Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization

Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligen...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 22; no. 9; pp. 4771 - 4792
Main Authors Khosravi, Khabat, Panahi, Mahdi, Tien Bui, Dieu
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 13.09.2018
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1607-7938
1027-5606
1607-7938
DOI10.5194/hess-22-4771-2018

Cover

Loading…
Abstract Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.
AbstractList Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.
Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht-Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS-DE model has the highest prediction capability (AUC  =  0.875), followed by the ANFIS-IWO model, the ANFIS-FA model (0.873), the ANFIS-PSO model (0.865), and the ANFIS-BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.
Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC  =  0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.
Audience Academic
Author Khosravi, Khabat
Panahi, Mahdi
Tien Bui, Dieu
Author_xml – sequence: 1
  givenname: Khabat
  orcidid: 0000-0001-5773-4003
  surname: Khosravi
  fullname: Khosravi, Khabat
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0001-7601-9208
  surname: Panahi
  fullname: Panahi, Mahdi
– sequence: 3
  givenname: Dieu
  surname: Tien Bui
  fullname: Tien Bui, Dieu
BookMark eNp9ks9u1DAQxiNUJNrCA3CzxIlDiu3ETnysKv6sVKkShbM1sSdbrzZxsB1g9xV4aZxdRFmEkC3ZGv2-zzPjuSjORj9iUbxk9EowVb95wBhLzsu6aVjJKWufFOdM0qZsVNWe_XF_VlzEuKGUt63k58WP-wmSgy2ZAlpnkvMj8T1ZBz-P9hskDCROwY1rMvmE4wEdYJqWSAcRLckCyNvClNxXJCPOwZf9vN_viBt7DDgaJHEXEw4ZtGTABA8ZcjE5Q3xWDW4Py8PPi6c9bCO--HVeFp_fvf1086G8vXu_urm-LUFQmcpaKGotKGmUEtSgYKjqXlGkWCFXolWYi-sY9FLWbddwSTlaCQ3UnFsB1WWxOvpaDxudqxsg7LQHpw8BH9YaQk5ui1rRBhStRSc5r6lVUImWYWNYRQ00nc1er45eU_BfZoxJb_wcxpy-5iw3WTLRikdqDdk0t8WnAGZw0ehrIWrGhZQ8U1f_oPKyODiT_7t3OX4ieH0iyEzC72kNc4x6df_xlGVH1gQfY8D-d-GM6mWE9DJCmnO9jJBeRihrmr80xqXDV-XE3PY_yp-2Us8H
CitedBy_id crossref_primary_10_1061__ASCE_HE_1943_5584_0002223
crossref_primary_10_1080_10106049_2022_2142964
crossref_primary_10_1007_s11356_023_26769_w
crossref_primary_10_1016_j_asr_2024_03_038
crossref_primary_10_1016_j_gsf_2020_07_012
crossref_primary_10_1007_s12665_024_11618_x
crossref_primary_10_1016_j_envint_2022_107724
crossref_primary_10_1016_j_compag_2019_105041
crossref_primary_10_3390_rs14102429
crossref_primary_10_1007_s12665_021_09725_0
crossref_primary_10_1016_j_jhydrol_2020_124602
crossref_primary_10_2166_hydro_2024_328
crossref_primary_10_1007_s12145_021_00576_8
crossref_primary_10_1016_j_envc_2021_100278
crossref_primary_10_3390_w13050658
crossref_primary_10_3390_su14010148
crossref_primary_10_3390_app10072469
crossref_primary_10_1007_s42107_024_01192_9
crossref_primary_10_1016_j_jhydrol_2022_127963
crossref_primary_10_1016_j_chemolab_2024_105135
crossref_primary_10_1007_s12665_022_10593_5
crossref_primary_10_1007_s40808_022_01639_5
crossref_primary_10_3390_rs12172757
crossref_primary_10_1007_s11600_023_01238_7
crossref_primary_10_1016_j_jhydrol_2019_124498
crossref_primary_10_3389_fenvs_2021_753028
crossref_primary_10_1016_j_jclepro_2022_130407
crossref_primary_10_1080_10106049_2020_1870164
crossref_primary_10_1007_s12665_021_09455_3
crossref_primary_10_1016_j_envres_2023_117790
crossref_primary_10_1016_j_measurement_2020_107652
crossref_primary_10_1080_10106049_2021_2022011
crossref_primary_10_3390_hydrology10020036
crossref_primary_10_1080_19475705_2020_1833990
crossref_primary_10_1016_j_enceco_2025_02_012
crossref_primary_10_3390_su15032499
crossref_primary_10_1016_j_scitotenv_2020_136836
crossref_primary_10_3390_sym12111848
crossref_primary_10_1007_s11069_022_05603_5
crossref_primary_10_1016_j_jhydrol_2024_130946
crossref_primary_10_1111_gwat_13094
crossref_primary_10_2166_hydro_2019_037
crossref_primary_10_1016_j_scitotenv_2021_151055
crossref_primary_10_1080_10106049_2022_2086631
crossref_primary_10_1016_j_scitotenv_2021_149811
crossref_primary_10_1080_02626667_2020_1754419
crossref_primary_10_3390_w11091909
crossref_primary_10_1016_j_rsma_2021_101779
crossref_primary_10_1016_j_jhydrol_2022_127977
crossref_primary_10_1007_s00521_022_07112_9
crossref_primary_10_1016_j_gsf_2019_10_008
crossref_primary_10_1007_s11600_023_01053_0
crossref_primary_10_1007_s11269_021_02815_5
crossref_primary_10_1007_s40899_022_00775_1
crossref_primary_10_1016_j_jhydrol_2022_128150
crossref_primary_10_1007_s11069_022_05701_4
crossref_primary_10_1007_s11069_022_05248_4
crossref_primary_10_3390_sym12040604
crossref_primary_10_1111_gwat_12963
crossref_primary_10_1007_s12145_023_01209_y
crossref_primary_10_1016_j_gsd_2021_100548
crossref_primary_10_1007_s10040_019_02017_9
crossref_primary_10_1016_j_gsd_2020_100529
crossref_primary_10_1080_17538947_2020_1718785
crossref_primary_10_2166_ws_2023_087
crossref_primary_10_3390_s19214636
crossref_primary_10_1007_s11269_020_02555_y
crossref_primary_10_1007_s12040_019_1155_0
crossref_primary_10_1016_j_hydres_2023_11_002
crossref_primary_10_3390_rs15174202
crossref_primary_10_1007_s13201_025_02362_z
crossref_primary_10_3390_app9183755
crossref_primary_10_1007_s00366_020_01003_0
crossref_primary_10_1080_10106049_2021_2007292
crossref_primary_10_3390_rs14081953
crossref_primary_10_1021_acsomega_2c06854
crossref_primary_10_1007_s13201_024_02301_4
crossref_primary_10_1016_j_gsd_2024_101223
crossref_primary_10_3390_ai5040098
crossref_primary_10_1016_j_jher_2021_07_003
crossref_primary_10_3390_rs12020266
crossref_primary_10_1155_2021_4758062
crossref_primary_10_1007_s12145_022_00857_w
crossref_primary_10_1109_ACCESS_2024_3360337
crossref_primary_10_3390_rs13244966
crossref_primary_10_1007_s11356_021_15966_0
crossref_primary_10_3390_rs14215413
crossref_primary_10_1016_j_apm_2019_10_022
crossref_primary_10_1007_s11069_023_06060_4
crossref_primary_10_1016_j_scitotenv_2024_176024
crossref_primary_10_3390_app10020425
crossref_primary_10_1016_j_jenvman_2023_118790
crossref_primary_10_3390_rs11131589
crossref_primary_10_1016_j_jhydrol_2020_124774
crossref_primary_10_1016_j_clema_2024_100263
crossref_primary_10_1016_j_jobe_2023_105929
crossref_primary_10_2166_ws_2022_280
crossref_primary_10_1007_s12517_021_07324_8
crossref_primary_10_3390_w12102951
crossref_primary_10_1080_10106049_2020_1716396
crossref_primary_10_1080_10106049_2021_1939439
crossref_primary_10_1016_j_jhydrol_2020_125275
crossref_primary_10_1016_j_jhydrol_2022_128501
crossref_primary_10_3390_rs15010152
crossref_primary_10_1007_s00521_022_06891_5
crossref_primary_10_1016_j_jhydrol_2019_03_013
crossref_primary_10_1016_j_jhydrol_2020_125552
crossref_primary_10_3390_w11081596
crossref_primary_10_1016_j_scitotenv_2019_05_312
crossref_primary_10_1016_j_scitotenv_2021_145416
crossref_primary_10_1080_19942060_2024_2346221
crossref_primary_10_1108_FEBE_09_2021_0044
crossref_primary_10_3390_app9173495
crossref_primary_10_1007_s12665_020_08944_1
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_3390_rs14030672
crossref_primary_10_1016_j_asoc_2020_106103
crossref_primary_10_1016_j_jhydrol_2023_129229
crossref_primary_10_2166_hydro_2019_127
crossref_primary_10_3390_rs15194761
crossref_primary_10_1007_s10668_024_04687_2
crossref_primary_10_1016_j_ejrh_2023_101385
crossref_primary_10_1080_02626667_2020_1828589
crossref_primary_10_3390_s19163590
crossref_primary_10_1016_j_jhydrol_2019_123981
crossref_primary_10_1016_j_jhydrol_2023_129100
crossref_primary_10_1016_j_sciaf_2025_e02616
crossref_primary_10_3390_rs14215515
crossref_primary_10_1016_j_envpol_2021_118385
crossref_primary_10_1016_j_scitotenv_2020_141565
crossref_primary_10_1016_j_matpr_2021_11_561
crossref_primary_10_1016_j_scitotenv_2019_07_203
crossref_primary_10_1016_j_chemosphere_2024_142859
crossref_primary_10_1039_D4TA00251B
crossref_primary_10_1007_s12665_023_11250_1
crossref_primary_10_1016_j_gsf_2022_101456
Cites_doi 10.1061/(ASCE)HE.1943-5584.0001398
10.1016/j.apm.2012.09.006
10.1186/2193-1801-3-394
10.1016/j.jhydrol.2012.03.031
10.1007/978-3-319-02720-3_6
10.1016/j.cageo.2010.04.004
10.1007/s00500-015-1896-x
10.1023/A:1008202821328
10.1109/ICNN.1995.488968
10.1016/j.geomorph.2004.06.010
10.1007/s00521-016-2666-0
10.1007/s10040-010-0631-z
10.1007/s10040-013-1089-6
10.1007/s40710-017-0248-5
10.1080/10106049.2014.966161
10.1016/j.jksus.2016.08.003
10.1007/s10040-005-0483-0
10.1007/s12517-012-0532-7
10.5194/nhess-5-853-2005
10.1016/j.catena.2017.05.034
10.1002/2015WR017349
10.1016/j.catena.2018.04.004
10.1007/s11069-012-0217-2
10.5194/hess-20-1405-2016
10.1007/s10661-015-5049-6
10.1007/s12517-013-0849-x
10.1016/j.jhydrol.2016.06.027
10.1080/01621459.1937.10503522
10.1007/s11069-016-2357-2
10.1007/s00704-015-1702-9
10.1016/j.geomorph.2017.12.008
10.1016/j.jhydrol.2013.09.034
10.1007/s13201-013-0127-9
10.1016/j.scitotenv.2018.01.266
10.1007/s12517-014-1668-4
10.1007/s11135-006-9018-6
10.1007/s12517-016-2385-y
10.4236/ijg.2014.51006
10.1016/j.jhydrol.2010.12.027
10.1007/s10346-011-0283-7
10.1007/s11269-006-9024-4
10.1109/TSMC.1985.6313399
10.1016/j.catena.2014.02.005
10.1016/j.ecoinf.2018.08.008
10.1016/j.jhydrol.2014.03.008
10.1016/j.jher.2017.11.004
10.1109/TEVC.2008.2009457
10.1016/j.jss.2010.07.032
10.1007/s12665-011-1092-y
10.1016/j.geomorph.2011.12.040
10.1007/s12665-012-1832-7
10.1016/j.swevo.2011.02.002
10.1016/j.jhydrol.2014.02.053
10.1016/j.neucom.2014.01.078
10.1007/s12665-013-2702-7
10.1007/s11269-014-0810-0
10.1016/j.scitotenv.2017.10.114
10.1016/j.ecoinf.2018.05.009
10.1016/j.catena.2015.10.010
10.1016/j.jhydrol.2011.10.010
10.1007/978-0-387-30164-8_630
10.1109/21.256541
10.1007/s11069-013-0728-5
10.1016/j.scitotenv.2017.09.262
10.1007/s100400050086
10.1016/S0167-9473(02)00147-0
10.1016/j.ecoinf.2006.07.003
10.1016/j.jhydrol.2011.05.015
10.1016/j.catena.2012.04.001
10.1007/s11069-013-0661-7
10.1016/j.knosys.2013.01.004
10.1016/j.envint.2013.11.019
10.1007/s10661-016-5665-9
10.1016/j.catena.2015.05.019
10.3390/insects4040646
10.1016/j.energy.2014.06.026
10.1023/B:NHAZ.0000007172.62651.2b
10.3846/jbem.2010.12
10.1007/s11069-011-9844-2
10.1007/s11269-015-1132-6
10.1080/19475705.2013.843206
10.1016/j.agrformet.2016.11.002
10.1016/j.jhydrol.2012.03.028
10.3846/20294913.2013.814606
10.1007/s12145-014-0145-7
ContentType Journal Article
Copyright COPYRIGHT 2018 Copernicus GmbH
2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Copernicus GmbH
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.5194/hess-22-4771-2018
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ, Directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 4792
ExternalDocumentID oai_doaj_org_article_907a9045b62240d9a3581e7c130ca7bd
A554125662
10_5194_hess_22_4771_2018
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
IPNFZ
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
~KM
BBORY
PMFND
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-a506t-4590dda96c9950ce51e94f90e0e3e29589e288b1af6648b72602ed6a7a422d5a3
IEDL.DBID DOA
ISSN 1607-7938
1027-5606
IngestDate Wed Aug 27 01:01:03 EDT 2025
Fri Jul 25 10:45:32 EDT 2025
Tue Jun 17 21:12:41 EDT 2025
Tue Jun 10 20:45:02 EDT 2025
Fri Jun 27 04:34:55 EDT 2025
Tue Jul 01 02:45:48 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-4590dda96c9950ce51e94f90e0e3e29589e288b1af6648b72602ed6a7a422d5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5773-4003
0000-0001-7601-9208
OpenAccessLink https://doaj.org/article/907a9045b62240d9a3581e7c130ca7bd
PQID 2102861585
PQPubID 105724
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_907a9045b62240d9a3581e7c130ca7bd
proquest_journals_2102861585
gale_infotracmisc_A554125662
gale_infotracacademiconefile_A554125662
gale_incontextgauss_ISR_A554125662
crossref_primary_10_5194_hess_22_4771_2018
crossref_citationtrail_10_5194_hess_22_4771_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-13
PublicationDateYYYYMMDD 2018-09-13
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-13
  day: 13
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2018
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref50
ref94
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref53
  doi: 10.1061/(ASCE)HE.1943-5584.0001398
– ident: ref62
– ident: ref1
  doi: 10.1016/j.apm.2012.09.006
– ident: ref3
  doi: 10.1186/2193-1801-3-394
– ident: ref91
– ident: ref42
  doi: 10.1016/j.jhydrol.2012.03.031
– ident: ref10
  doi: 10.1007/978-3-319-02720-3_6
– ident: ref86
  doi: 10.1016/j.cageo.2010.04.004
– ident: ref49
  doi: 10.1007/s00500-015-1896-x
– ident: ref74
  doi: 10.1023/A:1008202821328
– ident: ref36
  doi: 10.1109/ICNN.1995.488968
– ident: ref8
  doi: 10.1016/j.geomorph.2004.06.010
– ident: ref15
  doi: 10.1007/s00521-016-2666-0
– ident: ref33
  doi: 10.1007/s10040-010-0631-z
– ident: ref67
  doi: 10.1007/s10040-013-1089-6
– ident: ref59
  doi: 10.1007/s40710-017-0248-5
– ident: ref72
– ident: ref63
  doi: 10.1080/10106049.2014.966161
– ident: ref27
  doi: 10.1016/j.jksus.2016.08.003
– ident: ref30
  doi: 10.1007/s10040-005-0483-0
– ident: ref66
  doi: 10.1007/s12517-012-0532-7
– ident: ref11
  doi: 10.5194/nhess-5-853-2005
– ident: ref16
  doi: 10.1016/j.catena.2017.05.034
– ident: ref70
  doi: 10.1002/2015WR017349
– ident: ref60
  doi: 10.1016/j.catena.2018.04.004
– ident: ref64
  doi: 10.1007/s11069-012-0217-2
– ident: ref75
  doi: 10.5194/hess-20-1405-2016
– ident: ref48
  doi: 10.1007/s10661-015-5049-6
– ident: ref34
  doi: 10.1007/s12517-013-0849-x
– ident: ref14
  doi: 10.1016/j.jhydrol.2016.06.027
– ident: ref24
  doi: 10.1080/01621459.1937.10503522
– ident: ref38
  doi: 10.1007/s11069-016-2357-2
– ident: ref58
  doi: 10.1007/s00704-015-1702-9
– ident: ref61
  doi: 10.1016/j.geomorph.2017.12.008
– ident: ref77
  doi: 10.1016/j.jhydrol.2013.09.034
– ident: ref22
  doi: 10.1007/s13201-013-0127-9
– ident: ref23
– ident: ref40
  doi: 10.1016/j.scitotenv.2018.01.266
– ident: ref68
  doi: 10.1007/s12517-014-1668-4
– ident: ref54
  doi: 10.1007/s11135-006-9018-6
– ident: ref5
  doi: 10.1007/s12517-016-2385-y
– ident: ref25
  doi: 10.4236/ijg.2014.51006
– ident: ref55
  doi: 10.1016/j.jhydrol.2010.12.027
– ident: ref4
  doi: 10.1007/s10346-011-0283-7
– ident: ref32
  doi: 10.1007/s11269-006-9024-4
– ident: ref76
  doi: 10.1109/TSMC.1985.6313399
– ident: ref85
  doi: 10.1016/j.catena.2014.02.005
– ident: ref80
  doi: 10.1016/j.ecoinf.2018.08.008
– ident: ref78
  doi: 10.1016/j.jhydrol.2014.03.008
– ident: ref93
  doi: 10.1016/j.jher.2017.11.004
– ident: ref18
  doi: 10.1109/TEVC.2008.2009457
– ident: ref41
  doi: 10.1016/j.jss.2010.07.032
– ident: ref52
  doi: 10.1007/s12665-011-1092-y
– ident: ref89
  doi: 10.1016/j.geomorph.2011.12.040
– ident: ref88
  doi: 10.1007/s12665-012-1832-7
– ident: ref19
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref50
  doi: 10.1016/j.jhydrol.2014.02.053
– ident: ref83
– ident: ref87
– ident: ref94
  doi: 10.1016/j.neucom.2014.01.078
– ident: ref43
  doi: 10.1007/s12665-013-2702-7
– ident: ref20
  doi: 10.1007/s11269-014-0810-0
– ident: ref29
  doi: 10.1016/j.scitotenv.2017.10.114
– ident: ref51
  doi: 10.1016/j.ecoinf.2018.05.009
– ident: ref69
  doi: 10.1016/j.catena.2015.10.010
– ident: ref57
  doi: 10.1016/j.jhydrol.2011.10.010
– ident: ref35
  doi: 10.1007/978-0-387-30164-8_630
– ident: ref31
  doi: 10.1109/21.256541
– ident: ref65
  doi: 10.1007/s11069-013-0728-5
– ident: ref79
  doi: 10.1016/j.scitotenv.2017.09.262
– ident: ref71
  doi: 10.1007/s100400050086
– ident: ref9
  doi: 10.1016/S0167-9473(02)00147-0
– ident: ref44
  doi: 10.1016/j.ecoinf.2006.07.003
– ident: ref56
  doi: 10.1016/j.jhydrol.2011.05.015
– ident: ref81
  doi: 10.1016/j.catena.2012.04.001
– ident: ref84
– ident: ref90
  doi: 10.1007/s11069-013-0661-7
– ident: ref7
  doi: 10.1016/j.knosys.2013.01.004
– ident: ref21
  doi: 10.1016/j.envint.2013.11.019
– ident: ref39
  doi: 10.1007/s10661-016-5665-9
– ident: ref46
– ident: ref28
  doi: 10.1016/j.catena.2015.05.019
– ident: ref92
  doi: 10.3390/insects4040646
– ident: ref26
  doi: 10.1016/j.energy.2014.06.026
– ident: ref17
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– ident: ref37
  doi: 10.3846/jbem.2010.12
– ident: ref12
  doi: 10.1007/s11069-011-9844-2
– ident: ref45
  doi: 10.1007/s11269-015-1132-6
– ident: ref73
– ident: ref13
  doi: 10.1080/19475705.2013.843206
– ident: ref82
  doi: 10.1016/j.agrformet.2016.11.002
– ident: ref2
  doi: 10.1016/j.jhydrol.2012.03.028
– ident: ref6
  doi: 10.3846/20294913.2013.814606
– ident: ref47
  doi: 10.1007/s12145-014-0145-7
SSID ssj0028862
Score 2.5719285
Snippet Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding...
Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding...
Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4771
SubjectTerms Adaptive systems
Algorithms
Artificial intelligence
Artificial neural networks
Conditioning
Curvature
Distance
Evolution
Evolutionary algorithms
Fuzzy logic
Fuzzy systems
Groundwater
Groundwater management
Groundwater potential
Groundwater resources
Heuristic methods
Hybrids
Inference
Invasive plants
Land cover
Land use
Lithology
Locations (working)
Mapping
Mathematical models
Modelling
Moisture content
Natural resources
Observations
Particle swarm optimization
Rain
Rainfall
Rank tests
Resource management
Rivers
Roughness
Slopes
Soil
Spring
Sustainability
Sustainability management
Sustainable use
Swarm intelligence
Training
Water resources
Wetness index
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA9696Av4ieunhJEEIRwbZqmzZPcyR2nD4ecHtxbmOZjV3DbunaRu3_Bf9qZNru4Dx7sUzthSSaZ-U1n8hvG3hZNo0BDLoILWigErKIJePAgK6AsfCRUR9UW5_rsUn2-Kq_SB7dfqaxyYxNHQ-07R9_IDyk0qdH91uWH_qegrlGUXU0tNO6yfTTBNQZf-8cn518utiFXXesp3ykrgb5dT3lNRC3qcIGWRGAkpqoqx71CXT_-8Uwjgf__zPToe04fsgcJNPKjScuP2J3QPmb3Uv_yxfUT9oc6C-NO4v2KEi-02LyLnK5stP43wskVnxKwvO8Gqg9C0SUQNcOckx_zHAcA_jz0ZP_4SHMp4vrm5pp_39wJ5BPtMwp6vgwDLMJ64nnmHY5aphudT9nl6cm3j2citVkQUGZ6EKo0mfdgtDOmzFwo82BUNFnIQhGkKWsTcB2bHKLWqm4qjIBk8BoqUFL6EopnbK_t2vCc8ajBR-pQJcEo5SOREeYqV05F6bQxM5Ztlti6xEFOrTB-WIxFSCuWtGKltKQVS1qZsffbIf1EwHGb8DHpbStI3Nnjg241t-koWpNVYBDJNprgjDdAFHChcujNHVSNn7E3pHVL7Bgtld_MYY3_8-nrhT1C8IWIUGs5Y--SUOxwBg7SbQZcByLU2pE82JHE4-t2X282l03mA-e03ewvbn_9kt2neVMBS14csL1htQ6vECUNzet0FP4CY78R-w
  priority: 102
  providerName: ProQuest
Title Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
URI https://www.proquest.com/docview/2102861585
https://doaj.org/article/907a9045b62240d9a3581e7c130ca7bd
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aH_RF_MTTegQRBCF0N5vNbh5b6VkFi1aLfQuz-egVvN3j2EPaf8F_2pndXOk9qC_CwcLdhL3MTGZ-Q5LfMPa6aBoFGnIRXNBCIWAVTcCFB1kBZeEjoTo6bXGsj07Vx7Py7EarLzoTNtIDj4rbw-INDOKORlPy8QaIsCtUDmOvg6rxFH0x522KqVRq1bUe9zllJTCn63E_E9GK2ptjBBFYgamqytFHqNvHjYw0EPf_KTwPOWf2gN1PYJHvj3_yIbsV2kfsbupbPr98zH5RR2H0IL5c0YYLKZl3kdNVjdb_RBi54uPGK192PZ0LQtEFECXDOaf85TkOAPx4WFLc4wO9pYjrq6tLfrG5C8hHumcU9HwRepiH9cjvzDsctUg3OZ-w09nht3dHIrVXEFBmuheqNJn3YLQzpsxcKPNgVDRZyEIRpClrE1CPTQ5Ra1U3FVY-MngNFSgpfQnFU7bTdm14xnjU4CN1ppJglPKRSAhzlSunonTamAnLNiq2LnGPUwuMHxZrELKKJatYKS1ZxZJVJuzt9ZDlSLzxN-EDstu1IHFmD1-gJ9nkSfZfnjRhr8jqllgxWjp2cw5rfM-Hryd2H0EXIkGt5YS9SUKxwxk4SLcYUA9EpLUlubslicvWbf-8cS6bwgbOieAeYsy6fP4_ZvSC3SPt0PGWvNhlO_1qHV4ihuqbKbtdz95P2Z2Dw-PPJ_ScffryfTosot9uYBx-
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWFrAQCAkpauI4TnxAqDyWXVp6gFbqzUxsZxeJTdJlV9X2L_Bf-I3M5LFiD_RWaU_JOKt4Xt_E9jeMvYjzXIKCKPDWq0AiYA1yj44HYQxJ7ApCdbTb4liNTuXns-Rsi_3pz8LQtso-JjaB2lWWvpHvU2mSYfrNkrf1eUBdo2h1tW-h0ZrFoV9dYMn26834A-r3pRDDjyfvR0HXVSCAJFSLQCY6dA60slonofVJ5LUsdOhDH3uhk0x7kWV5BIVSMstTBPzCOwUpSCFcAjE-9wa7KeNYk0dlw0_rAi_LVLu6KtIAkYRqV1ERI8n9KcatAOs-maYRWib1GPknDzbtAv6XFJpMN7zDbncQlR-0NnWXbfnyHtvpuqVPV_fZb-pjjHbL6zkt85BqeVVwOiBSugsEr3PeLvfyulrQbiQUnQERQUw4ZU3HcQDgz0FN0ZY3pJpBsby8XPEf_QlE3pJMo6DjM7-AqV-2rNK8wlGz7vzoA3Z6LdP_kG2XVekfMV4ocAX1wxKgpXQFUR9GMpJWFsIqrQcs7KfY2I7xnBpv_DRY-ZBWDGnFCGFIK4a0MmCv10Pqlu7jKuF3pLe1IDF1Nxeq-cR0jm90mIJG3JwrAk9OAxHO-dQidrCQ5m7AnpPWDXFxlLTZZwJL_J_xt6_mAKEe4k-lxIC96oSKCt_AQnd2AueB6Ls2JPc2JDFY2M3bvXGZLljhO61d6_HVt5-xndHJlyNzND4-3GW3aA5o60wU77HtxXzpnyA-W-RPG6fg7Pt1e-FfnsRMqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VVAJeuCMCBVYIhITkxl6v194HhFpK1FCouFX0bVnvJUGQOARbVfIL_BG_ws8wE9sRQaJvfUDKkz3ryJszs2eys2cIeRjnOddCR4EzTgQcCGuQO3A8HcY6ia1HVofVFodi_4i_PE6ON8jP9iwMllW2MXEZqG1h8D_yHqYmGSy_WdLzTVnEm73-s-m3ADtI4U5r206jhsiBm59A-vb96WAPfutHjPVffHi-HzQdBgKdhKIMeCJDa7UURsokNC6JnORehi50sWMyyaRjWZZH2gvBszwF8s-cFTrVnDGb6Biee45sZiJLWIds7vZfv_24SveyTNR7rSwNgFeIek8VGBPvjSCKBZAF8jSNAKfYceSPVXHZPOBfS8Ry3etfJr_aGavLXb5sV2W-bRZ_iUn-n1N6hVxq6Djdqf3nKtlwk2vkQtMZfjS_Tn5gz2bwUTqd4ZYWwpgWnuJhmIk9AaI-o_XWNp0WJVZegelYo-jFkCJDsBQGaPhYPcWVhS4FRANfLRZz-rk9bUlrQW0wtHTsSj1yVa2gTQsYNW7Oyt4gR2cyFzdJZ1JM3C1CvdDWY-8vpiXn1qPMY8QjbrhnRkjZJWELIGUadXdsMvJVQZaHmFOIOcWYQswpxFyXPFkNmdbSJqcZ7yIqV4aoSr68UMyGqglySoaplpAj5AKJopUaxfVcaoAnGZ3mtkseIKYV6o5MEG5DXcH3DN6_UztAa4FrC8G65HFj5At4A6ObcyIwDyhVtma5tWYJgdGs325hr5rADO-0wvzt02_fJ-fBGdSrweHBHXIRpwCrhKJ4i3TKWeXuAhUt83uNz1Py6ax94jf7Npll
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+groundwater+spring+potential+mapping+based+on+an+adaptive+neuro-fuzzy+inference+system+and+metaheuristic+optimization&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Khosravi%2C+Khabat&rft.au=Panahi%2C+Mahdi&rft.au=Tien+Bui%2C+Dieu&rft.date=2018-09-13&rft.issn=1607-7938&rft.eissn=1607-7938&rft.volume=22&rft.issue=9&rft.spage=4771&rft.epage=4792&rft_id=info:doi/10.5194%2Fhess-22-4771-2018&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_hess_22_4771_2018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon