Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi

Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volati...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology spectrum Vol. 11; no. 6; p. e0051923
Main Authors Zaid, Doaa S., Li, Wenya, Yang, Siyu, Li, Youguo
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 12.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides . This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
AbstractList The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.IMPORTANCEThe current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides . This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities.
ABSTRACT Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata, Cladosporium cladosporioides, Penicillium expansum, Monilinia fructicola, and Fusarium oxysporum. Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides. This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata , Cladosporium cladosporioides , Penicillium expansum , Monilinia fructicola , and Fusarium oxysporum . Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides . This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens: Alternaria alternata, Cladosporium cladosporioides, Penicillium expansum, Monilinia fructicola, and Fusarium oxysporum. Moreover, the volatile organic compounds (VOCs) emitted by HNA3 exhibited remarkable efficacy, achieving 100% fungal inhibition against Alternaria alternata and Cladosporium cladosporioides. This is the initial study to demonstrate the HNA3-emitted VOCs effect on enhancing soybean seedling growth and seed germination by breaking seed dormancy and improving root construction. Semi-VOCs and emitted VOCs were identified by two methods of extraction coupled with gas chromatography-mass spectrometry. A total of 14 main VOCs were detected; phenol,2,4-bis(1,1-dimethylethyl) and 1,2-benzenedicarboxylic acid are the most abundant semi-VOCs, both are known to have anti-fungal and plant growth-promoting properties. 9-Octadecenoic acid (z)-, methyl ester is the most common volatile compound emitted by HNA3 followed by hexadecanoic acid, methyl ester and heptadecanoic acid, methyl ester. It is noteworthy that heptadecanoic acid, methyl ester has not been previously detected in Bacillus spp. Pure 9-octadecenoic acid (z)-, methyl ester, as well as heptadecanoic acid, methyl ester, exhibited inhibitory effects on the fungal growth of all isolated phytopathogens. Interestingly, when combined, these compounds synergistically eradicated fungal growth. Indole acetic acid and serotonin, both classified as plant growth-promoting indoles, have been identified within HNA3. Moreover, during the phytopathogen inhibition stage, HNA3 demonstrated upregulation in gene expression associated with non-VOCs, including bacillibactin, bacillomycin, bacilysin, and surfactin. This study publicized an extensive variety of bioactive compounds produced by HNA3 liable for its bioactivities. IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Author Zaid, Doaa S.
Li, Wenya
Yang, Siyu
Li, Youguo
Author_xml – sequence: 1
  givenname: Doaa S.
  orcidid: 0000-0003-3123-4873
  surname: Zaid
  fullname: Zaid, Doaa S.
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China, Desert Research Center , Ain Shams, Egypt
– sequence: 2
  givenname: Wenya
  surname: Li
  fullname: Li, Wenya
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China
– sequence: 3
  givenname: Siyu
  surname: Yang
  fullname: Yang, Siyu
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China
– sequence: 4
  givenname: Youguo
  orcidid: 0000-0003-3123-4873
  surname: Li
  fullname: Li, Youguo
  organization: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37811935$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUhkeoiJbSB2CDvGQzwdd4ZoVKBTRSBRtYW2c8duJoxh5sTxA8Ek-JkzSoRQLJku1z-fz76H9enfngTVW9JHhBCG3epMnoHOdxgbEgbU3Zk-qCkqWoMW_l2YPzeXWV0hZjTAgWVNBn1TmTDSEtExfVr1VvfHbWacgueBQs6lwAnd3OIB3GKcy-T_vwO9BuGOaEdmYwP41PLqHbT9cM5Q3kUupzdN2cDcoBuZxQP8OAjLVFZUKQ0DSAz2gdw_e8QVMMY8gmIvD9_sFDexgQrMH5lNEUUq43EHcmZdMjO_u1e1E9tTAkc3W_X1ZfP7z_cnNb333-uLq5vqtBYJFrDRYvCW9prw1vy9Jcd3JJDV22wlrRAWesb0pCasuJbLCUutcNW3KsccfZZbU6cvsAWzVFN0L8oQI4dQiEuFYQs9ODUaxQuYEeUwGc6h4Mo9ZIQSnpyqUrrLdH1jR3oymKyjdheAR9nPFuo9ZhpwiWRBCJC-H1PSGGb3MZhxpd0mYo0zRhToo2kjdMUL4XvjiWQhqp2oY5-jKnglJ7w6iTYdTBMIqy0vDqobo_sk72KAXyWKBjSCkaq7TLB6MUsW74L5r81XmC_7vnN6dA6Sc
CitedBy_id crossref_primary_10_1016_j_fbio_2024_104019
crossref_primary_10_1007_s11274_025_04267_0
crossref_primary_10_3390_agronomy15030706
crossref_primary_10_3390_ma17102301
crossref_primary_10_1002_bbb_2743
crossref_primary_10_3390_molecules29245922
Cites_doi 10.1016/j.postharvbio.2020.111208
10.14202/vetworld.2019.1877-1883
10.3390/microorganisms8050678
10.7717/peerj.6064
10.1016/j.jbiotec.2016.04.014
10.3390/agronomy10091312
10.2298/PIF1404257V
10.1038/s41598-022-19515-8
10.3390/toxins14120827
10.3389/fmicb.2022.987844
10.1002/mbo3.813
10.1016/j.fbio.2020.100633
10.2116/analsci.20P022
10.1038/s41598-022-22354-2
10.1016/j.bbrc.2015.04.039
10.1016/j.micres.2021.126726
10.1371/journal.pone.0210035
10.15446/abc.v25n1.76867
10.29321/MAJ.2018.000149
10.3389/fpls.2018.01473
10.2323/jgam.2023.02.002
10.1016/j.tifs.2019.02.053
10.3389/fmicb.2021.773092
10.3390/ijerph182413147
10.5423/PPJ.SI.02.2013.0021
10.3390/molecules24061046
10.3389/fmicb.2017.00171
10.1016/B978-0-12-411552-1.00005-3
10.3389/fmicb.2021.745766
10.22161/ijeab/2.1.9
10.3389/fmicb.2019.02559
10.3389/fphys.2017.00667
10.3389/fpubh.2016.00148
10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F
10.3389/fmicb.2020.618415
10.31830/2348-7542.2021.012
10.3389/fmicb.2022.893393
10.5423/PPJ.OA.04.2017.0073
10.1515/bmc-2021-0019
10.1007/BF01731581
10.3390/molecules24071411
10.3389/fpls.2022.990392
10.1111/1541-4337.12562
10.3945/an.112.002154
10.1016/j.pmpp.2022.101887
10.2144/04371RR03
10.3390/microorganisms8010077
10.14202/vetworld.2017.393-397
10.3389/fmicb.2018.00491
10.1007/s13205-018-1443-4
10.1007/s00203-022-03351-5
10.3390/microorganisms8071037
10.1111/j.1574-6976.2009.00204.x
10.3389/fpls.2016.02068
10.1016/j.bbagen.2012.05.004
10.1111/1750-3841.15816
10.3390/toxins14050309
10.1007/s13314-020-00395-8
10.3390/jof8101021
10.3390/agriculture11111046
10.1016/j.isci.2021.102511
10.3389/fmicb.2018.00924
10.3389/fsufs.2021.667546
10.1007/s40626-020-00173-y
10.1016/j.fm.2017.01.006
10.3389/fsufs.2020.00016
10.3390/antiox11020404
10.1016/j.biocontrol.2016.11.007
10.1016/j.micres.2017.06.007
10.21608/ejp.2019.123827
10.3390/microorganisms7090314
10.1080/14756360009040693
10.1007/s00122-019-03462-6
10.21203/rs.3.rs-2871463/v1
10.3389/fmicb.2019.03099
10.3390/pr8121674
10.4315/0362-028X.JFP-13-072
10.1002/ps.6078
10.1021/acs.jafc.0c07375
10.3390/ijms221910529
10.1038/s41598-023-30253-3
10.1016/j.micres.2018.01.002
10.1093/pcp/pcr006
10.1093/aob/mcy108
10.3390/ijms19020443
10.1016/j.sciaf.2020.e00366
10.1016/j.scienta.2019.108957
10.1016/j.jbiotec.2017.06.1206
10.1111/1751-7915.13645
10.3389/fsufs.2021.679830
10.3390/stresses3010018
10.1016/j.pestbp.2019.02.019
10.1007/s11274-017-2364-9
10.3389/fpls.2016.01387
10.55003/cast.2022.03.23.005
10.1007/s002530051285
10.1590/0001-3765201720160908
10.1021/acsomega.1c00816
10.1111/tpj.12666
10.3389/fmicb.2019.02610
10.1021/acs.jafc.6b00104
10.1186/1475-2859-8-63
10.1007/s00253-016-7584-7
10.1094/MPMI-20-6-0619
10.1186/s12870-017-1083-6
10.3389/fmicb.2020.00741
10.1111/j.1365-2672.1994.tb01646.x
10.3389/fmicb.2020.560406
10.1128/spectrum.02169-21
10.3390/toxins11110664
10.3390/toxins13100730
ContentType Journal Article
Copyright Copyright © 2023 Zaid et al.
Copyright © 2023 Zaid et al. 2023 Zaid et al.
Copyright_xml – notice: Copyright © 2023 Zaid et al.
– notice: Copyright © 2023 Zaid et al. 2023 Zaid et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1128/spectrum.00519-23
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2165-0497
Editor Reverchon, Frédérique
Editor_xml – sequence: 1
  givenname: Frédérique
  surname: Reverchon
  fullname: Reverchon, Frédérique
ExternalDocumentID oai_doaj_org_article_32e24ead025a42cdae32fe75221bdaeb
PMC10715170
00519-23
37811935
10_1128_spectrum_00519_23
Genre Journal Article
GrantInformation_xml – fundername: Key Research and development Program of Hongshan Laboratory
  grantid: 2021hszd015
– fundername: Key research and development program of Hubei province
  grantid: 2022BBA0037
– fundername: ;
  grantid: 2022BBA0037
– fundername: ;
  grantid: 2021hszd015
GroupedDBID 53G
AAGFI
AAUOK
AAYXX
ADBBV
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
CITATION
EJD
FF~
FRP
GROUPED_DOAJ
H13
M~E
OK1
RPM
RSF
NPM
UCJ
7X8
5PM
ID FETCH-LOGICAL-a505t-caf061492dce49e49c4cb762e2695ff5ba433d8e497cf4178077cdc83640c0b43
IEDL.DBID AAUOK
ISSN 2165-0497
IngestDate Wed Aug 27 01:23:44 EDT 2025
Thu Aug 21 18:37:35 EDT 2025
Sun Aug 24 03:29:07 EDT 2025
Tue Dec 12 18:27:40 EST 2023
Thu Apr 03 06:54:09 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 00:42:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords volatile and semi-volatile organic compounds (VOCs)
Bacillus velezensis HNA3
post-harvested phytopathogen
gene expression (RT-qPCR)
fatty acid methyl ester (FAME)
gas chromatography-mass spectrometry (GC-MS)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a505t-caf061492dce49e49c4cb762e2695ff5ba433d8e497cf4178077cdc83640c0b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0003-3123-4873
OpenAccessLink https://journals.asm.org/doi/10.1128/spectrum.00519-23
PMID 37811935
PQID 2874835244
PQPubID 23479
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_32e24ead025a42cdae32fe75221bdaeb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10715170
proquest_miscellaneous_2874835244
asm2_journals_10_1128_spectrum_00519_23
pubmed_primary_37811935
crossref_citationtrail_10_1128_spectrum_00519_23
crossref_primary_10_1128_spectrum_00519_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec-12
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology spectrum
PublicationTitleAbbrev Spectrum
PublicationTitleAlternate Microbiol Spectr
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_110_2
e_1_3_4_114_2
e_1_3_4_61_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_65_2
e_1_3_4_46_2
e_1_3_4_88_2
e_1_3_4_72_2
e_1_3_4_95_2
e_1_3_4_106_2
e_1_3_4_30_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_99_2
e_1_3_4_19_2
e_1_3_4_2_2
e_1_3_4_113_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_101_2
Abdullah Q (e_1_3_4_104_2) 2016; 01
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_105_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_109_2
e_1_3_4_12_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_77_2
e_1_3_4_35_2
e_1_3_4_39_2
e_1_3_4_112_2
e_1_3_4_9_2
e_1_3_4_116_2
e_1_3_4_63_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_48_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_67_2
e_1_3_4_29_2
Selvamani K (e_1_3_4_82_2) 2020; 8
e_1_3_4_100_2
e_1_3_4_93_2
e_1_3_4_74_2
e_1_3_4_51_2
e_1_3_4_108_2
e_1_3_4_70_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_97_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_17_2
Xu L (e_1_3_4_102_2) 2013; 32
Alsohaili SA (e_1_3_4_103_2) 2018; 11
e_1_3_4_111_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_115_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_107_2
e_1_3_4_79_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_75_2
e_1_3_4_98_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_56_2
e_1_3_4_18_2
Xu, L, Wang, L, Chen, L, Xie, F, Li, Y (B101) 2013; 32
Al-Jaradi, A, Al-Mahmooli, I, Janke, R, Maharachchikumbura, S, Al-Saady, N, Al-Sadi, AM (B104) 2018; 6
Raza, W, Wei, Z, Ling, N, Huang, Q, Shen, Q (B64) 2016; 227
Kim, SY, Song, H, Sang, MK, Weon, H-Y, Song, J (B21) 2017; 259
Odelade, KA, Oladeji, OS (B35) 2020; 8
Thibane, VS, Ells, R, Hugo, A, Albertyn, J, van Rensburg, WJJ, Van Wyk, PWJ, Kock, JLF, Pohl, CH (B88) 2012; 1820
Idris, ESE, Iglesias, DJ, Talon, M, Borriss, R (B71) 2007; 20
Zhang, P, Jin, T, Kumar Sahu, S, Xu, J, Shi, Q, Liu, H, Wang, Y (B73) 2019; 24
Fiddaman, PJ, Rossall, S (B67) 1994; 76
Gao, Z, Zhang, B, Liu, H, Han, J, Zhang, Y (B76) 2017; 105
Rajaofera, MJN, Wang, Y, Dahar, GY, Jin, P, Fan, L, Xu, L, Liu, W, Miao, W (B86) 2019; 156
Li, H, Yu, T (B44) 2001; 81
Kondo, T, Sibponkrung, S, Hironao, KY, Tittabutr, P, Boonkerd, N, Ishikawa, S, Ashida, H, Teaumroong, N, Yoshida, KI (B56) 2023
Pelagio-Flores, R, Ortíz-Castro, R, Méndez-Bravo, A, Macías-Rodríguez, L, López-Bucio, J (B95) 2011; 52
Gotor-Vila, A, Teixidó, N, Di Francesco, A, Usall, J, Ugolini, L, Torres, R, Mari, M (B65) 2017; 64
Rosalba Troncoso, R, Martín Ernesto Tiznado, H (B9) 2014
Keerthana, S, Rajeswari, E, Jayamani, P (B82) 2018; 105
Lim, JH, Kim, SD (B20) 2013; 29
Wang, WY, Kong, WL, Liao, YCZ, Zhu, LH (B98) 2022; 8
Yu, Z, Han, C, Yu, B, Zhao, J, Yan, Y, Huang, S, Liu, C, Xiang, W (B107) 2020; 8
Zhu, M, He, Y, Li, Y, Ren, T, Liu, H, Huang, J, Jiang, D, Hsiang, T, Zheng, L (B31) 2020; 10
Ku, Y, Xu, G, Tian, X, Xie, H, Yang, X, Cao, C, Chen, Y (B110) 2018; 13
Shah, A, Nazari, M, Antar, M, Msimbira, LA, Naamala, J, Lyu, D, Rabileh, M, Zajonc, J, Smith, DL (B1) 2021; 5
Qin, Q, Fan, Y, Jia, Q, Duan, S, Liu, F, Jia, B, Wang, G, Guo, W, Wang, C (B37) 2022; 14
Alsohaili, SA, Bani-Hasan, BM (B102) 2018; 11
Cozzolino, ME, Distel, JS, García, PA, Mascotti, ML, Ayub, MJ, Benazzi, LM, Di Masi, SN, Silva, PG (B47) 2020; 261
Cheffi, M, Bouket, AC, Alenezi, FN, Luptakova, L, Belka, M, Vallat, A, Rateb, ME, Tounsi, S, Triki, MA, Belbahri, L (B49) 2019; 7
Corsetti, A, Gobbetti, M, Rossi, J, Damiani, P (B90) 1998; 50
Bano, A, Gupta, A, Prusty, MR, Kumar, M (B6) 2023; 3
Backer, R, Rokem, JS, Ilangumaran, G, Lamont, J, Praslickova, D, Ricci, E, Subramanian, S, Smith, DL (B15) 2018; 871
Wang, Z, Zhong, T, Chen, X, Yang, B, Du, M, Wang, K, Zalán, Z, Kan, J (B91) 2021; 69
Lee, J-H, Lee, J (B93) 2010; 34
David, E, Niculescu, VC (B74) 2021; 18
Mailafia, S, Okoh, GR, Olabode, HOK, Osanupin, R (B36) 2017; 10
Liu, WH, Chen, FF, Wang, CE, Fu, HH, Fang, XQ, Ye, JR, Shi, JY (B72) 2019; 10
Slavin, JL, Lloyd, B (B4) 2012; 3
Hu, J, Dong, B, Wang, D, Meng, H, Li, X, Zhou, H (B78) 2022; 205
Ma, M, de Silva, DD, Taylor, PWJ (B13) 2020; 15
Thomas, G, Withall, D, Birkett, M (B54) 2020; 13
Timm, CM, Lloyd, EP, Egan, A, Mariner, R, Karig, D (B114) 2018; 9
Radhakrishnan, R, Hashem, A, Abd Allah, EF (B16) 2017; 8
Niemhom, N, Kittiwongwattana, C (B100) 2022; 23
Perincherry, L, Lalak-Kańczugowska, J, Stępień, Ł (B39) 2019; 11
Saleh, I, Al-Thani, R (B40) 2019; 12
Abdel-Hamid, MS, Fouda, A, El-Ela, HKA, El-Ghamry, AA, Hassan, SED (B70) 2021; 12
Pinto, MEA, Araújo, SG, Morais, MI, Sá, NP, Lima, CM, Rosa, CA, Siqueira, EP, Johann, S, Lima, LARS (B85) 2017; 89
Abdullah, Q, Mahmoud, A, Al-Harethi, A (B103) 2016; 01
Pradhan, PC, Mukhopadhyay, A, Kumar, R, Kundu, A, Patanjali, N, Dutta, A, Kamil, D, Bag, TK, Aggarwal, R, Bharadwaj, C, Singh, PK, Singh, A (B84) 2022; 13
Kumar Paul, GK, Mahmud, S, Dutta, AK, Sarkar, S, Laboni, AA, Hossain, M, Nagata, A, Karmaker, P, Razu, MH, Kazi, T, Uddin, M, Zaman, S, Islam, MS, Khan, M, Abu Saleh, M (B30); 12
Sharma, A, Shukla, A, Gupta, M (B112) 2023; 13
Vågsholm, I, Arzoomand, NS, Boqvist, S (B2) 2020; 4
Aoudou, Y, Phalone, MEG (B106) 2016; 2
Nan, M, Xue, H, Bi, Y (B8) 2022; 14
Sibponkrung, S, Kondo, T, Tanaka, K, Tittabutr, P, Boonkerd, N, Yoshida, K, Teaumroong, N (B34) 2020; 8
Bavaresco, LG, Osco, LP, Araujo, ASF, Mendes, LW, Bonifacio, A, Araújo, FF (B60) 2020; 32
Teixeira, GM, Mosela, M, Nicoletto, MLA, Ribeiro, RA, Hungria, M, Youssef, K, Higashi, AY, Mian, S, Ferreira, AS, Gonçalves, LSA, Pereira, U de P, de Oliveira, AG (B57) 2020; 11
Fincheira, P, Quiroz, A (B61) 2018; 208
Rouissi, W, Ugolini, L, Martini, C, Lazzeri, L, Mari, M (B108) 2013; 76
Fincheira, P, Quiroz, A, Tortella, G, Diez, MC, Rubilar, O (B62) 2021; 247
Arguelles-Arias, A, Ongena, M, Halimi, B, Lara, Y, Brans, A, Joris, B, Fickers, P (B25) 2009; 8
Papoutsis, K, Mathioudakis, MM, Hasperué, JH, Ziogas, V (B41) 2019; 86
Chen, J, Hu, L, Chen, N, Jia, R, Ma, Q, Wang, Y (B83) 2021; 12
Abdelkhalek, A, Behiry, SI, Al-Askar, AA (B11) 2020; 10
Jiao, J, Ma, Y, Chen, S, Liu, C, Song, Y, Qin, Y, Yuan, C, Liu, Y (B96) 2016; 7
Lim, SM, Yoon, MY, Choi, GJ, Choi, YH, Jang, KS, Shin, TS, Park, HW, Yu, NH, Kim, YH, Kim, JC (B46) 2017; 33
Vishwakarma, K, Kumar, N, Shandilya, C, Mohapatra, S, Bhayana, S, Varma, A (B53) 2020; 11
Tahir, HAS, Gu, Q, Wu, H, Raza, W, Safdar, A, Huang, Z, Rajer, FU, Gao, X (B111) 2017; 17
Saleh, AE, Ul-Hassan, Z, Zeidan, R, Al-Shamary, N, Al-Yafei, T, Alnaimi, H, Higazy, NS, Migheli, Q, Jaoua, S (B68) 2021; 6
Yu, L, Qiao, N, Zhao, J, Zhang, H, Tian, F, Zhai, Q, Chen, W (B43) 2020; 36
Rabbee, MF, Ali, MS, Choi, J, Hwang, BS, Jeong, SC, Baek, K-H (B55) 2019; 24
B77
Park, YS, Dutta, S, Ann, M, Raaijmakers, JM, Park, K (B113) 2015; 461
Kashyap, AS, Manzar, N, Nebapure, SM, Rajawat, MVS, Deo, MM, Singh, JP, Kesharwani, AK, Singh, RP, Dubey, SC, Singh, D (B80) 2022; 11
Calvo, H, Mendiara, I, Arias, E, Gracia, AP, Blanco, D, Venturini, ME (B51) 2020; 166
Ghazala, I, Chiab, N, Saidi, MN, Gargouri-Bouzid, R (B24) 2022; 121
Cesa-Luna, C, Baez, A, Quintero-Hernández, V, De la Cruz-Enríquez, J, Castañeda-Antonio, MD, Muñoz-Rojas, J (B32) 2020; 25
Mateus, JR, Dal’Rio, I, Jurelevicius, D, da Mota, FF, Marques, JM, Ramos, RTJ, da Costa da Silva, AL, Gagliardi, PR, Seldin, L (B28) 2021; 11
Akosah, YA, Vologin, SG, Lutfullin, MT, Hadieva, GF, Scyganova, NF, Zamalieva, FF, Mardanova, AM (B12) 2021; 22
Oliveira Lino, L, Pacheco, I, Mercier, V, Faoro, F, Bassi, D, Bornard, I, Quilot-Turion, B (B14) 2016; 64
Mosela, M, Andrade, G, Massucato, LR, de Araújo Almeida, SR, Nogueira, AF, de Lima Filho, RB, Zeffa, DM, Mian, S, Higashi, AY, Shimizu, GD, Teixeira, GM, Branco, KS, Faria, MV, Giacomin, RM, Scapim, CA, Gonçalves, LSA (B19) 2022; 12
Mohamad, OAA, Li, L, Ma, J-B, Hatab, S, Xu, L, Guo, J-W, Rasulov, BA, Liu, Y-H, Hedlund, BP, Li, WJ (B79) 2018; 9
Slathia, S, Sharma, YP, Hakla, HR, Urfan, M, Yadav, NS, Pal, S (B42) 2021; 5
Olanrewaju, OS, Glick, BR, Babalola, OO (B58) 2017; 33
Raza, W, Wang, J, Wu, Y, Ling, N, Wei, Z, Huang, Q, Shen, Q (B66) 2016; 100
Ueta, I, Takenaka, R, Fujimura, K, Yoshimura, T, Narukami, S, Mochizuki, S, Maeda, T (B75) 2020; 36
Kimura, M (B105) 1980; 16
Li, MW, Wang, Z, Jiang, B, Kaga, A, Wong, FL, Zhang, G, Han, T, Chung, G, Nguyen, H, Lam, HM (B109) 2020; 133
Dheda, K, Huggett, JF, Bustin, SA, Johnson, MA, Rook, G, Zumla, A (B33) 2004; 37
Liu, Y, Galani Yamdeu, JH, Gong, YY, Orfila, C (B7) 2020; 19
Vico, I, Duduk, N, Vasic, M, Nikolic, M (B10) 2014; 29
Xu, BH, Ye, ZW, Zheng, QW, Wei, T, Lin, JF, Guo, LQ (B29) 2018; 8
Toral, L, Rodríguez, M, Martínez-Checa, F, Montaño, A, Cortés-Delgado, A, Smolinska, A, Llamas, I, Sampedro, I (B50) 2021; 12
Ramírez, V, Munive, JA, Cortes, L, Muñoz-Rojas, J, Portillo, R, Baez, A (B26) 2020; 11
Zhou, L, Wang, J, Wu, F, Yin, C, Kim, KH, Zhang, Y (B27) 2022; 13
Suzuki, K, Shono, F, Kai, H, Uno, T, Uyeda, M (B89) 2010; 15
Tahir, HAS, Gu, Q, Wu, H, Raza, W, Hanif, A, Wu, L, Colman, MV, Gao, X (B59) 2017; 8
Saeed, Q, Xiukang, W, Haider, FU, Kučerik, J, Mumtaz, MZ, Holatko, J, Naseem, M, Kintl, A, Ejaz, M, Naveed, M, Brtnicky, M, Mustafa, A (B52) 2021; 22
de Oliveira Filho, JG, Silva, G da C, Cipriano, L, Gomes, M, Egea, MB (B5) 2021; 86
Attia, MF, Abada, KA, Naffa, AMAK, Boghdady, SF (B45) 2019; 47
Selvamani, K, Tadigiri, S, Das, D (B81) 2020; 8
Ling, L, Luo, H, Yang, C, Wang, Y, Cheng, W, Pang, M, Jiang, K (B92) 2022; 13
Wu, Y, Zhou, J, Li, C, Ma, Y (B22) 2019; 8
Bailly, A, Groenhagen, U, Schulz, S, Geisler, M, Eberl, L, Weisskopf, L (B94) 2014; 80
Zaid, DS, Cai, S, Hu, C, Li, Z, Li, Y (B17) 2022; 10
Li, M, Guo, R, Yu, F, Chen, X, Zhao, H, Li, H, Wu, J (B69) 2018; 19
Sharifi, R, Ryu, CM (B63) 2018; 122
Fincheira, P, Parra, L, Mutis, A, Parada, M, Quiroz, A (B23) 2017; 203
Li, X, Wang, X, Shi, X, Wang, B, Li, M, Wang, Q, Zhang, S (B87) 2020; 8
Bayisa, RA, Cho, JY, Kim, KY (B48) 2021; 77
Miljaković, D, Marinković, J, Balešević-Tubić, S (B18) 2020; 8
Reva, ON, Swanevelder, DZH, Mwita, LA, Mwakilili, AD, Muzondiwa, D, Joubert, M, Chan, WY, Lutz, S, Ahrens, CH, Avdeeva, LV, Kharkhota, MA, Tibuhwa, D, Lyantagaye, S, Vater, J, Borriss, R, Meijer, J (B99) 2019; 10
Habib, W, Masiello, M, Chahine-Tsouvalakis, H, Al Moussawi, Z, Saab, C, Tawk, ST, Piemontese, L, Solfrizzo, M, Logrieco, AF, Moretti, A, Susca, A (B38) 2021; 13
Lei, C, Teng, Y, He, L, Sayed, M, Mu, J, Xu, F, Zhang, X, Kumar, A, Sundaram, K, Sriwastva, MK, Zhang, L, Chen, SY, Feng, W, Zhang, S, Yan, J, Park, JW, Merchant, ML, Zhang, X, Zhang, HG (B115) 2021; 24
Ma, Y, Jiao, J, Fan, X, Sun, H, Zhang, Y, Jiang, J, Liu, C (B97) 2016; 7
Nicolopoulou-Stamati, P, Maipas, S, Kotampasi, C, Stamatis, P, Hens, L (B3) 2016; 4
References_xml – ident: e_1_3_4_52_2
  doi: 10.1016/j.postharvbio.2020.111208
– ident: e_1_3_4_41_2
  doi: 10.14202/vetworld.2019.1877-1883
– ident: e_1_3_4_35_2
  doi: 10.3390/microorganisms8050678
– ident: e_1_3_4_105_2
  doi: 10.7717/peerj.6064
– ident: e_1_3_4_65_2
  doi: 10.1016/j.jbiotec.2016.04.014
– ident: e_1_3_4_12_2
  doi: 10.3390/agronomy10091312
– ident: e_1_3_4_11_2
  doi: 10.2298/PIF1404257V
– ident: e_1_3_4_20_2
  doi: 10.1038/s41598-022-19515-8
– ident: e_1_3_4_38_2
  doi: 10.3390/toxins14120827
– ident: e_1_3_4_93_2
  doi: 10.3389/fmicb.2022.987844
– ident: e_1_3_4_23_2
  doi: 10.1002/mbo3.813
– ident: e_1_3_4_44_2
  doi: 10.1016/j.fbio.2020.100633
– ident: e_1_3_4_76_2
  doi: 10.2116/analsci.20P022
– ident: e_1_3_4_31_2
  doi: 10.1038/s41598-022-22354-2
– ident: e_1_3_4_114_2
  doi: 10.1016/j.bbrc.2015.04.039
– ident: e_1_3_4_63_2
  doi: 10.1016/j.micres.2021.126726
– ident: e_1_3_4_111_2
  doi: 10.1371/journal.pone.0210035
– ident: e_1_3_4_33_2
  doi: 10.15446/abc.v25n1.76867
– ident: e_1_3_4_83_2
  doi: 10.29321/MAJ.2018.000149
– ident: e_1_3_4_16_2
  doi: 10.3389/fpls.2018.01473
– ident: e_1_3_4_57_2
  doi: 10.2323/jgam.2023.02.002
– ident: e_1_3_4_42_2
  doi: 10.1016/j.tifs.2019.02.053
– ident: e_1_3_4_51_2
  doi: 10.3389/fmicb.2021.773092
– ident: e_1_3_4_75_2
  doi: 10.3390/ijerph182413147
– volume: 01
  start-page: 36
  year: 2016
  ident: e_1_3_4_104_2
  article-title: Isolation and identification of fungal post-harvest rot of some fruits in Yemen
  publication-title: PSM Microbiol
– ident: e_1_3_4_21_2
  doi: 10.5423/PPJ.SI.02.2013.0021
– ident: e_1_3_4_56_2
  doi: 10.3390/molecules24061046
– ident: e_1_3_4_60_2
  doi: 10.3389/fmicb.2017.00171
– ident: e_1_3_4_10_2
  doi: 10.1016/B978-0-12-411552-1.00005-3
– ident: e_1_3_4_84_2
  doi: 10.3389/fmicb.2021.745766
– ident: e_1_3_4_107_2
  doi: 10.22161/ijeab/2.1.9
– ident: e_1_3_4_73_2
  doi: 10.3389/fmicb.2019.02559
– ident: e_1_3_4_17_2
  doi: 10.3389/fphys.2017.00667
– ident: e_1_3_4_4_2
  doi: 10.3389/fpubh.2016.00148
– ident: e_1_3_4_45_2
  doi: 10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F
– ident: e_1_3_4_58_2
  doi: 10.3389/fmicb.2020.618415
– ident: e_1_3_4_13_2
  doi: 10.31830/2348-7542.2021.012
– ident: e_1_3_4_28_2
  doi: 10.3389/fmicb.2022.893393
– ident: e_1_3_4_47_2
  doi: 10.5423/PPJ.OA.04.2017.0073
– ident: e_1_3_4_71_2
  doi: 10.1515/bmc-2021-0019
– ident: e_1_3_4_106_2
  doi: 10.1007/BF01731581
– ident: e_1_3_4_74_2
  doi: 10.3390/molecules24071411
– ident: e_1_3_4_85_2
  doi: 10.3389/fpls.2022.990392
– ident: e_1_3_4_8_2
  doi: 10.1111/1541-4337.12562
– volume: 8
  start-page: 2062
  year: 2020
  ident: e_1_3_4_82_2
  article-title: Isolation and characterization of chemical constituents from B. Amyloliquefaciens and their Nematicidal activity
  publication-title: Article in journal of entomology and zoology studies
– ident: e_1_3_4_5_2
  doi: 10.3945/an.112.002154
– ident: e_1_3_4_25_2
  doi: 10.1016/j.pmpp.2022.101887
– ident: e_1_3_4_34_2
  doi: 10.2144/04371RR03
– ident: e_1_3_4_108_2
  doi: 10.3390/microorganisms8010077
– ident: e_1_3_4_37_2
  doi: 10.14202/vetworld.2017.393-397
– volume: 11
  year: 2018
  ident: e_1_3_4_103_2
  article-title: Morphological and molecular identification of fungi isolated from different environmental sources in the northern Eastern desert of Jordan
  publication-title: Jordan J Biol Sci
– ident: e_1_3_4_115_2
  doi: 10.3389/fmicb.2018.00491
– ident: e_1_3_4_30_2
  doi: 10.1007/s13205-018-1443-4
– volume: 32
  start-page: 21
  year: 2013
  ident: e_1_3_4_102_2
  article-title: Identification of Bacillus strain Hna3 and its bioactive compounds with a broad spectrum of antifungal activity
  publication-title: Journal of Huazhong Agricultural University
– ident: e_1_3_4_79_2
  doi: 10.1007/s00203-022-03351-5
– ident: e_1_3_4_19_2
  doi: 10.3390/microorganisms8071037
– ident: e_1_3_4_94_2
  doi: 10.1111/j.1574-6976.2009.00204.x
– ident: e_1_3_4_98_2
  doi: 10.3389/fpls.2016.02068
– ident: e_1_3_4_89_2
  doi: 10.1016/j.bbagen.2012.05.004
– ident: e_1_3_4_6_2
  doi: 10.1111/1750-3841.15816
– ident: e_1_3_4_9_2
  doi: 10.3390/toxins14050309
– ident: e_1_3_4_14_2
  doi: 10.1007/s13314-020-00395-8
– ident: e_1_3_4_99_2
  doi: 10.3390/jof8101021
– ident: e_1_3_4_29_2
  doi: 10.3390/agriculture11111046
– ident: e_1_3_4_116_2
  doi: 10.1016/j.isci.2021.102511
– ident: e_1_3_4_80_2
  doi: 10.3389/fmicb.2018.00924
– ident: e_1_3_4_2_2
  doi: 10.3389/fsufs.2021.667546
– ident: e_1_3_4_61_2
  doi: 10.1007/s40626-020-00173-y
– ident: e_1_3_4_66_2
  doi: 10.1016/j.fm.2017.01.006
– ident: e_1_3_4_3_2
  doi: 10.3389/fsufs.2020.00016
– ident: e_1_3_4_81_2
  doi: 10.3390/antiox11020404
– ident: e_1_3_4_77_2
  doi: 10.1016/j.biocontrol.2016.11.007
– ident: e_1_3_4_24_2
  doi: 10.1016/j.micres.2017.06.007
– ident: e_1_3_4_46_2
  doi: 10.21608/ejp.2019.123827
– ident: e_1_3_4_50_2
  doi: 10.3390/microorganisms7090314
– ident: e_1_3_4_90_2
  doi: 10.1080/14756360009040693
– ident: e_1_3_4_110_2
  doi: 10.1007/s00122-019-03462-6
– ident: e_1_3_4_78_2
  doi: 10.21203/rs.3.rs-2871463/v1
– ident: e_1_3_4_32_2
  doi: 10.3389/fmicb.2019.03099
– ident: e_1_3_4_88_2
  doi: 10.3390/pr8121674
– ident: e_1_3_4_109_2
  doi: 10.4315/0362-028X.JFP-13-072
– ident: e_1_3_4_49_2
  doi: 10.1002/ps.6078
– ident: e_1_3_4_92_2
  doi: 10.1021/acs.jafc.0c07375
– ident: e_1_3_4_53_2
  doi: 10.3390/ijms221910529
– ident: e_1_3_4_113_2
  doi: 10.1038/s41598-023-30253-3
– ident: e_1_3_4_62_2
  doi: 10.1016/j.micres.2018.01.002
– ident: e_1_3_4_96_2
  doi: 10.1093/pcp/pcr006
– ident: e_1_3_4_64_2
  doi: 10.1093/aob/mcy108
– ident: e_1_3_4_70_2
  doi: 10.3390/ijms19020443
– ident: e_1_3_4_36_2
  doi: 10.1016/j.sciaf.2020.e00366
– ident: e_1_3_4_48_2
  doi: 10.1016/j.scienta.2019.108957
– ident: e_1_3_4_22_2
  doi: 10.1016/j.jbiotec.2017.06.1206
– ident: e_1_3_4_55_2
  doi: 10.1111/1751-7915.13645
– ident: e_1_3_4_43_2
  doi: 10.3389/fsufs.2021.679830
– ident: e_1_3_4_7_2
  doi: 10.3390/stresses3010018
– ident: e_1_3_4_87_2
  doi: 10.1016/j.pestbp.2019.02.019
– ident: e_1_3_4_59_2
  doi: 10.1007/s11274-017-2364-9
– ident: e_1_3_4_97_2
  doi: 10.3389/fpls.2016.01387
– ident: e_1_3_4_101_2
  doi: 10.55003/cast.2022.03.23.005
– ident: e_1_3_4_91_2
  doi: 10.1007/s002530051285
– ident: e_1_3_4_86_2
  doi: 10.1590/0001-3765201720160908
– ident: e_1_3_4_69_2
  doi: 10.1021/acsomega.1c00816
– ident: e_1_3_4_95_2
  doi: 10.1111/tpj.12666
– ident: e_1_3_4_100_2
  doi: 10.3389/fmicb.2019.02610
– ident: e_1_3_4_15_2
  doi: 10.1021/acs.jafc.6b00104
– ident: e_1_3_4_26_2
  doi: 10.1186/1475-2859-8-63
– ident: e_1_3_4_67_2
  doi: 10.1007/s00253-016-7584-7
– ident: e_1_3_4_72_2
  doi: 10.1094/MPMI-20-6-0619
– ident: e_1_3_4_112_2
  doi: 10.1186/s12870-017-1083-6
– ident: e_1_3_4_27_2
  doi: 10.3389/fmicb.2020.00741
– ident: e_1_3_4_68_2
  doi: 10.1111/j.1365-2672.1994.tb01646.x
– ident: e_1_3_4_54_2
  doi: 10.3389/fmicb.2020.560406
– ident: e_1_3_4_18_2
  doi: 10.1128/spectrum.02169-21
– ident: e_1_3_4_40_2
  doi: 10.3390/toxins11110664
– ident: e_1_3_4_39_2
  doi: 10.3390/toxins13100730
– volume: 13
  start-page: 1907
  year: 2022
  ident: B27
  article-title: Termite nest associated Bacillus siamensis YC-9 mediated biocontrol of Fusarium oxysporum f. sp. cucumerinum
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.893393
– volume: 76
  start-page: 395
  year: 1994
  end-page: 405
  ident: B67
  article-title: Effect of substrate on the production of antifungal Volatiles from Bacillus subtilis
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1994.tb01646.x
– volume: 24
  year: 2019
  ident: B73
  article-title: The distribution of Tryptophan-dependent Indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis
  publication-title: Molecules
  doi: 10.3390/molecules24071411
– volume: 8
  start-page: 2062
  year: 2020
  end-page: 2066
  ident: B81
  article-title: Isolation and characterization of chemical constituents from B. Amyloliquefaciens and their Nematicidal activity
  publication-title: Article in journal of entomology and zoology studies
– volume: 8
  start-page: 678
  year: 2020
  ident: B34
  article-title: Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8050678
– volume: 69
  start-page: 2087
  year: 2021
  end-page: 2098
  ident: B91
  article-title: Potential of volatile organic compounds emitted by pseudomonas fluorescens ZX as biological fumigants to control citrus green mold decay at postharvest
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.0c07375
– volume: 10
  year: 2022
  ident: B17
  article-title: Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.02169-21
– volume: 247
  start-page: 126726
  year: 2021
  ident: B62
  article-title: Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2021.126726
– volume: 12
  start-page: 773092
  year: 2021
  ident: B50
  article-title: Identification of volatile organic compounds in extremophilic bacteria and their effective use in biocontrol of postharvest fungal phytopathogens
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.773092
– volume: 22
  year: 2021
  ident: B52
  article-title: Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms221910529
– volume: 11
  start-page: 1046
  year: 2021
  ident: B28
  article-title: Bacillus velezensis t149-19 And Bacillus safensis t052-76 as potential biocontrol agents against foot rot disease in sweet potato
  publication-title: Agriculture (Switzerland)
  doi: 10.3390/agriculture11111046
– volume: 17
  start-page: 133
  year: 2017
  ident: B111
  article-title: Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-017-1083-6
– volume: 18
  year: 2021
  ident: B74
  article-title: Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph182413147
– volume: 3
  start-page: 506
  year: 2012
  end-page: 516
  ident: B4
  article-title: Health benefits of fruits and vegetables
  publication-title: Advances in Nutrition
  doi: 10.3945/an.112.002154
– volume: 81
  start-page: 269
  year: 2001
  end-page: 274
  ident: B44
  article-title: Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit
  publication-title: J. Sci. Food Agric
  doi: 10.1002/1097-0010(20010115)81:2<269::AID-JSFA806>3.0.CO;2-F
– volume: 5
  start-page: 225
  year: 2021
  ident: B42
  article-title: Post-harvest management of alternaria induced rot in tomato fruits with essential oil of Zanthoxylum armatum DC
  publication-title: Front. Sustain. Food Syst
  doi: 10.3389/fsufs.2021.679830
– volume: 64
  start-page: 219
  year: 2017
  end-page: 225
  ident: B65
  article-title: Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2017.01.006
– year: 2023
  ident: B56
  article-title: Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones
  publication-title: J Gen Appl Microbiol
  doi: 10.2323/jgam.2023.02.002
– volume: 86
  start-page: 479
  year: 2019
  end-page: 491
  ident: B41
  article-title: Non-chemical treatments for preventing the postharvest fungal rotting of citrus caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold)
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2019.02.053
– volume: 01
  start-page: 36
  year: 2016
  end-page: 44
  ident: B103
  article-title: Isolation and identification of fungal post-harvest rot of some fruits in Yemen
  publication-title: PSM Microbiol
– volume: 25
  start-page: 140
  year: 2020
  end-page: 154
  ident: B32
  article-title: The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens
  publication-title: Acta biol Colomb
  doi: 10.15446/abc.v25n1.76867
– volume: 7
  start-page: 2068
  year: 2016
  ident: B97
  article-title: Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.02068
– volume: 13
  year: 2022
  ident: B92
  article-title: Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2022.987844
– volume: 7
  start-page: 1387
  year: 2016
  ident: B96
  article-title: Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01387
– volume: 461
  start-page: 361
  year: 2015
  end-page: 365
  ident: B113
  article-title: Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.04.039
– volume: 12
  start-page: 15284
  year: 2022
  ident: B19
  article-title: Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19515-8
– volume: 22
  start-page: 49
  year: 2021
  end-page: 53
  ident: B12
  article-title: Fusarium oxysporum strains from wilting potato plants: potential causal agents of dry rot disease in potato tubers
  publication-title: Res. on Crops
  doi: 10.31830/2348-7542.2021.012
– volume: 80
  start-page: 758
  year: 2014
  end-page: 771
  ident: B94
  article-title: The inter-kingdom volatile signal Indole promotes root development by interfering with auxin signalling
  publication-title: Plant J
  doi: 10.1111/tpj.12666
– volume: 11
  year: 2022
  ident: B80
  article-title: Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chili against bacterial wilt disease
  publication-title: Antioxidants
  doi: 10.3390/antiox11020404
– volume: 36
  start-page: 1071
  year: 2020
  end-page: 1074
  ident: B75
  article-title: Simultaneous extraction and determination of volatile organic compounds and semi-volatile organic compounds in indoor air using multi-bed solid phase extraction device
  publication-title: Anal Sci
  doi: 10.2116/analsci.20P022
– volume: 6
  start-page: 10984
  year: 2021
  end-page: 10990
  ident: B68
  article-title: Biocontrol activity of Bacillus Megaterium BM344-1 against Toxigenic fungi
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00816
– volume: 5
  year: 2021
  ident: B1
  article-title: PGPR in agriculture: a sustainable approach to increasing climate change resilience
  publication-title: Front Sustain Food Syst
  doi: 10.3389/fsufs.2021.667546
– volume: 11
  start-page: 618415
  year: 2020
  ident: B57
  article-title: Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.618415
– volume: 203
  start-page: 47
  year: 2017
  end-page: 56
  ident: B23
  article-title: Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2017.06.007
– volume: 19
  start-page: 1521
  year: 2020
  end-page: 1560
  ident: B7
  article-title: A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12562
– volume: 105
  start-page: 27
  year: 2017
  end-page: 39
  ident: B76
  article-title: Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea
  publication-title: Biological Control
  doi: 10.1016/j.biocontrol.2016.11.007
– volume: 64
  start-page: 4029
  year: 2016
  end-page: 4047
  ident: B14
  article-title: Brown rot strikes prunus fruit: an ancient fight almost always lost
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.6b00104
– volume: 9
  start-page: 491
  year: 2018
  ident: B114
  article-title: Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00491
– volume: 12
  start-page: 175
  year: 2021
  end-page: 196
  ident: B70
  article-title: Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents
  publication-title: Biomol Concepts
  doi: 10.1515/bmc-2021-0019
– volume: 50
  start-page: 253
  year: 1998
  end-page: 256
  ident: B90
  article-title: Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530051285
– volume: 32
  start-page: 21
  year: 2013
  end-page: 27
  ident: B101
  article-title: Identification of Bacillus strain Hna3 and its bioactive compounds with a broad spectrum of antifungal activity
  publication-title: Journal of Huazhong Agricultural University
– volume: 11
  year: 2018
  ident: B102
  article-title: Morphological and molecular identification of fungi isolated from different environmental sources in the northern Eastern desert of Jordan
  publication-title: Jordan J Biol Sci
– volume: 20
  start-page: 619
  year: 2007
  end-page: 626
  ident: B71
  article-title: Tryptophan-dependent production of Indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-20-6-0619
– volume: 16
  start-page: 111
  year: 1980
  end-page: 120
  ident: B105
  article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
  publication-title: J Mol Evol
  doi: 10.1007/BF01731581
– volume: 8
  year: 2020
  ident: B35
  article-title: Isolation of Phytopathogenic fungi associated with the post-harvest deterioration of watermelon fruits
  publication-title: Scientific African
  doi: 10.1016/j.sciaf.2020.e00366
– volume: 8
  start-page: 1674
  year: 2020
  ident: B87
  article-title: Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum
  publication-title: Processes
  doi: 10.3390/pr8121674
– volume: 36
  start-page: 100633
  year: 2020
  ident: B43
  article-title: Postharvest control of Penicillium expansum in fruits: a review
  publication-title: Food Bioscience
  doi: 10.1016/j.fbio.2020.100633
– volume: 24
  year: 2021
  ident: B115
  article-title: Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102511
– volume: 7
  year: 2019
  ident: B49
  article-title: Olea Europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7090314
– volume: 10
  start-page: 3099
  year: 2020
  ident: B31
  article-title: Two new biocontrol agents against clubroot caused by Plasmodiophora brassicae
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.03099
– volume: 77
  start-page: 775
  year: 2021
  end-page: 779
  ident: B48
  article-title: Purification and identification of a new antifungal dipeptide from Bacillus velezensis AR1 culture supernatant
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.6078
– volume: 76
  start-page: 1879
  year: 2013
  end-page: 1886
  ident: B108
  article-title: Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum
  publication-title: J Food Prot
  doi: 10.4315/0362-028X.JFP-13-072
– volume: 105
  year: 2018
  ident: B82
  article-title: Exploiting biocontrol potential of Bacillus amyloliquefaciens (sic.) fukumoto for the management of mungbean anthracnose
  publication-title: Madras Agricultural Journal
  doi: 10.29321/MAJ.2018.000149
– volume: 8
  year: 2017
  ident: B59
  article-title: Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00171
– volume: 19
  year: 2018
  ident: B69
  article-title: Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium arthrobacter pascens ZZ21
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19020443
– volume: 13
  start-page: 1366
  year: 2020
  end-page: 1376
  ident: B54
  article-title: Harnessing microbial volatiles to replace pesticides and fertilizers
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.13645
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: B29
  article-title: Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15
  publication-title: 3 Biotech
  doi: 10.1007/s13205-018-1443-4
– volume: 227
  start-page: 43
  year: 2016
  end-page: 53
  ident: B64
  article-title: Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol bacillus amyloliquefaciens strains
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2016.04.014
– volume: 261
  year: 2020
  ident: B47
  article-title: Control of postharvest fungal pathogens in pome fruits by lipopeptides from a Bacillus sp. isolate SL-6
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2019.108957
– volume: 3
  start-page: 231
  year: 2023
  end-page: 255
  ident: B6
  article-title: Elicitation of fruit fungi infection and its protective response to improve the Postharvest quality of fruits
  publication-title: Stresses
  doi: 10.3390/stresses3010018
– volume: 156
  start-page: 170
  year: 2019
  end-page: 176
  ident: B86
  article-title: Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2019.02.019
– volume: 33
  start-page: 197
  year: 2017
  ident: B58
  article-title: Mechanisms of action of plant growth promoting bacteria
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-017-2364-9
– volume: 15
  start-page: 357
  year: 2010
  end-page: 366
  ident: B89
  article-title: Inhibition of topoisomerases by fatty acids
  publication-title: J Enzyme Inhib
  doi: 10.1080/14756360009040693
– volume: 2
  start-page: 56
  year: 2016
  end-page: 60
  ident: B106
  article-title: Isolation and pathogenicity evaluation of postharvest fungal of some fruits in Cameroon
  publication-title: IJEAB
  doi: 10.22161/ijeab/2.1.9
– volume: 11
  year: 2020
  ident: B26
  article-title: Long-chain hydrocarbons (C21, C24, and C31) released by Bacillus sp. MH778713 break dormancy of mesquite seeds subjected to chromium stress
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00741
– volume: 47
  start-page: 257
  year: 2019
  end-page: 276
  ident: B45
  article-title: Management of potato post harvest tuber rots by some organic acids and essential plant oils
  publication-title: Journal of Phytopathology
  doi: 10.21608/ejp.2019.123827
– volume: 14
  year: 2022
  ident: B37
  article-title: The potential of Alternaria toxins production by A. alternata in processing tomatoes
  publication-title: Toxins
  doi: 10.3390/toxins14120827
– volume: 34
  start-page: 426
  year: 2010
  end-page: 444
  ident: B93
  article-title: Indole as an intercellular signal in microbial communities
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2009.00204.x
– volume: 12
  start-page: 745766
  year: 2021
  ident: B83
  article-title: The biocontrol and plant growth-promoting properties of Streptomyces alfalfae XN-04 revealed by functional and genomic analysis
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.745766
– volume: 86
  start-page: 3341
  year: 2021
  end-page: 3348
  ident: B5
  article-title: Control of postharvest fungal diseases in fruits using external application of RNAi
  publication-title: J Food Sci
  doi: 10.1111/1750-3841.15816
– volume: 10
  start-page: 393
  year: 2017
  end-page: 397
  ident: B36
  article-title: Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria
  publication-title: Vet World
  doi: 10.14202/vetworld.2017.393-397
– volume: 11
  year: 2019
  ident: B39
  article-title: Fusarium-produced mycotoxins in plant-pathogen interactions
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins11110664
– volume: 13
  year: 2018
  ident: B110
  article-title: Correction: root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210035
– volume: 13
  start-page: 3645
  year: 2022
  ident: B84
  article-title: Performance appraisal of Trichoderma viride based novel tablet and powder formulations for management of Fusarium wilt disease in chickpea
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.990392
– volume: 10
  start-page: 2610
  year: 2019
  ident: B99
  article-title: Genetic, epigenetic and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02610
– volume: 8
  start-page: 1
  year: 2009
  end-page: 12
  ident: B25
  article-title: Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-8-63
– volume: 10
  year: 2019
  ident: B72
  article-title: Indole-3-acetic acid in Burkholderia pyrrocinia JK-SH007: enzymatic identification of the Indole-3-Acetamide synthesis pathway
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02559
– volume: 24
  year: 2019
  ident: B55
  article-title: Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes
  publication-title: Molecules
  doi: 10.3390/molecules24061046
– volume: 4
  year: 2016
  ident: B3
  article-title: Chemical pesticides and human health: the urgent need for a new concept in agriculture
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2016.00148
– volume: 52
  start-page: 490
  year: 2011
  end-page: 508
  ident: B95
  article-title: Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr006
– start-page: 147
  year: 2014
  end-page: 187
  ident: B9
  article-title: Alternaria Alternata (black rot, black spot)
  publication-title: Postharvest decay (control strategies) ;Chapter p In
  doi: 10.1016/B978-0-12-411552-1.00005-3
– volume: 13
  year: 2021
  ident: B38
  article-title: Occurrence and characterization of Penicillium species isolated from post-harvest apples in Lebanon
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins13100730
– volume: 8
  start-page: 667
  year: 2017
  ident: B16
  article-title: Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00667
– volume: 11
  start-page: 560406
  year: 2020
  ident: B53
  article-title: Revisiting plant-microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.560406
– volume: 32
  start-page: 99
  year: 2020
  end-page: 108
  ident: B60
  article-title: Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds
  publication-title: Theor. Exp. Plant Physiol
  doi: 10.1007/s40626-020-00173-y
– volume: 205
  year: 2022
  ident: B78
  article-title: Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-022-03351-5
– volume: 13
  year: 2023
  ident: B112
  article-title: Effect of bioagents on cucumber seed mycoflora, seed germination, and seedling vigour
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-30253-3
– volume: 4
  year: 2020
  ident: B2
  article-title: Food security, safety, and sustainability—getting the trade-offs right
  publication-title: Front Sustain Food Syst
  doi: 10.3389/fsufs.2020.00016
– volume: 9
  start-page: 924
  year: 2018
  ident: B79
  article-title: Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus Atrophaeus against Verticillium dahliae
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00924
– volume: 12
  start-page: 19137
  ident: B30
  article-title: Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L) abbreviations RWC relative water content H 2 O 2 hydrogen peroxide NO nitric oxide CAT catalase SOD superoxide dismutase POD Peroxidases APX Ascorbate peroxidase RMSD root-mean-square deviation
  publication-title: Sci Reports ;n.d.
  doi: 10.1038/s41598-022-22354-2
– volume: 29
  start-page: 257
  year: 2014
  end-page: 266
  ident: B10
  article-title: Identification of Penicillium expansum causing postharvest blue mold decay of apple fruit
  publication-title: Pesticidi i fitomedicina
  doi: 10.2298/PIF1404257V
– volume: 8
  start-page: 1
  year: 2020
  end-page: 19
  ident: B18
  article-title: The significance of Bacillus spp. In disease suppression and growth promotion of field and vegetable crops
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8071037
– volume: 122
  start-page: 349
  year: 2018
  end-page: 358
  ident: B63
  article-title: Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future
  publication-title: Ann Bot
  doi: 10.1093/aob/mcy108
– volume: 89
  start-page: 1671
  year: 2017
  end-page: 1681
  ident: B85
  article-title: Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils
  publication-title: An Acad Bras Cienc
  doi: 10.1590/0001-3765201720160908
– volume: 208
  start-page: 63
  year: 2018
  end-page: 75
  ident: B61
  article-title: Microbial volatiles as plant growth inducers
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2018.01.002
– volume: 10
  start-page: 1312
  year: 2020
  ident: B11
  article-title: Bacillus velezensis pea1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus
  publication-title: Agronomy
  doi: 10.3390/agronomy10091312
– volume: 166
  start-page: 111208
  year: 2020
  ident: B51
  article-title: Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2020.111208
– volume: 8
  start-page: 1021
  year: 2022
  ident: B98
  article-title: Identification of Bacillus velezensis SBB and its antifungal effects against Verticillium dahliae
  publication-title: JoF
  doi: 10.3390/jof8101021
– volume: 23
  year: 2022
  ident: B100
  article-title: Biocontrol potential, genome and nonribosomal peptide synthetase gene expression of Bacillus velezensis 2211
  publication-title: Curr Appl Sci Technol
  doi: 10.55003/cast.2022.03.23.005
– volume: 37
  start-page: 112
  year: 2004
  end-page: 114
  ident: B33
  article-title: Validation of housekeeping genes for normalizing RNA expression in real-time PCR
  publication-title: Biotechniques
  doi: 10.2144/04371RR03
– volume: 8
  year: 2019
  ident: B22
  article-title: Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens
  publication-title: Microbiologyopen
  doi: 10.1002/mbo3.813
– ident: B77
  article-title: He Y , Peng J , Jia N , Wang X , Ma J , Wang H , Zhang C , Wang E , Hu D , Wang Z . 2023 . Bacillus vlezensis Wsw007 different concentrations volatile organic compounds stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development . doi: 10.21203/rs.3.rs-2871463/v1
– volume: 259
  start-page: 221
  year: 2017
  end-page: 227
  ident: B21
  article-title: The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.06.1206
– volume: 6
  year: 2018
  ident: B104
  article-title: Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman
  publication-title: PeerJ
  doi: 10.7717/peerj.6064
– volume: 33
  start-page: 488
  year: 2017
  end-page: 498
  ident: B46
  article-title: Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi
  publication-title: Plant Pathol J
  doi: 10.5423/PPJ.OA.04.2017.0073
– volume: 133
  start-page: 1655
  year: 2020
  end-page: 1678
  ident: B109
  article-title: Impacts of genomic research on soybean improvement in East Asia
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-019-03462-6
– volume: 100
  start-page: 7639
  year: 2016
  end-page: 7650
  ident: B66
  article-title: Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7584-7
– volume: 29
  start-page: 201
  year: 2013
  end-page: 208
  ident: B20
  article-title: Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper
  publication-title: Plant Pathol J
  doi: 10.5423/PPJ.SI.02.2013.0021
– volume: 8
  year: 2020
  ident: B107
  article-title: Taxonomic characterization, and secondary metabolite analysis of Streptomyces triticiradicis sp. nov.: a novel actinomycete with antifungal activity
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8010077
– volume: 121
  year: 2022
  ident: B24
  article-title: Volatile organic compounds from Bacillus mojavensis I4 promote plant growth and inhibit phytopathogens
  publication-title: Physiological and Molecular Plant Pathology
  doi: 10.1016/j.pmpp.2022.101887
– volume: 1820
  start-page: 1463
  year: 2012
  end-page: 1468
  ident: B88
  article-title: Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2012.05.004
– volume: 12
  start-page: 1877
  year: 2019
  end-page: 1883
  ident: B40
  article-title: Fungal food spoilage of supermarkets' displayed fruits
  publication-title: Vet World
  doi: 10.14202/vetworld.2019.1877-1883
– volume: 871
  start-page: 1473
  year: 2018
  ident: B15
  article-title: Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01473
– volume: 14
  year: 2022
  ident: B8
  article-title: Contamination, detection and control of mycotoxins in fruits and vegetables
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins14050309
– volume: 15
  year: 2020
  ident: B13
  article-title: Black mould of post-harvest tomato (Solanum lycopersicum) caused by Cladosporium cladosporioides in Australia
  publication-title: Australasian Plant Dis. Notes
  doi: 10.1007/s13314-020-00395-8
SSID ssj0001105252
Score 2.3362405
Snippet Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens:...
The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) HNA3 strain, which comes to confirm and reveals the...
Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest phytopathogens:...
The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to...
ABSTRACT Bacillus velezensis HNA3 displayed dual bioactivities as a plant growth promoter and a biocontrol agent against five isolated post-harvest...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0051923
SubjectTerms Bacillus velezensis HNA3
Environmental Microbiology
fatty acid methyl ester (FAME)
gas chromatography-mass spectrometry (GC-MS)
gene expression (RT-qPCR)
post-harvested phytopathogen
Research Article
volatile and semi-volatile organic compounds (VOCs)
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjL2Np9pGvHDQaDgVdbkr8e27ES-tCnFfomzrKcGFI7xM5g-5P2V_ZOdkIyRvcyyEtsC8m6093v5J_uhPgoyyzOLLogLHQYaAyLICso5kmiiJroNKYlxWyLm2R2q6_v4ru9Ul_MCRvSAw8Td66kk5pel3wzamlLdEpWLiXYEBX0p2DrSz5vL5jyuysR12eT42dMssHn_uDienP_xYOWgMsTTbC7lwf-yKft_xvW_JMyueeDrl6I5yN4hIth0C_FE9cciadDOcmfx-L3cOq2GrfhoK2gqFv0Fg2YO84llDq-fIm2Xi43HXDZiV_MYe9gdnOhoF9gD56-znWwHPQt1H0HfGALRuoHYAerJQkE5hTC9wtYeUafWwM2JXc4st8B51gT-IRV2_XBAtc__NYqkCed16_E7dW3719nwViLIUDCSH1gseLYMZc0Azqnn9W2IEPqZJLHVRUXqJUqM7qR2kpHaRamqS1tphIdWtID9VpMmrZxbwWQjcxYKSqytVpjThFTlYRlqhAj6iSeik8sGDMups74OEVmZitC40VopJqKcCs7Y8eU5lxZY_lYk8-7Jqshn8djD1-yQuwe5FTc_gIpqBkV1PxLQafiw1adDC1d_h6DjWs3neFSAwyAtZ6KN4N67bpSfAI4VzQZ2YHiHYzl8E5TL3x6cAroCcal4cn_GP078UwSrGMCTyRPxYTmx50RDOuL937FPQDGwjfB
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi
URI https://www.ncbi.nlm.nih.gov/pubmed/37811935
https://journals.asm.org/doi/10.1128/spectrum.00519-23
https://www.proquest.com/docview/2874835244
https://pubmed.ncbi.nlm.nih.gov/PMC10715170
https://doaj.org/article/32e24ead025a42cdae32fe75221bdaeb
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdy2AvY_dll3IGg8HAnS3JtvyYjpWwQfeyQN-ELMuJIbVD7Ay2n7RfuXNkJVtGKYO8xLKQOTd9RzoXxt7ySqXKGhfFpYwjaeIyUiX6PFmS4BSZp6hSFG1xmc3m8vNVenXEsl0uTKBgf2b6a3-Rv9dsrj745MPN9vrMA4-IizvsJOWFRIU8mU7nX7_8OV1JqD8bD9eYN85FG4xr8IP9yJftvwlr_hsy-dcedPGA3Q_gEaYjtx-yI9c-YnfHdpI_HrNfY9ZtHY7hoKuhbDrjLRpQ7Di1UOrp8bmxzWq17YHaTvykGPYeZpdTAcPSDODD16kPloOhg2bogRK2IIR-gOlhvUKGwAJd-GEJax_R5zZg2ooWDNHvYBamQfAJ664foqXZfPdHq4A76aJ5wuYXn759nEWhF0NkECMNkTU1-Y4FRwrIAn9W2hINqeNZkdZ1WhopRKVwILe1THIV57mtrBKZjC3KgXjKjtuudc8ZoI1UJBQ12lopTYEeU53FVS6MSXCRdMLeEWP0ThS091O40jsWas9CzcWExTveaRtKmlNnjdVtU97vp6zHeh63vXxOArF_kUpx-wcomDpothZIA4n6iODRSG4r4wSvXY64NinxTzlhb3bipFF16T7GtK7b9ppaDRAAlnLCno3itV9KUAZwIZAY6kDwDr7lcKRtlr48ODr0COPy-MV_0_Elu8cRu1GUTsJfsWMcdK8Raw3laVCsU39W8Rs7li7b
linkProvider American Society for Microbiology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgQviDvlaiQQElK2xHaa9IGHDpg6OsrLKu3NOI7TBmVJVadM4yftV3KO6xaKpomXSX1JYteJz8XfsY_9EfKG5WmcamWCMBNhIFSYBWkGMU83iqCKSGIwKcy2GHUHY_HlJD7ZIhervTA_kJe3srvKnrp1fDRsnIj2fITpntuAOF-c7jrwEbAVcfXQnJ9BuGY_HH4C2b5l7ODz8cdB4BkFAgUjfRtoVWAE1GO5NqIHPy10Bu7AsG4vLoo4U4LzPIUHiS5ElKRhkuhcp7wrQg1fw-F_b5AdXKuEQG-n3x9_G_6Z0YmQE475pdNL3xX8PnwY2xgDHVXAZfj23zTNv8a9g7vkjgestL_UsHtky9T3yc0lheX5A3Kx3Olb-Kk_2hQ0KxvlvCjFfHWkbbJ4e1_psqoWliLVxS_Mm7d0MOpz2k5VS13KPHJvGdo2tGwtxU1i1KebUGXprAIloJN5c9ZO6cxlEZo5VXWODfqMe6omqgTAS2eNbYOpmv9007kURu9J-ZCMr0Vaj8h23dTmCaHgl1NUxAL8uxCqB1Fa0Q3zhCsVQSNxh7xDwUhvwFa62IilciVC6UQoGe-QcCU7qf0x6sjmUV1V5f26ymx5hshVhfdRIdYF8fhvdwOsQXpvIjn0gQAfAIBVCaZzZTgrTAJYOsrgIuuQ1yt1kuAucA1I1aZZWIn0Bgi6heiQx0v1WjfFcddxj0NnpBuKt_Eum0_qcuqOJI8AqcZREj797358RW4Njr8eyaPD0fAZuc0AO2KWUMSek20oaF4A1muzl97IKPl-3Xb9G38UbD0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG_K5yGBkJCyJY7TpA88dIxqo6jwQKW9Gcdx2khdUjUp0_iT9ldy5zqFomniZVJfkth14juff2ff-cfYG54lUaKV8fxU-J5QfuolKfo8vSDAKiKOcEhRtMW4dzQRn0-ikx120ebCuB6s91R9ajfyaWQvstzxESb7NgFxuTrds-DD4y1x9cicn6G7Vn84PkTZvuV8-On7xyPPMQp4Cmf6xtMqJw-ozzNtRB9_WugUzYHhvX6U51GqRBhmCT6IdS6COPHjWGc6CXvC1_g1If7vDbZrN8c6bHcwmHwd_VnRCYgTjrut00vfFe0-fhffmgMtVcBl-PbfMM2_5r3hXXbHAVYYrDXsHtsx5X12c01hef6AXawzfXO39AdVDmlRKWtFgeLVibapptsHShfz-aoGorr4RXHzNRyNByE0M9WADZkn7i0DTQVFUwMliYELNwFVw2KOSgDTZXXWzGBhowjNElSZUYMu4h7UVBUIeGFR1Y03U8ufdjkXcPaeFg_Z5Fqk9Yh1yqo0TxigXU5IEXO070KoPnppec_P4lCpABuJuuwdCUa26ietb8QT2YpQWhFKHnaZ38pOaneMOrF5zK-q8n5TZbE-Q-SqwgekEJuCdPy3vYGDQTprIkPsA4E2AAGrElxnyoQ8NzFi6SDFi7TLXrfqJNFc0B6QKk21qiXRGxDoFqLLHq_Va9NUSFnH_RA7I9lSvK132X5SFjN7JHmASDUKYv_pf_fjK3br2-FQfjkej56x2xyhIwUJBfw562A58wKhXpO-dGMM2I_rHta_AeRfa9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+bioactive+compounds+of+Bacillus+velezensis+HNA3+that+contribute+to+its+dual+effects+as+plant+growth+promoter+and+biocontrol+against+post-harvested+fungi&rft.jtitle=Microbiology+spectrum&rft.au=Zaid%2C+Doaa+S&rft.au=Li%2C+Wenya&rft.au=Yang%2C+Siyu&rft.au=Li%2C+Youguo&rft.date=2023-12-12&rft.eissn=2165-0497&rft.volume=11&rft.issue=6&rft.spage=e0051923&rft_id=info:doi/10.1128%2Fspectrum.00519-23&rft_id=info%3Apmid%2F37811935&rft.externalDocID=37811935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2165-0497&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2165-0497&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2165-0497&client=summon