Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi
Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volati...
Saved in:
Published in | Microbiology spectrum Vol. 11; no. 6; p. e0051923 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
12.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacillus velezensis
HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens:
Alternaria alternata
,
Cladosporium cladosporioides
,
Penicillium expansum
,
Monilinia fructicola
, and
Fusarium oxysporum
. Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against
Alternaria alternata
and
Cladosporium cladosporioides
. This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in
Bacillus
spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities.
The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR)
Bacillus velezensis
HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the
Bacillus velezensis
HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. |
---|---|
AbstractList | The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.IMPORTANCEThe current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides . This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. ABSTRACT Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata, Cladosporium cladosporioides, Penicillium expansum, Monilinia fructicola, and Fusarium oxysporum. Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides. This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides . This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata, Cladosporium cladosporioides, Penicillium expansum, Monilinia fructicola, and Fusarium oxysporum. Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides. This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals. |
Author | Zaid, Doaa S. Li, Wenya Yang, Siyu Li, Youguo |
Author_xml | – sequence: 1 givenname: Doaa S. orcidid: 0000-0003-3123-4873 surname: Zaid fullname: Zaid, Doaa S. organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China, Desert Research Center , Ain Shams, Egypt – sequence: 2 givenname: Wenya surname: Li fullname: Li, Wenya organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China – sequence: 3 givenname: Siyu surname: Yang fullname: Yang, Siyu organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China – sequence: 4 givenname: Youguo orcidid: 0000-0003-3123-4873 surname: Li fullname: Li, Youguo organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37811935$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEUhkeoiJbSB2CDvGQzwdd4ZoVKBTRSBRtYW2c8duJoxh5sTxA8Ek-JkzSoRQLJku1z-fz76H9enfngTVW9JHhBCG3epMnoHOdxgbEgbU3Zk-qCkqWoMW_l2YPzeXWV0hZjTAgWVNBn1TmTDSEtExfVr1VvfHbWacgueBQs6lwAnd3OIB3GKcy-T_vwO9BuGOaEdmYwP41PLqHbT9cM5Q3kUupzdN2cDcoBuZxQP8OAjLVFZUKQ0DSAz2gdw_e8QVMMY8gmIvD9_sFDexgQrMH5lNEUUq43EHcmZdMjO_u1e1E9tTAkc3W_X1ZfP7z_cnNb333-uLq5vqtBYJFrDRYvCW9prw1vy9Jcd3JJDV22wlrRAWesb0pCasuJbLCUutcNW3KsccfZZbU6cvsAWzVFN0L8oQI4dQiEuFYQs9ODUaxQuYEeUwGc6h4Mo9ZIQSnpyqUrrLdH1jR3oymKyjdheAR9nPFuo9ZhpwiWRBCJC-H1PSGGb3MZhxpd0mYo0zRhToo2kjdMUL4XvjiWQhqp2oY5-jKnglJ7w6iTYdTBMIqy0vDqobo_sk72KAXyWKBjSCkaq7TLB6MUsW74L5r81XmC_7vnN6dA6Sc |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_104019 crossref_primary_10_1007_s11274_025_04267_0 crossref_primary_10_3390_agronomy15030706 crossref_primary_10_3390_ma17102301 crossref_primary_10_1002_bbb_2743 crossref_primary_10_3390_molecules29245922 |
Cites_doi | 10.1016/j.postharvbio.2020.111208 10.14202/vetworld.2019.1877-1883 10.3390/microorganisms8050678 10.7717/peerj.6064 10.1016/j.jbiotec.2016.04.014 10.3390/agronomy10091312 10.2298/PIF1404257V 10.1038/s41598-022-19515-8 10.3390/toxins14120827 10.3389/fmicb.2022.987844 10.1002/mbo3.813 10.1016/j.fbio.2020.100633 10.2116/analsci.20P022 10.1038/s41598-022-22354-2 10.1016/j.bbrc.2015.04.039 10.1016/j.micres.2021.126726 10.1371/journal.pone.0210035 10.15446/abc.v25n1.76867 10.29321/MAJ.2018.000149 10.3389/fpls.2018.01473 10.2323/jgam.2023.02.002 10.1016/j.tifs.2019.02.053 10.3389/fmicb.2021.773092 10.3390/ijerph182413147 10.5423/PPJ.SI.02.2013.0021 10.3390/molecules24061046 10.3389/fmicb.2017.00171 10.1016/B978-0-12-411552-1.00005-3 10.3389/fmicb.2021.745766 10.22161/ijeab/2.1.9 10.3389/fmicb.2019.02559 10.3389/fphys.2017.00667 10.3389/fpubh.2016.00148 10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F 10.3389/fmicb.2020.618415 10.31830/2348-7542.2021.012 10.3389/fmicb.2022.893393 10.5423/PPJ.OA.04.2017.0073 10.1515/bmc-2021-0019 10.1007/BF01731581 10.3390/molecules24071411 10.3389/fpls.2022.990392 10.1111/1541-4337.12562 10.3945/an.112.002154 10.1016/j.pmpp.2022.101887 10.2144/04371RR03 10.3390/microorganisms8010077 10.14202/vetworld.2017.393-397 10.3389/fmicb.2018.00491 10.1007/s13205-018-1443-4 10.1007/s00203-022-03351-5 10.3390/microorganisms8071037 10.1111/j.1574-6976.2009.00204.x 10.3389/fpls.2016.02068 10.1016/j.bbagen.2012.05.004 10.1111/1750-3841.15816 10.3390/toxins14050309 10.1007/s13314-020-00395-8 10.3390/jof8101021 10.3390/agriculture11111046 10.1016/j.isci.2021.102511 10.3389/fmicb.2018.00924 10.3389/fsufs.2021.667546 10.1007/s40626-020-00173-y 10.1016/j.fm.2017.01.006 10.3389/fsufs.2020.00016 10.3390/antiox11020404 10.1016/j.biocontrol.2016.11.007 10.1016/j.micres.2017.06.007 10.21608/ejp.2019.123827 10.3390/microorganisms7090314 10.1080/14756360009040693 10.1007/s00122-019-03462-6 10.21203/rs.3.rs-2871463/v1 10.3389/fmicb.2019.03099 10.3390/pr8121674 10.4315/0362-028X.JFP-13-072 10.1002/ps.6078 10.1021/acs.jafc.0c07375 10.3390/ijms221910529 10.1038/s41598-023-30253-3 10.1016/j.micres.2018.01.002 10.1093/pcp/pcr006 10.1093/aob/mcy108 10.3390/ijms19020443 10.1016/j.sciaf.2020.e00366 10.1016/j.scienta.2019.108957 10.1016/j.jbiotec.2017.06.1206 10.1111/1751-7915.13645 10.3389/fsufs.2021.679830 10.3390/stresses3010018 10.1016/j.pestbp.2019.02.019 10.1007/s11274-017-2364-9 10.3389/fpls.2016.01387 10.55003/cast.2022.03.23.005 10.1007/s002530051285 10.1590/0001-3765201720160908 10.1021/acsomega.1c00816 10.1111/tpj.12666 10.3389/fmicb.2019.02610 10.1021/acs.jafc.6b00104 10.1186/1475-2859-8-63 10.1007/s00253-016-7584-7 10.1094/MPMI-20-6-0619 10.1186/s12870-017-1083-6 10.3389/fmicb.2020.00741 10.1111/j.1365-2672.1994.tb01646.x 10.3389/fmicb.2020.560406 10.1128/spectrum.02169-21 10.3390/toxins11110664 10.3390/toxins13100730 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Zaid et al. Copyright © 2023 Zaid et al. 2023 Zaid et al. |
Copyright_xml | – notice: Copyright © 2023 Zaid et al. – notice: Copyright © 2023 Zaid et al. 2023 Zaid et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1128/spectrum.00519-23 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2165-0497 |
Editor | Reverchon, Frédérique |
Editor_xml | – sequence: 1 givenname: Frédérique surname: Reverchon fullname: Reverchon, Frédérique |
ExternalDocumentID | oai_doaj_org_article_32e24ead025a42cdae32fe75221bdaeb PMC10715170 00519-23 37811935 10_1128_spectrum_00519_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Research and development Program of Hongshan Laboratory grantid: 2021hszd015 – fundername: Key research and development program of Hubei province grantid: 2022BBA0037 – fundername: ; grantid: 2022BBA0037 – fundername: ; grantid: 2021hszd015 |
GroupedDBID | 53G AAGFI AAUOK AAYXX ADBBV AGVNZ ALMA_UNASSIGNED_HOLDINGS CITATION EJD FF~ FRP GROUPED_DOAJ H13 M~E OK1 RPM RSF NPM UCJ 7X8 5PM |
ID | FETCH-LOGICAL-a505t-caf061492dce49e49c4cb762e2695ff5ba433d8e497cf4178077cdc83640c0b43 |
IEDL.DBID | AAUOK |
ISSN | 2165-0497 |
IngestDate | Wed Aug 27 01:23:44 EDT 2025 Thu Aug 21 18:37:35 EDT 2025 Sun Aug 24 03:29:07 EDT 2025 Tue Dec 12 18:27:40 EST 2023 Thu Apr 03 06:54:09 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 00:42:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | volatile and semi-volatile organic compounds (VOCs) Bacillus velezensis HNA3 post-harvested phytopathogen gene expression (RT-qPCR) fatty acid methyl ester (FAME) gas chromatography-mass spectrometry (GC-MS) |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a505t-caf061492dce49e49c4cb762e2695ff5ba433d8e497cf4178077cdc83640c0b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0003-3123-4873 |
OpenAccessLink | https://journals.asm.org/doi/10.1128/spectrum.00519-23 |
PMID | 37811935 |
PQID | 2874835244 |
PQPubID | 23479 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32e24ead025a42cdae32fe75221bdaeb pubmedcentral_primary_oai_pubmedcentral_nih_gov_10715170 proquest_miscellaneous_2874835244 asm2_journals_10_1128_spectrum_00519_23 pubmed_primary_37811935 crossref_citationtrail_10_1128_spectrum_00519_23 crossref_primary_10_1128_spectrum_00519_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology spectrum |
PublicationTitleAbbrev | Spectrum |
PublicationTitleAlternate | Microbiol Spectr |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_110_2 e_1_3_4_114_2 e_1_3_4_61_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_65_2 e_1_3_4_46_2 e_1_3_4_88_2 e_1_3_4_72_2 e_1_3_4_95_2 e_1_3_4_106_2 e_1_3_4_30_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_99_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_113_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_101_2 Abdullah Q (e_1_3_4_104_2) 2016; 01 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_105_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_109_2 e_1_3_4_12_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_77_2 e_1_3_4_35_2 e_1_3_4_39_2 e_1_3_4_112_2 e_1_3_4_9_2 e_1_3_4_116_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_29_2 Selvamani K (e_1_3_4_82_2) 2020; 8 e_1_3_4_100_2 e_1_3_4_93_2 e_1_3_4_74_2 e_1_3_4_51_2 e_1_3_4_108_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_17_2 Xu L (e_1_3_4_102_2) 2013; 32 Alsohaili SA (e_1_3_4_103_2) 2018; 11 e_1_3_4_111_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_115_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_107_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_56_2 e_1_3_4_18_2 Xu, L, Wang, L, Chen, L, Xie, F, Li, Y (B101) 2013; 32 Al-Jaradi, A, Al-Mahmooli, I, Janke, R, Maharachchikumbura, S, Al-Saady, N, Al-Sadi, AM (B104) 2018; 6 Raza, W, Wei, Z, Ling, N, Huang, Q, Shen, Q (B64) 2016; 227 Kim, SY, Song, H, Sang, MK, Weon, H-Y, Song, J (B21) 2017; 259 Odelade, KA, Oladeji, OS (B35) 2020; 8 Thibane, VS, Ells, R, Hugo, A, Albertyn, J, van Rensburg, WJJ, Van Wyk, PWJ, Kock, JLF, Pohl, CH (B88) 2012; 1820 Idris, ESE, Iglesias, DJ, Talon, M, Borriss, R (B71) 2007; 20 Zhang, P, Jin, T, Kumar Sahu, S, Xu, J, Shi, Q, Liu, H, Wang, Y (B73) 2019; 24 Fiddaman, PJ, Rossall, S (B67) 1994; 76 Gao, Z, Zhang, B, Liu, H, Han, J, Zhang, Y (B76) 2017; 105 Rajaofera, MJN, Wang, Y, Dahar, GY, Jin, P, Fan, L, Xu, L, Liu, W, Miao, W (B86) 2019; 156 Li, H, Yu, T (B44) 2001; 81 Kondo, T, Sibponkrung, S, Hironao, KY, Tittabutr, P, Boonkerd, N, Ishikawa, S, Ashida, H, Teaumroong, N, Yoshida, KI (B56) 2023 Pelagio-Flores, R, Ortíz-Castro, R, Méndez-Bravo, A, Macías-Rodríguez, L, López-Bucio, J (B95) 2011; 52 Gotor-Vila, A, Teixidó, N, Di Francesco, A, Usall, J, Ugolini, L, Torres, R, Mari, M (B65) 2017; 64 Rosalba Troncoso, R, Martín Ernesto Tiznado, H (B9) 2014 Keerthana, S, Rajeswari, E, Jayamani, P (B82) 2018; 105 Lim, JH, Kim, SD (B20) 2013; 29 Wang, WY, Kong, WL, Liao, YCZ, Zhu, LH (B98) 2022; 8 Yu, Z, Han, C, Yu, B, Zhao, J, Yan, Y, Huang, S, Liu, C, Xiang, W (B107) 2020; 8 Zhu, M, He, Y, Li, Y, Ren, T, Liu, H, Huang, J, Jiang, D, Hsiang, T, Zheng, L (B31) 2020; 10 Ku, Y, Xu, G, Tian, X, Xie, H, Yang, X, Cao, C, Chen, Y (B110) 2018; 13 Shah, A, Nazari, M, Antar, M, Msimbira, LA, Naamala, J, Lyu, D, Rabileh, M, Zajonc, J, Smith, DL (B1) 2021; 5 Qin, Q, Fan, Y, Jia, Q, Duan, S, Liu, F, Jia, B, Wang, G, Guo, W, Wang, C (B37) 2022; 14 Alsohaili, SA, Bani-Hasan, BM (B102) 2018; 11 Cozzolino, ME, Distel, JS, García, PA, Mascotti, ML, Ayub, MJ, Benazzi, LM, Di Masi, SN, Silva, PG (B47) 2020; 261 Cheffi, M, Bouket, AC, Alenezi, FN, Luptakova, L, Belka, M, Vallat, A, Rateb, ME, Tounsi, S, Triki, MA, Belbahri, L (B49) 2019; 7 Corsetti, A, Gobbetti, M, Rossi, J, Damiani, P (B90) 1998; 50 Bano, A, Gupta, A, Prusty, MR, Kumar, M (B6) 2023; 3 Backer, R, Rokem, JS, Ilangumaran, G, Lamont, J, Praslickova, D, Ricci, E, Subramanian, S, Smith, DL (B15) 2018; 871 Wang, Z, Zhong, T, Chen, X, Yang, B, Du, M, Wang, K, Zalán, Z, Kan, J (B91) 2021; 69 Lee, J-H, Lee, J (B93) 2010; 34 David, E, Niculescu, VC (B74) 2021; 18 Mailafia, S, Okoh, GR, Olabode, HOK, Osanupin, R (B36) 2017; 10 Liu, WH, Chen, FF, Wang, CE, Fu, HH, Fang, XQ, Ye, JR, Shi, JY (B72) 2019; 10 Slavin, JL, Lloyd, B (B4) 2012; 3 Hu, J, Dong, B, Wang, D, Meng, H, Li, X, Zhou, H (B78) 2022; 205 Ma, M, de Silva, DD, Taylor, PWJ (B13) 2020; 15 Thomas, G, Withall, D, Birkett, M (B54) 2020; 13 Timm, CM, Lloyd, EP, Egan, A, Mariner, R, Karig, D (B114) 2018; 9 Radhakrishnan, R, Hashem, A, Abd Allah, EF (B16) 2017; 8 Niemhom, N, Kittiwongwattana, C (B100) 2022; 23 Perincherry, L, Lalak-Kańczugowska, J, Stępień, Ł (B39) 2019; 11 Saleh, I, Al-Thani, R (B40) 2019; 12 Abdel-Hamid, MS, Fouda, A, El-Ela, HKA, El-Ghamry, AA, Hassan, SED (B70) 2021; 12 Pinto, MEA, Araújo, SG, Morais, MI, Sá, NP, Lima, CM, Rosa, CA, Siqueira, EP, Johann, S, Lima, LARS (B85) 2017; 89 Abdullah, Q, Mahmoud, A, Al-Harethi, A (B103) 2016; 01 Pradhan, PC, Mukhopadhyay, A, Kumar, R, Kundu, A, Patanjali, N, Dutta, A, Kamil, D, Bag, TK, Aggarwal, R, Bharadwaj, C, Singh, PK, Singh, A (B84) 2022; 13 Kumar Paul, GK, Mahmud, S, Dutta, AK, Sarkar, S, Laboni, AA, Hossain, M, Nagata, A, Karmaker, P, Razu, MH, Kazi, T, Uddin, M, Zaman, S, Islam, MS, Khan, M, Abu Saleh, M (B30); 12 Sharma, A, Shukla, A, Gupta, M (B112) 2023; 13 Vågsholm, I, Arzoomand, NS, Boqvist, S (B2) 2020; 4 Aoudou, Y, Phalone, MEG (B106) 2016; 2 Nan, M, Xue, H, Bi, Y (B8) 2022; 14 Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Yoshida, K, Teaumroong, N (B34) 2020; 8 Bavaresco, LG, Osco, LP, Araujo, ASF, Mendes, LW, Bonifacio, A, Araújo, FF (B60) 2020; 32 Teixeira, GM, Mosela, M, Nicoletto, MLA, Ribeiro, RA, Hungria, M, Youssef, K, Higashi, AY, Mian, S, Ferreira, AS, Gonçalves, LSA, Pereira, U de P, de Oliveira, AG (B57) 2020; 11 Fincheira, P, Quiroz, A (B61) 2018; 208 Rouissi, W, Ugolini, L, Martini, C, Lazzeri, L, Mari, M (B108) 2013; 76 Fincheira, P, Quiroz, A, Tortella, G, Diez, MC, Rubilar, O (B62) 2021; 247 Arguelles-Arias, A, Ongena, M, Halimi, B, Lara, Y, Brans, A, Joris, B, Fickers, P (B25) 2009; 8 Papoutsis, K, Mathioudakis, MM, Hasperué, JH, Ziogas, V (B41) 2019; 86 Chen, J, Hu, L, Chen, N, Jia, R, Ma, Q, Wang, Y (B83) 2021; 12 Abdelkhalek, A, Behiry, SI, Al-Askar, AA (B11) 2020; 10 Jiao, J, Ma, Y, Chen, S, Liu, C, Song, Y, Qin, Y, Yuan, C, Liu, Y (B96) 2016; 7 Lim, SM, Yoon, MY, Choi, GJ, Choi, YH, Jang, KS, Shin, TS, Park, HW, Yu, NH, Kim, YH, Kim, JC (B46) 2017; 33 Vishwakarma, K, Kumar, N, Shandilya, C, Mohapatra, S, Bhayana, S, Varma, A (B53) 2020; 11 Tahir, HAS, Gu, Q, Wu, H, Raza, W, Safdar, A, Huang, Z, Rajer, FU, Gao, X (B111) 2017; 17 Saleh, AE, Ul-Hassan, Z, Zeidan, R, Al-Shamary, N, Al-Yafei, T, Alnaimi, H, Higazy, NS, Migheli, Q, Jaoua, S (B68) 2021; 6 Yu, L, Qiao, N, Zhao, J, Zhang, H, Tian, F, Zhai, Q, Chen, W (B43) 2020; 36 Rabbee, MF, Ali, MS, Choi, J, Hwang, BS, Jeong, SC, Baek, K-H (B55) 2019; 24 B77 Park, YS, Dutta, S, Ann, M, Raaijmakers, JM, Park, K (B113) 2015; 461 Kashyap, AS, Manzar, N, Nebapure, SM, Rajawat, MVS, Deo, MM, Singh, JP, Kesharwani, AK, Singh, RP, Dubey, SC, Singh, D (B80) 2022; 11 Calvo, H, Mendiara, I, Arias, E, Gracia, AP, Blanco, D, Venturini, ME (B51) 2020; 166 Ghazala, I, Chiab, N, Saidi, MN, Gargouri-Bouzid, R (B24) 2022; 121 Cesa-Luna, C, Baez, A, Quintero-Hernández, V, De la Cruz-Enríquez, J, Castañeda-Antonio, MD, Muñoz-Rojas, J (B32) 2020; 25 Mateus, JR, Dal’Rio, I, Jurelevicius, D, da Mota, FF, Marques, JM, Ramos, RTJ, da Costa da Silva, AL, Gagliardi, PR, Seldin, L (B28) 2021; 11 Akosah, YA, Vologin, SG, Lutfullin, MT, Hadieva, GF, Scyganova, NF, Zamalieva, FF, Mardanova, AM (B12) 2021; 22 Oliveira Lino, L, Pacheco, I, Mercier, V, Faoro, F, Bassi, D, Bornard, I, Quilot-Turion, B (B14) 2016; 64 Mosela, M, Andrade, G, Massucato, LR, de Araújo Almeida, SR, Nogueira, AF, de Lima Filho, RB, Zeffa, DM, Mian, S, Higashi, AY, Shimizu, GD, Teixeira, GM, Branco, KS, Faria, MV, Giacomin, RM, Scapim, CA, Gonçalves, LSA (B19) 2022; 12 Mohamad, OAA, Li, L, Ma, J-B, Hatab, S, Xu, L, Guo, J-W, Rasulov, BA, Liu, Y-H, Hedlund, BP, Li, WJ (B79) 2018; 9 Slathia, S, Sharma, YP, Hakla, HR, Urfan, M, Yadav, NS, Pal, S (B42) 2021; 5 Olanrewaju, OS, Glick, BR, Babalola, OO (B58) 2017; 33 Raza, W, Wang, J, Wu, Y, Ling, N, Wei, Z, Huang, Q, Shen, Q (B66) 2016; 100 Ueta, I, Takenaka, R, Fujimura, K, Yoshimura, T, Narukami, S, Mochizuki, S, Maeda, T (B75) 2020; 36 Kimura, M (B105) 1980; 16 Li, MW, Wang, Z, Jiang, B, Kaga, A, Wong, FL, Zhang, G, Han, T, Chung, G, Nguyen, H, Lam, HM (B109) 2020; 133 Dheda, K, Huggett, JF, Bustin, SA, Johnson, MA, Rook, G, Zumla, A (B33) 2004; 37 Liu, Y, Galani Yamdeu, JH, Gong, YY, Orfila, C (B7) 2020; 19 Vico, I, Duduk, N, Vasic, M, Nikolic, M (B10) 2014; 29 Xu, BH, Ye, ZW, Zheng, QW, Wei, T, Lin, JF, Guo, LQ (B29) 2018; 8 Toral, L, Rodríguez, M, Martínez-Checa, F, Montaño, A, Cortés-Delgado, A, Smolinska, A, Llamas, I, Sampedro, I (B50) 2021; 12 Ramírez, V, Munive, JA, Cortes, L, Muñoz-Rojas, J, Portillo, R, Baez, A (B26) 2020; 11 Zhou, L, Wang, J, Wu, F, Yin, C, Kim, KH, Zhang, Y (B27) 2022; 13 Suzuki, K, Shono, F, Kai, H, Uno, T, Uyeda, M (B89) 2010; 15 Tahir, HAS, Gu, Q, Wu, H, Raza, W, Hanif, A, Wu, L, Colman, MV, Gao, X (B59) 2017; 8 Saeed, Q, Xiukang, W, Haider, FU, Kučerik, J, Mumtaz, MZ, Holatko, J, Naseem, M, Kintl, A, Ejaz, M, Naveed, M, Brtnicky, M, Mustafa, A (B52) 2021; 22 de Oliveira Filho, JG, Silva, G da C, Cipriano, L, Gomes, M, Egea, MB (B5) 2021; 86 Attia, MF, Abada, KA, Naffa, AMAK, Boghdady, SF (B45) 2019; 47 Selvamani, K, Tadigiri, S, Das, D (B81) 2020; 8 Ling, L, Luo, H, Yang, C, Wang, Y, Cheng, W, Pang, M, Jiang, K (B92) 2022; 13 Wu, Y, Zhou, J, Li, C, Ma, Y (B22) 2019; 8 Bailly, A, Groenhagen, U, Schulz, S, Geisler, M, Eberl, L, Weisskopf, L (B94) 2014; 80 Zaid, DS, Cai, S, Hu, C, Li, Z, Li, Y (B17) 2022; 10 Li, M, Guo, R, Yu, F, Chen, X, Zhao, H, Li, H, Wu, J (B69) 2018; 19 Sharifi, R, Ryu, CM (B63) 2018; 122 Fincheira, P, Parra, L, Mutis, A, Parada, M, Quiroz, A (B23) 2017; 203 Li, X, Wang, X, Shi, X, Wang, B, Li, M, Wang, Q, Zhang, S (B87) 2020; 8 Bayisa, RA, Cho, JY, Kim, KY (B48) 2021; 77 Miljaković, D, Marinković, J, Balešević-Tubić, S (B18) 2020; 8 Reva, ON, Swanevelder, DZH, Mwita, LA, Mwakilili, AD, Muzondiwa, D, Joubert, M, Chan, WY, Lutz, S, Ahrens, CH, Avdeeva, LV, Kharkhota, MA, Tibuhwa, D, Lyantagaye, S, Vater, J, Borriss, R, Meijer, J (B99) 2019; 10 Habib, W, Masiello, M, Chahine-Tsouvalakis, H, Al Moussawi, Z, Saab, C, Tawk, ST, Piemontese, L, Solfrizzo, M, Logrieco, AF, Moretti, A, Susca, A (B38) 2021; 13 Lei, C, Teng, Y, He, L, Sayed, M, Mu, J, Xu, F, Zhang, X, Kumar, A, Sundaram, K, Sriwastva, MK, Zhang, L, Chen, SY, Feng, W, Zhang, S, Yan, J, Park, JW, Merchant, ML, Zhang, X, Zhang, HG (B115) 2021; 24 Ma, Y, Jiao, J, Fan, X, Sun, H, Zhang, Y, Jiang, J, Liu, C (B97) 2016; 7 Nicolopoulou-Stamati, P, Maipas, S, Kotampasi, C, Stamatis, P, Hens, L (B3) 2016; 4 |
References_xml | – ident: e_1_3_4_52_2 doi: 10.1016/j.postharvbio.2020.111208 – ident: e_1_3_4_41_2 doi: 10.14202/vetworld.2019.1877-1883 – ident: e_1_3_4_35_2 doi: 10.3390/microorganisms8050678 – ident: e_1_3_4_105_2 doi: 10.7717/peerj.6064 – ident: e_1_3_4_65_2 doi: 10.1016/j.jbiotec.2016.04.014 – ident: e_1_3_4_12_2 doi: 10.3390/agronomy10091312 – ident: e_1_3_4_11_2 doi: 10.2298/PIF1404257V – ident: e_1_3_4_20_2 doi: 10.1038/s41598-022-19515-8 – ident: e_1_3_4_38_2 doi: 10.3390/toxins14120827 – ident: e_1_3_4_93_2 doi: 10.3389/fmicb.2022.987844 – ident: e_1_3_4_23_2 doi: 10.1002/mbo3.813 – ident: e_1_3_4_44_2 doi: 10.1016/j.fbio.2020.100633 – ident: e_1_3_4_76_2 doi: 10.2116/analsci.20P022 – ident: e_1_3_4_31_2 doi: 10.1038/s41598-022-22354-2 – ident: e_1_3_4_114_2 doi: 10.1016/j.bbrc.2015.04.039 – ident: e_1_3_4_63_2 doi: 10.1016/j.micres.2021.126726 – ident: e_1_3_4_111_2 doi: 10.1371/journal.pone.0210035 – ident: e_1_3_4_33_2 doi: 10.15446/abc.v25n1.76867 – ident: e_1_3_4_83_2 doi: 10.29321/MAJ.2018.000149 – ident: e_1_3_4_16_2 doi: 10.3389/fpls.2018.01473 – ident: e_1_3_4_57_2 doi: 10.2323/jgam.2023.02.002 – ident: e_1_3_4_42_2 doi: 10.1016/j.tifs.2019.02.053 – ident: e_1_3_4_51_2 doi: 10.3389/fmicb.2021.773092 – ident: e_1_3_4_75_2 doi: 10.3390/ijerph182413147 – volume: 01 start-page: 36 year: 2016 ident: e_1_3_4_104_2 article-title: Isolation and identification of fungal post-harvest rot of some fruits in Yemen publication-title: PSM Microbiol – ident: e_1_3_4_21_2 doi: 10.5423/PPJ.SI.02.2013.0021 – ident: e_1_3_4_56_2 doi: 10.3390/molecules24061046 – ident: e_1_3_4_60_2 doi: 10.3389/fmicb.2017.00171 – ident: e_1_3_4_10_2 doi: 10.1016/B978-0-12-411552-1.00005-3 – ident: e_1_3_4_84_2 doi: 10.3389/fmicb.2021.745766 – ident: e_1_3_4_107_2 doi: 10.22161/ijeab/2.1.9 – ident: e_1_3_4_73_2 doi: 10.3389/fmicb.2019.02559 – ident: e_1_3_4_17_2 doi: 10.3389/fphys.2017.00667 – ident: e_1_3_4_4_2 doi: 10.3389/fpubh.2016.00148 – ident: e_1_3_4_45_2 doi: 10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F – ident: e_1_3_4_58_2 doi: 10.3389/fmicb.2020.618415 – ident: e_1_3_4_13_2 doi: 10.31830/2348-7542.2021.012 – ident: e_1_3_4_28_2 doi: 10.3389/fmicb.2022.893393 – ident: e_1_3_4_47_2 doi: 10.5423/PPJ.OA.04.2017.0073 – ident: e_1_3_4_71_2 doi: 10.1515/bmc-2021-0019 – ident: e_1_3_4_106_2 doi: 10.1007/BF01731581 – ident: e_1_3_4_74_2 doi: 10.3390/molecules24071411 – ident: e_1_3_4_85_2 doi: 10.3389/fpls.2022.990392 – ident: e_1_3_4_8_2 doi: 10.1111/1541-4337.12562 – volume: 8 start-page: 2062 year: 2020 ident: e_1_3_4_82_2 article-title: Isolation and characterization of chemical constituents from B. Amyloliquefaciens and their Nematicidal activity publication-title: Article in journal of entomology and zoology studies – ident: e_1_3_4_5_2 doi: 10.3945/an.112.002154 – ident: e_1_3_4_25_2 doi: 10.1016/j.pmpp.2022.101887 – ident: e_1_3_4_34_2 doi: 10.2144/04371RR03 – ident: e_1_3_4_108_2 doi: 10.3390/microorganisms8010077 – ident: e_1_3_4_37_2 doi: 10.14202/vetworld.2017.393-397 – volume: 11 year: 2018 ident: e_1_3_4_103_2 article-title: Morphological and molecular identification of fungi isolated from different environmental sources in the northern Eastern desert of Jordan publication-title: Jordan J Biol Sci – ident: e_1_3_4_115_2 doi: 10.3389/fmicb.2018.00491 – ident: e_1_3_4_30_2 doi: 10.1007/s13205-018-1443-4 – volume: 32 start-page: 21 year: 2013 ident: e_1_3_4_102_2 article-title: Identification of Bacillus strain Hna3 and its bioactive compounds with a broad spectrum of antifungal activity publication-title: Journal of Huazhong Agricultural University – ident: e_1_3_4_79_2 doi: 10.1007/s00203-022-03351-5 – ident: e_1_3_4_19_2 doi: 10.3390/microorganisms8071037 – ident: e_1_3_4_94_2 doi: 10.1111/j.1574-6976.2009.00204.x – ident: e_1_3_4_98_2 doi: 10.3389/fpls.2016.02068 – ident: e_1_3_4_89_2 doi: 10.1016/j.bbagen.2012.05.004 – ident: e_1_3_4_6_2 doi: 10.1111/1750-3841.15816 – ident: e_1_3_4_9_2 doi: 10.3390/toxins14050309 – ident: e_1_3_4_14_2 doi: 10.1007/s13314-020-00395-8 – ident: e_1_3_4_99_2 doi: 10.3390/jof8101021 – ident: e_1_3_4_29_2 doi: 10.3390/agriculture11111046 – ident: e_1_3_4_116_2 doi: 10.1016/j.isci.2021.102511 – ident: e_1_3_4_80_2 doi: 10.3389/fmicb.2018.00924 – ident: e_1_3_4_2_2 doi: 10.3389/fsufs.2021.667546 – ident: e_1_3_4_61_2 doi: 10.1007/s40626-020-00173-y – ident: e_1_3_4_66_2 doi: 10.1016/j.fm.2017.01.006 – ident: e_1_3_4_3_2 doi: 10.3389/fsufs.2020.00016 – ident: e_1_3_4_81_2 doi: 10.3390/antiox11020404 – ident: e_1_3_4_77_2 doi: 10.1016/j.biocontrol.2016.11.007 – ident: e_1_3_4_24_2 doi: 10.1016/j.micres.2017.06.007 – ident: e_1_3_4_46_2 doi: 10.21608/ejp.2019.123827 – ident: e_1_3_4_50_2 doi: 10.3390/microorganisms7090314 – ident: e_1_3_4_90_2 doi: 10.1080/14756360009040693 – ident: e_1_3_4_110_2 doi: 10.1007/s00122-019-03462-6 – ident: e_1_3_4_78_2 doi: 10.21203/rs.3.rs-2871463/v1 – ident: e_1_3_4_32_2 doi: 10.3389/fmicb.2019.03099 – ident: e_1_3_4_88_2 doi: 10.3390/pr8121674 – ident: e_1_3_4_109_2 doi: 10.4315/0362-028X.JFP-13-072 – ident: e_1_3_4_49_2 doi: 10.1002/ps.6078 – ident: e_1_3_4_92_2 doi: 10.1021/acs.jafc.0c07375 – ident: e_1_3_4_53_2 doi: 10.3390/ijms221910529 – ident: e_1_3_4_113_2 doi: 10.1038/s41598-023-30253-3 – ident: e_1_3_4_62_2 doi: 10.1016/j.micres.2018.01.002 – ident: e_1_3_4_96_2 doi: 10.1093/pcp/pcr006 – ident: e_1_3_4_64_2 doi: 10.1093/aob/mcy108 – ident: e_1_3_4_70_2 doi: 10.3390/ijms19020443 – ident: e_1_3_4_36_2 doi: 10.1016/j.sciaf.2020.e00366 – ident: e_1_3_4_48_2 doi: 10.1016/j.scienta.2019.108957 – ident: e_1_3_4_22_2 doi: 10.1016/j.jbiotec.2017.06.1206 – ident: e_1_3_4_55_2 doi: 10.1111/1751-7915.13645 – ident: e_1_3_4_43_2 doi: 10.3389/fsufs.2021.679830 – ident: e_1_3_4_7_2 doi: 10.3390/stresses3010018 – ident: e_1_3_4_87_2 doi: 10.1016/j.pestbp.2019.02.019 – ident: e_1_3_4_59_2 doi: 10.1007/s11274-017-2364-9 – ident: e_1_3_4_97_2 doi: 10.3389/fpls.2016.01387 – ident: e_1_3_4_101_2 doi: 10.55003/cast.2022.03.23.005 – ident: e_1_3_4_91_2 doi: 10.1007/s002530051285 – ident: e_1_3_4_86_2 doi: 10.1590/0001-3765201720160908 – ident: e_1_3_4_69_2 doi: 10.1021/acsomega.1c00816 – ident: e_1_3_4_95_2 doi: 10.1111/tpj.12666 – ident: e_1_3_4_100_2 doi: 10.3389/fmicb.2019.02610 – ident: e_1_3_4_15_2 doi: 10.1021/acs.jafc.6b00104 – ident: e_1_3_4_26_2 doi: 10.1186/1475-2859-8-63 – ident: e_1_3_4_67_2 doi: 10.1007/s00253-016-7584-7 – ident: e_1_3_4_72_2 doi: 10.1094/MPMI-20-6-0619 – ident: e_1_3_4_112_2 doi: 10.1186/s12870-017-1083-6 – ident: e_1_3_4_27_2 doi: 10.3389/fmicb.2020.00741 – ident: e_1_3_4_68_2 doi: 10.1111/j.1365-2672.1994.tb01646.x – ident: e_1_3_4_54_2 doi: 10.3389/fmicb.2020.560406 – ident: e_1_3_4_18_2 doi: 10.1128/spectrum.02169-21 – ident: e_1_3_4_40_2 doi: 10.3390/toxins11110664 – ident: e_1_3_4_39_2 doi: 10.3390/toxins13100730 – volume: 13 start-page: 1907 year: 2022 ident: B27 article-title: Termite nest associated Bacillus siamensis YC-9 mediated biocontrol of Fusarium oxysporum f. sp. cucumerinum publication-title: Front Microbiol doi: 10.3389/fmicb.2022.893393 – volume: 76 start-page: 395 year: 1994 end-page: 405 ident: B67 article-title: Effect of substrate on the production of antifungal Volatiles from Bacillus subtilis publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1994.tb01646.x – volume: 24 year: 2019 ident: B73 article-title: The distribution of Tryptophan-dependent Indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis publication-title: Molecules doi: 10.3390/molecules24071411 – volume: 8 start-page: 2062 year: 2020 end-page: 2066 ident: B81 article-title: Isolation and characterization of chemical constituents from B. Amyloliquefaciens and their Nematicidal activity publication-title: Article in journal of entomology and zoology studies – volume: 8 start-page: 678 year: 2020 ident: B34 article-title: Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation publication-title: Microorganisms doi: 10.3390/microorganisms8050678 – volume: 69 start-page: 2087 year: 2021 end-page: 2098 ident: B91 article-title: Potential of volatile organic compounds emitted by pseudomonas fluorescens ZX as biological fumigants to control citrus green mold decay at postharvest publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.0c07375 – volume: 10 year: 2022 ident: B17 article-title: Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects publication-title: Microbiol Spectr doi: 10.1128/spectrum.02169-21 – volume: 247 start-page: 126726 year: 2021 ident: B62 article-title: Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth publication-title: Microbiol Res doi: 10.1016/j.micres.2021.126726 – volume: 12 start-page: 773092 year: 2021 ident: B50 article-title: Identification of volatile organic compounds in extremophilic bacteria and their effective use in biocontrol of postharvest fungal phytopathogens publication-title: Front Microbiol doi: 10.3389/fmicb.2021.773092 – volume: 22 year: 2021 ident: B52 article-title: Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms publication-title: Int J Mol Sci doi: 10.3390/ijms221910529 – volume: 11 start-page: 1046 year: 2021 ident: B28 article-title: Bacillus velezensis t149-19 And Bacillus safensis t052-76 as potential biocontrol agents against foot rot disease in sweet potato publication-title: Agriculture (Switzerland) doi: 10.3390/agriculture11111046 – volume: 17 start-page: 133 year: 2017 ident: B111 article-title: Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles publication-title: BMC Plant Biol doi: 10.1186/s12870-017-1083-6 – volume: 18 year: 2021 ident: B74 article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph182413147 – volume: 3 start-page: 506 year: 2012 end-page: 516 ident: B4 article-title: Health benefits of fruits and vegetables publication-title: Advances in Nutrition doi: 10.3945/an.112.002154 – volume: 81 start-page: 269 year: 2001 end-page: 274 ident: B44 article-title: Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit publication-title: J. Sci. Food Agric doi: 10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F – volume: 5 start-page: 225 year: 2021 ident: B42 article-title: Post-harvest management of alternaria induced rot in tomato fruits with essential oil of Zanthoxylum armatum DC publication-title: Front. Sustain. Food Syst doi: 10.3389/fsufs.2021.679830 – volume: 64 start-page: 219 year: 2017 end-page: 225 ident: B65 article-title: Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry publication-title: Food Microbiol doi: 10.1016/j.fm.2017.01.006 – year: 2023 ident: B56 article-title: Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones publication-title: J Gen Appl Microbiol doi: 10.2323/jgam.2023.02.002 – volume: 86 start-page: 479 year: 2019 end-page: 491 ident: B41 article-title: Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold) publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.02.053 – volume: 01 start-page: 36 year: 2016 end-page: 44 ident: B103 article-title: Isolation and identification of fungal post-harvest rot of some fruits in Yemen publication-title: PSM Microbiol – volume: 25 start-page: 140 year: 2020 end-page: 154 ident: B32 article-title: The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens publication-title: Acta biol Colomb doi: 10.15446/abc.v25n1.76867 – volume: 7 start-page: 2068 year: 2016 ident: B97 article-title: Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02068 – volume: 13 year: 2022 ident: B92 article-title: Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry publication-title: Front Microbiol doi: 10.3389/fmicb.2022.987844 – volume: 7 start-page: 1387 year: 2016 ident: B96 article-title: Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01387 – volume: 461 start-page: 361 year: 2015 end-page: 365 ident: B113 article-title: Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.04.039 – volume: 12 start-page: 15284 year: 2022 ident: B19 article-title: Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops publication-title: Sci Rep doi: 10.1038/s41598-022-19515-8 – volume: 22 start-page: 49 year: 2021 end-page: 53 ident: B12 article-title: Fusarium oxysporum strains from wilting potato plants: potential causal agents of dry rot disease in potato tubers publication-title: Res. on Crops doi: 10.31830/2348-7542.2021.012 – volume: 80 start-page: 758 year: 2014 end-page: 771 ident: B94 article-title: The inter-kingdom volatile signal Indole promotes root development by interfering with auxin signalling publication-title: Plant J doi: 10.1111/tpj.12666 – volume: 11 year: 2022 ident: B80 article-title: Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chili against bacterial wilt disease publication-title: Antioxidants doi: 10.3390/antiox11020404 – volume: 36 start-page: 1071 year: 2020 end-page: 1074 ident: B75 article-title: Simultaneous extraction and determination of volatile organic compounds and semi-volatile organic compounds in indoor air using multi-bed solid phase extraction device publication-title: Anal Sci doi: 10.2116/analsci.20P022 – volume: 6 start-page: 10984 year: 2021 end-page: 10990 ident: B68 article-title: Biocontrol activity of Bacillus Megaterium BM344-1 against Toxigenic fungi publication-title: ACS Omega doi: 10.1021/acsomega.1c00816 – volume: 5 year: 2021 ident: B1 article-title: PGPR in agriculture: a sustainable approach to increasing climate change resilience publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2021.667546 – volume: 11 start-page: 618415 year: 2020 ident: B57 article-title: Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.618415 – volume: 203 start-page: 47 year: 2017 end-page: 56 ident: B23 article-title: Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings publication-title: Microbiol Res doi: 10.1016/j.micres.2017.06.007 – volume: 19 start-page: 1521 year: 2020 end-page: 1560 ident: B7 article-title: A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12562 – volume: 105 start-page: 27 year: 2017 end-page: 39 ident: B76 article-title: Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea publication-title: Biological Control doi: 10.1016/j.biocontrol.2016.11.007 – volume: 64 start-page: 4029 year: 2016 end-page: 4047 ident: B14 article-title: Brown rot strikes prunus fruit: an ancient fight almost always lost publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.6b00104 – volume: 9 start-page: 491 year: 2018 ident: B114 article-title: Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00491 – volume: 12 start-page: 175 year: 2021 end-page: 196 ident: B70 article-title: Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents publication-title: Biomol Concepts doi: 10.1515/bmc-2021-0019 – volume: 50 start-page: 253 year: 1998 end-page: 256 ident: B90 article-title: Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530051285 – volume: 32 start-page: 21 year: 2013 end-page: 27 ident: B101 article-title: Identification of Bacillus strain Hna3 and its bioactive compounds with a broad spectrum of antifungal activity publication-title: Journal of Huazhong Agricultural University – volume: 11 year: 2018 ident: B102 article-title: Morphological and molecular identification of fungi isolated from different environmental sources in the northern Eastern desert of Jordan publication-title: Jordan J Biol Sci – volume: 20 start-page: 619 year: 2007 end-page: 626 ident: B71 article-title: Tryptophan-dependent production of Indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-6-0619 – volume: 16 start-page: 111 year: 1980 end-page: 120 ident: B105 article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences publication-title: J Mol Evol doi: 10.1007/BF01731581 – volume: 8 year: 2020 ident: B35 article-title: Isolation of Phytopathogenic fungi associated with the post-harvest deterioration of watermelon fruits publication-title: Scientific African doi: 10.1016/j.sciaf.2020.e00366 – volume: 8 start-page: 1674 year: 2020 ident: B87 article-title: Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum publication-title: Processes doi: 10.3390/pr8121674 – volume: 36 start-page: 100633 year: 2020 ident: B43 article-title: Postharvest control of Penicillium expansum in fruits: a review publication-title: Food Bioscience doi: 10.1016/j.fbio.2020.100633 – volume: 24 year: 2021 ident: B115 article-title: Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay publication-title: iScience doi: 10.1016/j.isci.2021.102511 – volume: 7 year: 2019 ident: B49 article-title: Olea Europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes publication-title: Microorganisms doi: 10.3390/microorganisms7090314 – volume: 10 start-page: 3099 year: 2020 ident: B31 article-title: Two new biocontrol agents against clubroot caused by Plasmodiophora brassicae publication-title: Front Microbiol doi: 10.3389/fmicb.2019.03099 – volume: 77 start-page: 775 year: 2021 end-page: 779 ident: B48 article-title: Purification and identification of a new antifungal dipeptide from Bacillus velezensis AR1 culture supernatant publication-title: Pest Manag Sci doi: 10.1002/ps.6078 – volume: 76 start-page: 1879 year: 2013 end-page: 1886 ident: B108 article-title: Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum publication-title: J Food Prot doi: 10.4315/0362-028X.JFP-13-072 – volume: 105 year: 2018 ident: B82 article-title: Exploiting biocontrol potential of Bacillus amyloliquefaciens (sic.) fukumoto for the management of mungbean anthracnose publication-title: Madras Agricultural Journal doi: 10.29321/MAJ.2018.000149 – volume: 8 year: 2017 ident: B59 article-title: Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00171 – volume: 19 year: 2018 ident: B69 article-title: Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium arthrobacter pascens ZZ21 publication-title: Int J Mol Sci doi: 10.3390/ijms19020443 – volume: 13 start-page: 1366 year: 2020 end-page: 1376 ident: B54 article-title: Harnessing microbial volatiles to replace pesticides and fertilizers publication-title: Microb Biotechnol doi: 10.1111/1751-7915.13645 – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: B29 article-title: Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15 publication-title: 3 Biotech doi: 10.1007/s13205-018-1443-4 – volume: 227 start-page: 43 year: 2016 end-page: 53 ident: B64 article-title: Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol bacillus amyloliquefaciens strains publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2016.04.014 – volume: 261 year: 2020 ident: B47 article-title: Control of postharvest fungal pathogens in pome fruits by lipopeptides from a Bacillus sp. isolate SL-6 publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2019.108957 – volume: 3 start-page: 231 year: 2023 end-page: 255 ident: B6 article-title: Elicitation of fruit fungi infection and its protective response to improve the Postharvest quality of fruits publication-title: Stresses doi: 10.3390/stresses3010018 – volume: 156 start-page: 170 year: 2019 end-page: 176 ident: B86 article-title: Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2019.02.019 – volume: 33 start-page: 197 year: 2017 ident: B58 article-title: Mechanisms of action of plant growth promoting bacteria publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-017-2364-9 – volume: 15 start-page: 357 year: 2010 end-page: 366 ident: B89 article-title: Inhibition of topoisomerases by fatty acids publication-title: J Enzyme Inhib doi: 10.1080/14756360009040693 – volume: 2 start-page: 56 year: 2016 end-page: 60 ident: B106 article-title: Isolation and pathogenicity evaluation of postharvest fungal of some fruits in Cameroon publication-title: IJEAB doi: 10.22161/ijeab/2.1.9 – volume: 11 year: 2020 ident: B26 article-title: Long-chain hydrocarbons (C21, C24, and C31) released by Bacillus sp. MH778713 break dormancy of mesquite seeds subjected to chromium stress publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00741 – volume: 47 start-page: 257 year: 2019 end-page: 276 ident: B45 article-title: Management of potato post harvest tuber rots by some organic acids and essential plant oils publication-title: Journal of Phytopathology doi: 10.21608/ejp.2019.123827 – volume: 14 year: 2022 ident: B37 article-title: The potential of Alternaria toxins production by A. alternata in processing tomatoes publication-title: Toxins doi: 10.3390/toxins14120827 – volume: 34 start-page: 426 year: 2010 end-page: 444 ident: B93 article-title: Indole as an intercellular signal in microbial communities publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2009.00204.x – volume: 12 start-page: 745766 year: 2021 ident: B83 article-title: The biocontrol and plant growth-promoting properties of Streptomyces alfalfae XN-04 revealed by functional and genomic analysis publication-title: Front Microbiol doi: 10.3389/fmicb.2021.745766 – volume: 86 start-page: 3341 year: 2021 end-page: 3348 ident: B5 article-title: Control of postharvest fungal diseases in fruits using external application of RNAi publication-title: J Food Sci doi: 10.1111/1750-3841.15816 – volume: 10 start-page: 393 year: 2017 end-page: 397 ident: B36 article-title: Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria publication-title: Vet World doi: 10.14202/vetworld.2017.393-397 – volume: 11 year: 2019 ident: B39 article-title: Fusarium-produced mycotoxins in plant-pathogen interactions publication-title: Toxins (Basel) doi: 10.3390/toxins11110664 – volume: 13 year: 2018 ident: B110 article-title: Correction: root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6 publication-title: PLoS One doi: 10.1371/journal.pone.0210035 – volume: 13 start-page: 3645 year: 2022 ident: B84 article-title: Performance appraisal of Trichoderma viride based novel tablet and powder formulations for management of Fusarium wilt disease in chickpea publication-title: Front Plant Sci doi: 10.3389/fpls.2022.990392 – volume: 10 start-page: 2610 year: 2019 ident: B99 article-title: Genetic, epigenetic and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02610 – volume: 8 start-page: 1 year: 2009 end-page: 12 ident: B25 article-title: Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens publication-title: Microb Cell Fact doi: 10.1186/1475-2859-8-63 – volume: 10 year: 2019 ident: B72 article-title: Indole-3-acetic acid in Burkholderia pyrrocinia JK-SH007: enzymatic identification of the Indole-3-Acetamide synthesis pathway publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02559 – volume: 24 year: 2019 ident: B55 article-title: Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes publication-title: Molecules doi: 10.3390/molecules24061046 – volume: 4 year: 2016 ident: B3 article-title: Chemical pesticides and human health: the urgent need for a new concept in agriculture publication-title: Front Public Health doi: 10.3389/fpubh.2016.00148 – volume: 52 start-page: 490 year: 2011 end-page: 508 ident: B95 article-title: Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr006 – start-page: 147 year: 2014 end-page: 187 ident: B9 article-title: Alternaria Alternata (black rot, black spot) publication-title: Postharvest decay (control strategies) ;Chapter p In doi: 10.1016/B978-0-12-411552-1.00005-3 – volume: 13 year: 2021 ident: B38 article-title: Occurrence and characterization of Penicillium species isolated from post-harvest apples in Lebanon publication-title: Toxins (Basel) doi: 10.3390/toxins13100730 – volume: 8 start-page: 667 year: 2017 ident: B16 article-title: Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments publication-title: Front Physiol doi: 10.3389/fphys.2017.00667 – volume: 11 start-page: 560406 year: 2020 ident: B53 article-title: Revisiting plant-microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review publication-title: Front Microbiol doi: 10.3389/fmicb.2020.560406 – volume: 32 start-page: 99 year: 2020 end-page: 108 ident: B60 article-title: Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds publication-title: Theor. Exp. Plant Physiol doi: 10.1007/s40626-020-00173-y – volume: 205 year: 2022 ident: B78 article-title: Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites publication-title: Arch Microbiol doi: 10.1007/s00203-022-03351-5 – volume: 13 year: 2023 ident: B112 article-title: Effect of bioagents on cucumber seed mycoflora, seed germination, and seedling vigour publication-title: Sci Rep doi: 10.1038/s41598-023-30253-3 – volume: 4 year: 2020 ident: B2 article-title: Food security, safety, and sustainability—getting the trade-offs right publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2020.00016 – volume: 9 start-page: 924 year: 2018 ident: B79 article-title: Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus Atrophaeus against Verticillium dahliae publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00924 – volume: 12 start-page: 19137 ident: B30 article-title: Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L) abbreviations RWC relative water content H 2 O 2 hydrogen peroxide NO nitric oxide CAT catalase SOD superoxide dismutase POD Peroxidases APX Ascorbate peroxidase RMSD root-mean-square deviation publication-title: Sci Reports ;n.d. doi: 10.1038/s41598-022-22354-2 – volume: 29 start-page: 257 year: 2014 end-page: 266 ident: B10 article-title: Identification of Penicillium expansum causing postharvest blue mold decay of apple fruit publication-title: Pesticidi i fitomedicina doi: 10.2298/PIF1404257V – volume: 8 start-page: 1 year: 2020 end-page: 19 ident: B18 article-title: The significance of Bacillus spp. In disease suppression and growth promotion of field and vegetable crops publication-title: Microorganisms doi: 10.3390/microorganisms8071037 – volume: 122 start-page: 349 year: 2018 end-page: 358 ident: B63 article-title: Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future publication-title: Ann Bot doi: 10.1093/aob/mcy108 – volume: 89 start-page: 1671 year: 2017 end-page: 1681 ident: B85 article-title: Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils publication-title: An Acad Bras Cienc doi: 10.1590/0001-3765201720160908 – volume: 208 start-page: 63 year: 2018 end-page: 75 ident: B61 article-title: Microbial volatiles as plant growth inducers publication-title: Microbiol Res doi: 10.1016/j.micres.2018.01.002 – volume: 10 start-page: 1312 year: 2020 ident: B11 article-title: Bacillus velezensis pea1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus publication-title: Agronomy doi: 10.3390/agronomy10091312 – volume: 166 start-page: 111208 year: 2020 ident: B51 article-title: Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens publication-title: Postharvest Biology and Technology doi: 10.1016/j.postharvbio.2020.111208 – volume: 8 start-page: 1021 year: 2022 ident: B98 article-title: Identification of Bacillus velezensis SBB and its antifungal effects against Verticillium dahliae publication-title: JoF doi: 10.3390/jof8101021 – volume: 23 year: 2022 ident: B100 article-title: Biocontrol potential, genome and nonribosomal peptide synthetase gene expression of Bacillus velezensis 2211 publication-title: Curr Appl Sci Technol doi: 10.55003/cast.2022.03.23.005 – volume: 37 start-page: 112 year: 2004 end-page: 114 ident: B33 article-title: Validation of housekeeping genes for normalizing RNA expression in real-time PCR publication-title: Biotechniques doi: 10.2144/04371RR03 – volume: 8 year: 2019 ident: B22 article-title: Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens publication-title: Microbiologyopen doi: 10.1002/mbo3.813 – ident: B77 article-title: He Y , Peng J , Jia N , Wang X , Ma J , Wang H , Zhang C , Wang E , Hu D , Wang Z . 2023 . Bacillus vlezensis Wsw007 different concentrations volatile organic compounds stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development . doi: 10.21203/rs.3.rs-2871463/v1 – volume: 259 start-page: 221 year: 2017 end-page: 227 ident: B21 article-title: The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.06.1206 – volume: 6 year: 2018 ident: B104 article-title: Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman publication-title: PeerJ doi: 10.7717/peerj.6064 – volume: 33 start-page: 488 year: 2017 end-page: 498 ident: B46 article-title: Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi publication-title: Plant Pathol J doi: 10.5423/PPJ.OA.04.2017.0073 – volume: 133 start-page: 1655 year: 2020 end-page: 1678 ident: B109 article-title: Impacts of genomic research on soybean improvement in East Asia publication-title: Theor Appl Genet doi: 10.1007/s00122-019-03462-6 – volume: 100 start-page: 7639 year: 2016 end-page: 7650 ident: B66 article-title: Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7584-7 – volume: 29 start-page: 201 year: 2013 end-page: 208 ident: B20 article-title: Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper publication-title: Plant Pathol J doi: 10.5423/PPJ.SI.02.2013.0021 – volume: 8 year: 2020 ident: B107 article-title: Taxonomic characterization, and secondary metabolite analysis of Streptomyces triticiradicis sp. nov.: a novel actinomycete with antifungal activity publication-title: Microorganisms doi: 10.3390/microorganisms8010077 – volume: 121 year: 2022 ident: B24 article-title: Volatile organic compounds from Bacillus mojavensis I4 promote plant growth and inhibit phytopathogens publication-title: Physiological and Molecular Plant Pathology doi: 10.1016/j.pmpp.2022.101887 – volume: 1820 start-page: 1463 year: 2012 end-page: 1468 ident: B88 article-title: Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2012.05.004 – volume: 12 start-page: 1877 year: 2019 end-page: 1883 ident: B40 article-title: Fungal food spoilage of supermarkets' displayed fruits publication-title: Vet World doi: 10.14202/vetworld.2019.1877-1883 – volume: 871 start-page: 1473 year: 2018 ident: B15 article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01473 – volume: 14 year: 2022 ident: B8 article-title: Contamination, detection and control of mycotoxins in fruits and vegetables publication-title: Toxins (Basel) doi: 10.3390/toxins14050309 – volume: 15 year: 2020 ident: B13 article-title: Black mould of post-harvest tomato (Solanum lycopersicum) caused by Cladosporium cladosporioides in Australia publication-title: Australasian Plant Dis. Notes doi: 10.1007/s13314-020-00395-8 |
SSID | ssj0001105252 |
Score | 2.3362405 |
Snippet | Bacillus velezensis
HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens:... The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) HNA3 strain, which comes to confirm and reveals the... Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens:... The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to... ABSTRACT Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0051923 |
SubjectTerms | Bacillus velezensis HNA3 Environmental Microbiology fatty acid methyl ester (FAME) gas chromatography-mass spectrometry (GC-MS) gene expression (RT-qPCR) post-harvested phytopathogen Research Article volatile and semi-volatile organic compounds (VOCs) |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjL2Np9pGvHDQaDgVdbkr8e27ES-tCnFfomzrKcGFI7xM5g-5P2V_ZOdkIyRvcyyEtsC8m6093v5J_uhPgoyyzOLLogLHQYaAyLICso5kmiiJroNKYlxWyLm2R2q6_v4ru9Ul_MCRvSAw8Td66kk5pel3wzamlLdEpWLiXYEBX0p2DrSz5vL5jyuysR12eT42dMssHn_uDienP_xYOWgMsTTbC7lwf-yKft_xvW_JMyueeDrl6I5yN4hIth0C_FE9cciadDOcmfx-L3cOq2GrfhoK2gqFv0Fg2YO84llDq-fIm2Xi43HXDZiV_MYe9gdnOhoF9gD56-znWwHPQt1H0HfGALRuoHYAerJQkE5hTC9wtYeUafWwM2JXc4st8B51gT-IRV2_XBAtc__NYqkCed16_E7dW3719nwViLIUDCSH1gseLYMZc0Azqnn9W2IEPqZJLHVRUXqJUqM7qR2kpHaRamqS1tphIdWtID9VpMmrZxbwWQjcxYKSqytVpjThFTlYRlqhAj6iSeik8sGDMups74OEVmZitC40VopJqKcCs7Y8eU5lxZY_lYk8-7Jqshn8djD1-yQuwe5FTc_gIpqBkV1PxLQafiw1adDC1d_h6DjWs3neFSAwyAtZ6KN4N67bpSfAI4VzQZ2YHiHYzl8E5TL3x6cAroCcal4cn_GP078UwSrGMCTyRPxYTmx50RDOuL937FPQDGwjfB priority: 102 providerName: Directory of Open Access Journals |
Title | Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37811935 https://journals.asm.org/doi/10.1128/spectrum.00519-23 https://www.proquest.com/docview/2874835244 https://pubmed.ncbi.nlm.nih.gov/PMC10715170 https://doaj.org/article/32e24ead025a42cdae32fe75221bdaeb |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdy2AvY_dll3IGg8HAnS3JtvyYjpWwQfeyQN-ELMuJIbVD7Ay2n7RfuXNkJVtGKYO8xLKQOTd9RzoXxt7ySqXKGhfFpYwjaeIyUiX6PFmS4BSZp6hSFG1xmc3m8vNVenXEsl0uTKBgf2b6a3-Rv9dsrj745MPN9vrMA4-IizvsJOWFRIU8mU7nX7_8OV1JqD8bD9eYN85FG4xr8IP9yJftvwlr_hsy-dcedPGA3Q_gEaYjtx-yI9c-YnfHdpI_HrNfY9ZtHY7hoKuhbDrjLRpQ7Di1UOrp8bmxzWq17YHaTvykGPYeZpdTAcPSDODD16kPloOhg2bogRK2IIR-gOlhvUKGwAJd-GEJax_R5zZg2ooWDNHvYBamQfAJ664foqXZfPdHq4A76aJ5wuYXn759nEWhF0NkECMNkTU1-Y4FRwrIAn9W2hINqeNZkdZ1WhopRKVwILe1THIV57mtrBKZjC3KgXjKjtuudc8ZoI1UJBQ12lopTYEeU53FVS6MSXCRdMLeEWP0ThS091O40jsWas9CzcWExTveaRtKmlNnjdVtU97vp6zHeh63vXxOArF_kUpx-wcomDpothZIA4n6iODRSG4r4wSvXY64NinxTzlhb3bipFF16T7GtK7b9ppaDRAAlnLCno3itV9KUAZwIZAY6kDwDr7lcKRtlr48ODr0COPy-MV_0_Elu8cRu1GUTsJfsWMcdK8Raw3laVCsU39W8Rs7li7b |
linkProvider | American Society for Microbiology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgQviDvlaiQQElK2xHaa9IGHDpg6OsrLKu3NOI7TBmVJVadM4yftV3KO6xaKpomXSX1JYteJz8XfsY_9EfKG5WmcamWCMBNhIFSYBWkGMU83iqCKSGIwKcy2GHUHY_HlJD7ZIhervTA_kJe3srvKnrp1fDRsnIj2fITpntuAOF-c7jrwEbAVcfXQnJ9BuGY_HH4C2b5l7ODz8cdB4BkFAgUjfRtoVWAE1GO5NqIHPy10Bu7AsG4vLoo4U4LzPIUHiS5ElKRhkuhcp7wrQg1fw-F_b5AdXKuEQG-n3x9_G_6Z0YmQE475pdNL3xX8PnwY2xgDHVXAZfj23zTNv8a9g7vkjgestL_UsHtky9T3yc0lheX5A3Kx3Olb-Kk_2hQ0KxvlvCjFfHWkbbJ4e1_psqoWliLVxS_Mm7d0MOpz2k5VS13KPHJvGdo2tGwtxU1i1KebUGXprAIloJN5c9ZO6cxlEZo5VXWODfqMe6omqgTAS2eNbYOpmv9007kURu9J-ZCMr0Vaj8h23dTmCaHgl1NUxAL8uxCqB1Fa0Q3zhCsVQSNxh7xDwUhvwFa62IilciVC6UQoGe-QcCU7qf0x6sjmUV1V5f26ymx5hshVhfdRIdYF8fhvdwOsQXpvIjn0gQAfAIBVCaZzZTgrTAJYOsrgIuuQ1yt1kuAucA1I1aZZWIn0Bgi6heiQx0v1WjfFcddxj0NnpBuKt_Eum0_qcuqOJI8AqcZREj797358RW4Njr8eyaPD0fAZuc0AO2KWUMSek20oaF4A1muzl97IKPl-3Xb9G38UbD0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG_K5yGBkJCyJY7TpA88dIxqo6jwQKW9Gcdx2khdUjUp0_iT9ldy5zqFomniZVJfkth14juff2ff-cfYG54lUaKV8fxU-J5QfuolKfo8vSDAKiKOcEhRtMW4dzQRn0-ikx120ebCuB6s91R9ajfyaWQvstzxESb7NgFxuTrds-DD4y1x9cicn6G7Vn84PkTZvuV8-On7xyPPMQp4Cmf6xtMqJw-ozzNtRB9_WugUzYHhvX6U51GqRBhmCT6IdS6COPHjWGc6CXvC1_g1If7vDbZrN8c6bHcwmHwd_VnRCYgTjrut00vfFe0-fhffmgMtVcBl-PbfMM2_5r3hXXbHAVYYrDXsHtsx5X12c01hef6AXawzfXO39AdVDmlRKWtFgeLVibapptsHShfz-aoGorr4RXHzNRyNByE0M9WADZkn7i0DTQVFUwMliYELNwFVw2KOSgDTZXXWzGBhowjNElSZUYMu4h7UVBUIeGFR1Y03U8ufdjkXcPaeFg_Z5Fqk9Yh1yqo0TxigXU5IEXO070KoPnppec_P4lCpABuJuuwdCUa26ietb8QT2YpQWhFKHnaZ38pOaneMOrF5zK-q8n5TZbE-Q-SqwgekEJuCdPy3vYGDQTprIkPsA4E2AAGrElxnyoQ8NzFi6SDFi7TLXrfqJNFc0B6QKk21qiXRGxDoFqLLHq_Va9NUSFnH_RA7I9lSvK132X5SFjN7JHmASDUKYv_pf_fjK3br2-FQfjkej56x2xyhIwUJBfw562A58wKhXpO-dGMM2I_rHta_AeRfa9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+bioactive+compounds+of+Bacillus+velezensis+HNA3+that+contribute+to+its+dual+effects+as+plant+growth+promoter+and+biocontrol+against+post-harvested+fungi&rft.jtitle=Microbiology+spectrum&rft.au=Zaid%2C+Doaa+S&rft.au=Li%2C+Wenya&rft.au=Yang%2C+Siyu&rft.au=Li%2C+Youguo&rft.date=2023-12-12&rft.eissn=2165-0497&rft.volume=11&rft.issue=6&rft.spage=e0051923&rft_id=info:doi/10.1128%2Fspectrum.00519-23&rft_id=info%3Apmid%2F37811935&rft.externalDocID=37811935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon |