ref78 doi: 10.1016/j.jhydrol.2014.03.008 – ident: ref93 doi: 10.1016/j.jher.2017.11.004 – ident: ref18 doi: 10.1109/TEVC.2008.2009457 – ident: ref41 doi: 10.1016/j.jss.2010.07.032 – ident: ref52 doi: 10.1007/s12665-011-1092-y – ident: ref89 doi: 10.1016/j.geomorph.2011.12.040 – ident: ref88 doi: 10.1007/s12665-012-1832-7 – ident: ref19 doi: 10.1016/j.swevo.2011.02.002 – ident: ref50 doi: 10.1016/j.jhydrol.2014.02.053 – ident: ref83 – ident: ref87 – ident: ref94 doi: 10.1016/j.neucom.2014.01.078 – ident: ref43 doi: 10.1007/s12665-013-2702-7 – ident: ref20 doi: 10.1007/s11269-014-0810-0 – ident: ref29 doi: 10.1016/j.scitotenv.2017.10.114 – ident: ref51 doi: 10.1016/j.ecoinf.2018.05.009 – ident: ref69 doi: 10.1016/j.catena.2015.10.010 – ident: ref57 doi: 10.1016/j.jhydrol.2011.10.010 – ident: ref35 doi: 10.1007/978-0-387-30164-8_630 – ident: ref31 doi: 10.1109/21.256541 – ident: ref65 doi: 10.1007/s11069-013-0728-5 – ident: ref79 doi: 10.1016/j.scitotenv.2017.09.262 – ident: ref71 doi: 10.1007/s100400050086 – ident: ref9 doi: 10.1016/S0167-9473(02)00147-0 – ident: ref44 doi: 10.1016/j.ecoinf.2006.07.003 – ident: ref56 doi: 10.1016/j.jhydrol.2011.05.015 – ident: ref81 doi: 10.1016/j.catena.2012.04.001 – ident: ref84 – ident: ref90 doi: 10.1007/s11069-013-0661-7 – ident: ref7 doi: 10.1016/j.knosys.2013.01.004 – ident: ref21 doi: 10.1016/j.envint.2013.11.019 – ident: ref39 doi: 10.1007/s10661-016-5665-9 – ident: ref46 – ident: ref28 doi: 10.1016/j.catena.2015.05.019 – ident: ref92 doi: 10.3390/insects4040646 – ident: ref26 doi: 10.1016/j.energy.2014.06.026 – ident: ref17 doi: 10.1023/B:NHAZ.0000007172.62651.2b – ident: ref37 doi: 10.3846/jbem.2010.12 – ident: ref12 doi: 10.1007/s11069-011-9844-2 – ident: ref45 doi: 10.1007/s11269-015-1132-6 – ident: ref73 – ident: ref13 doi: 10.1080/19475705.2013.843206 – ident: ref82 doi: 10.1016/j.agrformet.2016.11.002 – ident: ref2 doi: 10.1016/j.jhydrol.2012.03.028 – ident: ref6 doi: 10.3846/20294913.2013.814606 – ident: ref47 doi: 10.1007/s12145-014-0145-7 |
SSID | ssj0028862 |
Score | 2.5719285 |
Snippet | Groundwater is one of the most valuable natural resources in the world (Jha
et al., 2007). However, it is not an unlimited resource; therefore
understanding... Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding... Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4771 |
SubjectTerms | Adaptive systems Algorithms Artificial intelligence Artificial neural networks Conditioning Curvature Distance Evolution Evolutionary algorithms Fuzzy logic Fuzzy systems Groundwater Groundwater management Groundwater potential Groundwater resources Heuristic methods Hybrids Inference Invasive plants Land cover Land use Lithology Locations (working) Mapping Mathematical models Modelling Moisture content Natural resources Observations Particle swarm optimization Rain Rainfall Rank tests Resource management Rivers Roughness Slopes Soil Spring Sustainability Sustainability management Sustainable use Swarm intelligence Training Water resources Wetness index |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA9696Av4ieunhJEEIRwbZqmzZPcyR2nD4ecHtxbmOZjV3DbunaRu3_Bf9qZNru4Dx7sUzthSSaZ-U1n8hvG3hZNo0BDLoILWigErKIJePAgK6AsfCRUR9UW5_rsUn2-Kq_SB7dfqaxyYxNHQ-07R9_IDyk0qdH91uWH_qegrlGUXU0tNO6yfTTBNQZf-8cn518utiFXXesp3ykrgb5dT3lNRC3qcIGWRGAkpqoqx71CXT_-8Uwjgf__zPToe04fsgcJNPKjScuP2J3QPmb3Uv_yxfUT9oc6C-NO4v2KEi-02LyLnK5stP43wskVnxKwvO8Gqg9C0SUQNcOckx_zHAcA_jz0ZP_4SHMp4vrm5pp_39wJ5BPtMwp6vgwDLMJ64nnmHY5aphudT9nl6cm3j2citVkQUGZ6EKo0mfdgtDOmzFwo82BUNFnIQhGkKWsTcB2bHKLWqm4qjIBk8BoqUFL6EopnbK_t2vCc8ajBR-pQJcEo5SOREeYqV05F6bQxM5Ztlti6xEFOrTB-WIxFSCuWtGKltKQVS1qZsffbIf1EwHGb8DHpbStI3Nnjg241t-koWpNVYBDJNprgjDdAFHChcujNHVSNn7E3pHVL7Bgtld_MYY3_8-nrhT1C8IWIUGs5Y--SUOxwBg7SbQZcByLU2pE82JHE4-t2X282l03mA-e03ewvbn_9kt2neVMBS14csL1htQ6vECUNzet0FP4CY78R-w priority: 102 providerName: ProQuest |
Title | Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization |
URI | https://www.proquest.com/docview/2102861585 https://doaj.org/article/907a9045b62240d9a3581e7c130ca7bd |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aH_RF_MTTegQRBCF0N5vNbh5b6VkFi1aLfQuz-egVvN3j2EPaf8F_2pndXOk9qC_CwcLdhL3MTGZ-Q5LfMPa6aBoFGnIRXNBCIWAVTcCFB1kBZeEjoTo6bXGsj07Vx7Py7EarLzoTNtIDj4rbw-INDOKORlPy8QaIsCtUDmOvg6rxFH0x522KqVRq1bUe9zllJTCn63E_E9GK2ptjBBFYgamqytFHqNvHjYw0EPf_KTwPOWf2gN1PYJHvj3_yIbsV2kfsbupbPr98zH5RR2H0IL5c0YYLKZl3kdNVjdb_RBi54uPGK192PZ0LQtEFECXDOaf85TkOAPx4WFLc4wO9pYjrq6tLfrG5C8hHumcU9HwRepiH9cjvzDsctUg3OZ-w09nht3dHIrVXEFBmuheqNJn3YLQzpsxcKPNgVDRZyEIRpClrE1CPTQ5Ra1U3FVY-MngNFSgpfQnFU7bTdm14xnjU4CN1ppJglPKRSAhzlSunonTamAnLNiq2LnGPUwuMHxZrELKKJatYKS1ZxZJVJuzt9ZDlSLzxN-EDstu1IHFmD1-gJ9nkSfZfnjRhr8jqllgxWjp2cw5rfM-Hryd2H0EXIkGt5YS9SUKxwxk4SLcYUA9EpLUlubslicvWbf-8cS6bwgbOieAeYsy6fP4_ZvSC3SPt0PGWvNhlO_1qHV4ihuqbKbtdz95P2Z2Dw-PPJ_ScffryfTosot9uYBx- |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWFrAQCAkpauI4TnxAqDyWXVp6gFbqzUxsZxeJTdJlV9X2L_Bf-I3M5LFiD_RWaU_JOKt4Xt_E9jeMvYjzXIKCKPDWq0AiYA1yj44HYQxJ7ApCdbTb4liNTuXns-Rsi_3pz8LQtso-JjaB2lWWvpHvU2mSYfrNkrf1eUBdo2h1tW-h0ZrFoV9dYMn26834A-r3pRDDjyfvR0HXVSCAJFSLQCY6dA60slonofVJ5LUsdOhDH3uhk0x7kWV5BIVSMstTBPzCOwUpSCFcAjE-9wa7KeNYk0dlw0_rAi_LVLu6KtIAkYRqV1ERI8n9KcatAOs-maYRWib1GPknDzbtAv6XFJpMN7zDbncQlR-0NnWXbfnyHtvpuqVPV_fZb-pjjHbL6zkt85BqeVVwOiBSugsEr3PeLvfyulrQbiQUnQERQUw4ZU3HcQDgz0FN0ZY3pJpBsby8XPEf_QlE3pJMo6DjM7-AqV-2rNK8wlGz7vzoA3Z6LdP_kG2XVekfMV4ocAX1wxKgpXQFUR9GMpJWFsIqrQcs7KfY2I7xnBpv_DRY-ZBWDGnFCGFIK4a0MmCv10Pqlu7jKuF3pLe1IDF1Nxeq-cR0jm90mIJG3JwrAk9OAxHO-dQidrCQ5m7AnpPWDXFxlLTZZwJL_J_xt6_mAKEe4k-lxIC96oSKCt_AQnd2AueB6Ls2JPc2JDFY2M3bvXGZLljhO61d6_HVt5-xndHJlyNzND4-3GW3aA5o60wU77HtxXzpnyA-W-RPG6fg7Pt1e-FfnsRMqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VVAJeuCMCBVYIhITkxl6v194HhFpK1FCouFX0bVnvJUGQOARbVfIL_BG_ws8wE9sRQaJvfUDKkz3ryJszs2eys2cIeRjnOddCR4EzTgQcCGuQO3A8HcY6ia1HVofVFodi_4i_PE6ON8jP9iwMllW2MXEZqG1h8D_yHqYmGSy_WdLzTVnEm73-s-m3ADtI4U5r206jhsiBm59A-vb96WAPfutHjPVffHi-HzQdBgKdhKIMeCJDa7UURsokNC6JnORehi50sWMyyaRjWZZH2gvBszwF8s-cFTrVnDGb6Biee45sZiJLWIds7vZfv_24SveyTNR7rSwNgFeIek8VGBPvjSCKBZAF8jSNAKfYceSPVXHZPOBfS8Ry3etfJr_aGavLXb5sV2W-bRZ_iUn-n1N6hVxq6Djdqf3nKtlwk2vkQtMZfjS_Tn5gz2bwUTqd4ZYWwpgWnuJhmIk9AaI-o_XWNp0WJVZegelYo-jFkCJDsBQGaPhYPcWVhS4FRANfLRZz-rk9bUlrQW0wtHTsSj1yVa2gTQsYNW7Oyt4gR2cyFzdJZ1JM3C1CvdDWY-8vpiXn1qPMY8QjbrhnRkjZJWELIGUadXdsMvJVQZaHmFOIOcWYQswpxFyXPFkNmdbSJqcZ7yIqV4aoSr68UMyGqglySoaplpAj5AKJopUaxfVcaoAnGZ3mtkseIKYV6o5MEG5DXcH3DN6_UztAa4FrC8G65HFj5At4A6ObcyIwDyhVtma5tWYJgdGs325hr5rADO-0wvzt02_fJ-fBGdSrweHBHXIRpwCrhKJ4i3TKWeXuAhUt83uNz1Py6ax94jf7Npll |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+groundwater+spring+potential+mapping+based+on+an+adaptive+neuro-fuzzy+inference+system+and+metaheuristic+optimization&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Khosravi%2C+Khabat&rft.au=Panahi%2C+Mahdi&rft.au=Tien+Bui%2C+Dieu&rft.date=2018-09-13&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=22&rft.issue=9&rft.spage=4771&rft.epage=4792&rft_id=info:doi/10.5194%2Fhess-22-4771-2018&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_22_4771_2018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |