Encapsulation nanotechnologies

This unique and comprehensive book covers all the recent physical, chemical, and mechanical advancements in encapsulation nanotechnologies. Encapsulation is prevalent in the evolutionary processes of nature, where nature protects the materials from the environment by engulfing them in a suitable she...

Full description

Saved in:
Bibliographic Details
Main Author Mittal, Vikas
Format eBook Book
LanguageEnglish
Published Salem, Mass Wiley 2013
Hoboken, N.J Scrivener Publishing
John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons
Scrivener Pub
Edition1
Subjects
Online AccessGet full text
ISBN9781118344552
1118344553
DOI10.1002/9781118729175

Cover

Table of Contents:
  • Cover -- Half Title page -- Title page -- Copyright page -- Preface -- List of Contributors -- Chapter 1: Copper Encapsulation of Multi-Walled Carbon Nanotubes -- 1.1 Introduction -- 1.2 Preparation of Copper Encapsulated CNTs -- References -- Chapter 2: Novel Nanocomposites: Intercalation of Ionically Conductive Polymers into Molybdic Acid -- 2.1 Introduction -- 2.2 Experimental -- 2.3 Intercalation into Molybdic Acid -- 2.4 Preparation of Polymer-Lithium Complexes -- 2.5 Instrumentation -- 2.6 Results and Discussion -- 2.7 Conclusions -- Acknowledgements -- References -- Chapter 3: Fluid-Bed Technology for Encapsulation and Coating Purposes -- 3.1 Introduction -- 3.2 Principles of Fluidization -- 3.3 Classification of Powders -- 3.4 Fluidized Bed Coaters -- 3.5 Fluid-Bed Coating and Encapsulation Processes -- 3.6 The Design, Optimization and Scale-Up of the Coating Process and the Apparatus -- 3.7 Numerical Modeling of Fluid-Bed Coating -- References -- Chapter 4: Use of Electrospinning for Encapsulation -- 4.1 Introduction -- 4.2 Electrospun Structures for the Encapsulation of Bioactive Substances in the Food Area -- 4.3 Electrospun Encapsulation Structures for Biomedical Applications -- 4.4 Other Uses of Electrospinning for Encapsulation -- 4.5 Outlook and Conclusions -- References -- Chapter 5: Microencapsulation by Interfacial Polymerization -- 5.1 Introduction -- 5.2 Generalities -- 5.3 Encapsulation by Heterophase Polymerization -- 5.4 Microencapsulation by Polyaddition &amp -- Polycondensation Interfacial -- 5.5 Microencapsulation by In Situ Polymerization -- 5.6 Conclusion -- References -- Chapter 6: Encapsulation of Silica Particles by a Thin Shell of Poly(Methyl) Methacrylate -- 6.1 Introduction -- 6.2 Synthesis of Silica (Nano)Particles and Their Surface Modification -- 6.3 Encapsulation of Silica Particles in a Thin PMMA Shell
  • 11.3 Encapsulation Procedures and Proton Conduction Performance -- 11.4 New Activities and Development Trends -- References -- Chapter 12: Encapsulation Methods with Supercritical Carbon Dioxide: Basis and Applications -- 12.1 Introduction -- 12.2 Supercritical Fluids - Properties -- 12.3 Particle Engineering and Encapsulation with Supercritical Fluids -- References -- Index
  • 6.4 Summary -- References -- Chapter 7: Organic Thin-Film Transistors with Solution-Processed Encapsulation -- 7.1 Introduction -- 7.2 Environment-Induced Degradations of OTFTs -- 7.3 Encapsulation of OTFTs -- 7.4 Summary and Outlook -- References -- Chapter 8: Tunable Encapsulation Property of Amphiphilic Polymer Based on Hyperbranched Polyethylenimine -- 8.1 Introduction -- 8.2 Synthesis of PEI-CAMs -- 8.3 Unimolecularity versus Aggregate of PEI-CAMs -- 8.4 Host-Guest Chemistry of PEI-CAMs -- 8.5 Charge Selective Encapsulation and Separation -- 8.6 Recognition and Separation of Anionic-Anionic Mixtures by Core Engineering of a CAM -- 8.7 Modulation of the Guest Release of a CAM -- 8.8 Concluding Remarks -- Acknowledgements -- References -- Chapter 9: Polymer Layers by Initiated CVD for Thin Film Gas Barrier Encapsulation -- 9.1 Introduction -- 9.2 Initiated CVD Polymerization -- 9.3 Coating by Initiated CVD -- 9.4 Advantages of iCVD in Hybrid Multilayer Gas Barriers -- 9.5 Specific Requirements for the Use in Hybrid Multilayers -- 9.6 Multilayer Gas Barriers Containing Polymers by iCVD -- 9.7 Upscaling and Utilization -- References -- Chapter 10: Polymeric Hollow Particles for Encapsulation of Chemical Molecules -- 10.1 Introduction -- 10.2 Colloidosome Approach -- 10.3 Internal Phase Separation/Precipitation Approach -- 10.4 Self-Assembly of Amphiphilic Copolymers (Copolymer Vesicles) -- 10.5 Layer-by-Layer (L-b-L) Deposition -- 10.6 Unimolecular Micelles Approach -- 10.7 Heterophase Polymerization -- 10.8 Key Design Features for Applications of Hollow Polymer Particles -- 10.9 Conclusions -- References -- Chapter 11: Protic Ionic Liquids Confinement in Macro, Meso and Microporous Materials for Proton Conduction -- 11.1 Introduction -- 11.2 Structure and Properties of Materials for Proton Conduction